PRECIPITATION DOWNSCALING:

METHODOLOGIES AND HYDROLOGIC APPLICATIONS

Efi Foufoula-Georgiou

St. Anthony Falls Laboratory Dept. of Civil Engineering University of Minnesota

1200 Washington Ave S · Minneapolis, Minnesota · Tel: (612) 625-1818

DOWNSCALING

- Downscaling = "Creating" information at scales smaller than the available scales, or reconstructing variability at sub-grid scales. It is usually statistical in nature, i.e., statistical downscaling.
- Could be seen as equivalent to "conditional simulation" i.e, simulation conditional on preserving the statistics at the starting scale and/or other information.

PREMISES OF STATISTICAL DOWNSCALING

- Precipitation exhibits space-time variability over a large range of scales (a few meters to thousand of Kms and a few seconds to several decades)
- ✓ There is a substantial evidence to suggest that despite the very complex patterns of precipitation, there is an underlying simpler structure which exhibits scale-invariant statistical characteristics
- ✓ If this scale invariance is unraveled and quantified, it can form the basis of moving up and down the scales: important for efficient and parsimonious downscaling methodologies

Precipitation exhibits spatial variability at a large range of scales

OUTLINE OF TALK

- 1. Multi-scale analysis of spatial precipitation
- 2. A spatial downscaling scheme
- 3. Relation of physical and statistical parameters for real-time or predictive downscaling
- 4. A space-time downscaling scheme
- 5. Hydrologic applications

References

- Kumar, P., E. Foufoula-Georgiou, A multicomponent decomposition of spatial rainfall fields 1. Segregation of large- and small-scale features using wavelet tranforms, 2. Self-similarity in fluctuations, *Water Resour. Res.*, 29(8), 2515–2532, doi: 10.1029/93WR00548, 1993.
- 2. Perica, S., E. Foufoula-Georgiou, Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions, *J. Geophys. Res.*, 101(D21), 26347-26362, doi: 10.1029/96JD01870, 1996.
- 3. Perica, S., E. Foufoula-Georgiou, Linkage of Scaling and Thermodynamic Parameters of Rainfall: Results From Midlatitude Mesoscale Convective Systems, *J. Geophys. Res.*, 101(D3), 7431-7448, doi: 10.1029/95JD02372, 1996.
- 4. Venugopal, V., E. Foufoula-Georgiou, V. Sapozhnikov, Evidence of dynamic scaling in space-time rainfall, *J. Geophys. Res.*, 104(D24), 31599–31610, doi: 10.1029/1999JD900437, 1999.
- Venugopal, V., E. Foufoula-Georgiou, V. Sapozhnikov, A space-time downscaling model for rainfall, *J. Geophys. Res.*, 104(D16), 19705–19722, doi: 10.1029/1999JD900338, 1999.
- 6. Nykanen, D. and E. Foufoula-Georgiou, Soil moisture variability and its effect on scale-dependency of nonlinear parameterizations in coupled land-atmosphere models, *Advances in Water Resources*, 24(9-10), 1143-1157, doi: 2001.10.1016/S0309-1708(01)00046-X, 2001
- 7. Nykanen, D. K., E. Foufoula-Georgiou, and W. M. Lapenta, Impact of small-scale rainfall variability on larger-scale spatial organization of landatmosphere fluxes, *J. Hydrometeor.*, 2, 105–120, doi: 10.1175/1525-7541(2001)002, 2001

1. Multiscale analysis - 1D example

}

 $\overline{\overline{X}}_3$

1. Multiscale analysis - 1D example

1. Multiscale analysis - 1D example

Multiscale analysis via Wavelets

- Averaging and differencing at multiple scales can be done efficiently via a discrete orthogonal wavelet transform (WT), e.g., the Haar wavelet
- ✓ The inverse of this transform (IWT) allows efficient reconstruction of the signal at any scale given the large scale average and the "fluctuations" at all intermediate smaller scales
- ✓ It is easy to do this analysis in any dimension (1D, 2D or 3D).

(See Kumar and Foufoula-Georgiou, 1993)

Multiscale analysis - 2D example

Interpretation of directional fluctuations (gradients)

(See Kumar and Foufoula-Georgiou, 1993)

Observation 1

(See Perica and Foufoula-Georgiou, 1996)

- ✓ Local rainfall gradients ($X'_{m,i=1,2,3}$) depend on local average rainfall intensities \overline{X}_m and were hard to parameterize
- ✓ But, standardized fluctuations $\xi_{m,i=1,2,3} = \frac{X_{m,i=1,2,3}}{\overline{X}_{m}}$
 - > are approximately independent of local averages
 - Sobey approximately a Normal distribution centered around zero, i.e, have only 1 parameter to worry about in each direction

At scale m:
$$\sigma_{\xi_1}$$
, σ_{ξ_2} , σ_{ξ_3}

(See Perica and Foufoula-Georgiou, 1996)

2. Spatial downscaling scheme

Example of downscaling

Original

Simulated

Example of downscaling

DOWNSCALED

REAL

(C)

