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DOWNSCALING

Downscaling = “Creating” information at scales smaller 
than the available scales, or reconstructing variability 
at sub-grid scales.  It is usually statistical in nature, 
i.e., statistical downscaling.

Could be seen as equivalent to “conditional simulation”
i.e, simulation conditional on preserving the statistics 
at the starting scale and/or other information.



PREMISES OF STATISTICAL DOWNSCALING

Precipitation exhibits space-time variability over a 
large range of scales (a few meters to thousand of 
Kms and a few seconds to several decades)

There is a substantial evidence to suggest that 
despite the very complex patterns of precipitation, 
there is an underlying simpler structure which 
exhibits scale-invariant statistical characteristics

If this scale invariance is unraveled and quantified, it 
can form the basis of moving up and down the scales: 
important for efficient and parsimonious downscaling 
methodologies



Precipitation exhibits spatial variability at 
a large range of scales
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OUTLINE OF TALK

1. Multi-scale analysis of spatial precipitation
2. A spatial downscaling scheme 
3. Relation of physical and statistical parameters for 

real-time or predictive downscaling
4. A space-time downscaling scheme
5. Hydrologic applications
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1.  Multiscale analysis – 1D example



1.  Multiscale analysis – 1D example



1.  Multiscale analysis – 1D example
Haar Wavelet 

Multiscale Filter:



Multiscale analysis via Wavelets

Averaging and differencing at multiple scales can be 
done efficiently via a discrete orthogonal wavelet 
transform (WT), e.g., the Haar wavelet

The inverse of this transform (IWT) allows efficient 
reconstruction of the signal at any scale given the 
large scale average and the “fluctuations” at all 
intermediate smaller scales

It is easy to do this analysis in any dimension (1D, 2D 
or 3D).

(See Kumar and Foufoula-Georgiou, 1993)           



Multiscale analysis – 2D example



Interpretation of directional fluctuations 
(gradients)
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(See Kumar and Foufoula-Georgiou, 1993)           



Observation 1

Local rainfall gradients (                 ) depend on local 
average rainfall intensities      and were hard to 
parameterize

But, standardized fluctuations

are approximately independent of local averages
obey approximately a Normal distribution centered 
around zero, i.e, have only 1 parameter to worry about 
in each direction
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(See Perica and Foufoula-Georgiou, 1996)           



Observation 2
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(See Perica and Foufoula-Georgiou, 1996)

May 13, 1985, 1248 UTC June 11, 1985, 0300 UTC



2. Spatial downscaling scheme

H1
C1

H2
C2

H3
C3

Statistical 

Reconstruction → Downscaling
(See Perica and Foufoula-Georgiou, 1996)



Example of downscaling



Example of downscaling



Example of downscaling



Performance of downscaling scheme



3. Relation of statistical parameters to 
physical observables

(See Perica and Foufoula-Georgiou, 1996)



Predictive downscaling



4. Space-time Downscaling
Describe rainfall variability at several spatial and temporal scales
Explore whether space-time scale invariance is present. Look at rainfall fields at 
times τ and (τ+t).

L L
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Change L and t and compute statistics of evolving field
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PDFs of ΔlnI



σ(Δ ln I) vs. Time Lag and vs. Scale



Space-time scaling
Question: Is it possible to rescale space and time such that 
some scale-invariance is unraveled?

Look for transformation that relate the