Original

64x64 km

32x32 km

16x16 km

UPSCALING

8x8 km

4x4 km

Simulated

DOWNSCALING

Performance of downscaling scheme

3. Relation of statistical parameters to physical observables

$$\frac{\text{DEFINITION OF CAPE }(m^{2}/\text{sec}^{2})}{\text{CAPE}} = \int_{\text{LFC}}^{\text{EL}} g \cdot \left(\frac{\Theta_{c} - \Theta_{env}}{\Theta_{env}}\right) dz$$

- O_c = potential T of an air parcel lifted from the surface to the level Z
- Oenv = potential T of the unsaturated environment at the same level
- LFC = level of free convection
- EL = equilibrium level
- D CAPE is a measure of the potential instability

(See Perica and Foufoula-Georgiou, 1996)

Predictive downscaling

4. Space-time Downscaling

- ✓ Describe rainfall variability at several spatial and temporal scales
- \checkmark Explore whether space-time scale invariance is present. Look at rainfall fields at times τ and $(\tau+t).$

τ

τ + t

✓ Change L and t and compute statistics of evolving field

$$\Delta I (t, L) = I(\tau + t, L) - I(\tau, L)$$

$$\frac{\Delta I}{I} (t, L) = \frac{I(\tau + t, L) - I(\tau, L)}{\frac{1}{2} [I(\tau + t, L) + I(\tau, L)]} \quad \Delta \ln I(t, L)$$

PDFs of ΔlnI

$\sigma(\Delta \ln I)$ vs. Time Lag and vs. Scale

Space-time scaling

- Question: Is it possible to rescale space and time such that some scale-invariance is unraveled?
- ✓ Look for transformation that relate the dimensionless quantities (t_1/t_2) and (L_1/L_2)
- \checkmark Possible only via transformation of the form $t \sim L^z$: "Dynamic scaling"

Variance of $\Delta \ln I(t,L)$

Time Lag t (min)										
		10	20	30	40	50	60	70	80	
L (km)	2	0.58	0.77	0.89	0.97	1.05	1.11	1.17	1.21	
	4	0.47	0.67	0.79	0.87	0.95	1.01	1.07	1.12	
	8	0.35	0.55	0.67	0.76	0.84	0.90	0.96	1.01	
	16	0.23	0.40	0.53	0.63	0.71	0.77	0.83	0.88	

∜

Find (t,L) pairs for which $var(\Delta \ln I) = constant$

∜

		$\operatorname{var}(\Delta \ln I)$:	$\operatorname{var}(\Delta \ln I) = \sum (\Delta \ln I)$			
		0.6	0.7	0.8		
L (km)	2	11.1	16.3	22.4		
	4	16.6	22.8	31.6		
	8	24.4	33.3	45.1		
	16	37.4	49.4	64.7		

Dec. 28, 1993 : Iso- $\Sigma(\Delta \ln I)$ Lines

What do these values of z mean?

Consider for instance, z = 0.6,

Dynamic scaling implies

 $(t_1/t_2) = (L_1/L_2)^z$

 \implies A feature **eight times** smaller will evolve **3 times** faster than the larger feature.

since

$$t_2 = t_1 \left(\frac{16}{2}\right)^{0.6} \approx 3t_1$$

Schematic of space-time downscaling

Schematic of space-time downscaling

Space-time Downscaling preserves temporal persistence

Given Field i.e. @ 32x32 km²

Field from Spat. Disagg. @ 2x2 km 2

2x2km² - cumulative field after 50 mins

2x2km² - cumulative field after 50 mins

Observed

Ac do mi

2x2km² - cumulative field after 50 mins

Accumulation of spatially downscaled field (every 10 minutes)

Space-time downscaling

(See Venugopal, Foufoula-Georgiou and Sapozhnikov, 1996)

5. Hydrological Applications

Effect of small-scale precipitation variability on runoff prediction

It is known that the land surface is not merely a static boundary to the atmosphere but is dynamically coupled to it.

Land - Atmosphere Feedback Mechanisms

Coupling between the land and atmosphere occurs at all scales and is nonlinear.

Nonlinear evolution of a variable

• When subgrid-scale variability is introduced in the rainfall, it propagates through the nonlinear equations of the land-surface system to produce subgridscale variability in other variables of the water and energy budgets.

• Nonlinear feedbacks between the land-surface and the atmosphere further propagate this variability through the coupled land-atmosphere system.

Due to the nonlinearities of the physical equations and feedback mechanisms of the coupled land-atmosphere system, even the large-scale average values are effected (i.e., $\overline{F(X)} \neq F(\overline{X})$).

(See Nykanen and Foufoula-Georgiou, 2001)

Methods to account for small-scale variability in coupled modeling

(1) Apply the model at a high resolution over the entire domain.

(2) Use nested modeling to increase the resolution over a specific area of interest.

(3) Use a dynamical/statistical approach to including small-scale rainfall variability and account for its nonlinear propagation through the coupled landatmosphere system.

(See Nykanen and Foufoula-Georgiou, 2001)

(Perica and Foufoula-Georgiou, *JGR*, 1995)

 \rightarrow It was found that for mesoscale convective storms, that normalized spatial rainfall fluctuations ($\xi = X'/X$) have a simple scaling behavior, i.e.,

$$\frac{\sigma_{\xi, L_1}}{\sigma_{\xi, L_2}} = \left(\frac{L_1}{L_2}\right)^H$$

 \rightarrow It was found that H can be empirically predicted from the convective available potential energy (CAPE) ahead of the storm.

 \rightarrow A methodology was developed to downscale the fields based on CAPE \Rightarrow H.

Simulation Experiment

•MM5: 36 km with 12 km nest

•BATS: 36 km with 3 km inside MM5's 12 km nest

•Rainfall Downscaling: $12 \text{ km} \rightarrow 3 \text{ km}$

Domain 1:

ĺ	Run	MM5	BATS	Rainfall
				Downscaling
	CTL	36 km	36 km	Off
	SRV	36 km	36 km	Off

Domain 2:

Run	MM5	BATS	Rainfall
			Downscaling
CTL	12 km	12 km	Off
SRV	12 km	3 km	$12 \text{ km} \rightarrow 3 \text{ km}$

Case Study: July 4-5, 1995

Initialization Time	July 4, 1995 12:00 UTC
Integration Time Step	D1: 90 sec., D2: 30 sec.
Simulation Length	48 hrs.
No. of Vertical Grid Elements	32
Horizontal Grid Resolution	D1: 36km, D2: 12 km
Initial and Lateral	NCEP Early Eta
Boundary Conditions	Model Analysis
Soil Moisture Initialization	Soil Hydrology Model (SHM)
	(via Penn State ESSC)
Land Cover, Soil Texture	USGS-EDC
Nesting Type	Two-way interactive
Cumulus Parameterization Scheme	Grell

MM5/BATS

Subgrid-scale implementation of MM5/BATS

sub-domain @ t = 11 hrs, 20 minutes (680 minutes)

CONCLUSIONS

• Statistical downscaling schemes for spatial and space-time precipitation are efficient and work well over a range of scales

•The challenge is to relate the parameters of the statistical scheme to physical observables for real-time or predictive downscaling

•The effect of small-scale precipitation variability on runoff production, soil moisture, surface temperature and sensible and latent heat fluxes is considerable, calling for fine-scale modeling or scale-dependent empirical parameterizations

•For orographic regions other schemes must be considered

References

- Kumar, P., E. Foufoula-Georgiou, A multicomponent decomposition of spatial rainfall fields 1. Segregation of large- and small-scale features using wavelet tranforms, 2. Selfsimilarity in fluctuations, Water Resour. Res., 29(8), 2515–2532, doi: 10.1029/93WR00548, 1993.
- Perica, S., E. Foufoula-Georgiou, Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions, J. Geophys. Res., 101(D21), 26347-26362, doi: 10.1029/96JD01870, 1996.
- Perica, S., E. Foufoula-Georgiou, Linkage of Scaling and Thermodynamic Parameters of Rainfall: Results From Midlatitude Mesoscale Convective Systems, J. Geophys. Res., 101(D3), 7431-7448, doi: 10.1029/95JD02372, 1996.
- Venugopal, V., E. Foufoula-Georgiou, V. Sapozhnikov, Evidence of dynamic scaling in space-time rainfall, J. Geophys. Res., 104(D24), 31599-31610, doi: 10.1029/1999JD900437, 1999.
- Venugopal, V., E. Foufoula-Georgiou, V. Sapozhnikov, A space-time downscaling model for rainfall, J. Geophys. Res., 104(D16), 19705-19722, doi: 10.1029/1999JD900338, 1999.
- Nykanen, D. and E. Foufoula-Georgiou, Soil moisture variability and its effect on scaledependency of nonlinear parameterizations in coupled land-atmosphere models, Advances in Water Resources, 24(9-10), 1143-1157, doi: 2001.10.1016/S0309-1708(01)00046-X, 2001
- Nykanen, D. K., E. Foufoula-Georgiou, and W. M. Lapenta, Impact of small-scale rainfall variability on larger-scale spatial organization of land-atmosphere fluxes, J. Hydrometeor., 2, 105–120, doi: 10.1175/1525–7541(2001)002, 2001

Acknowledgments

This research has been performed over the years with several graduate students, post-docs and collaborators:

Praveen Kumar, Sanja Perica, Alin Carsteanu, Venu Venugopal, Victor Sapozhnikov, Daniel Harris, Jesus Zepeda-Arce, Deborah Nykanen, Ben Tustison; Kelvin Droegemeier, Fanyou Kong

✓ The work has been funded by NSF (Hydrologic Sciences and Mesoscale Meteorology Programs), NOAA (GCIP and GAPP), and NASA (Hydrologic Sciences, TRMM, and GPM)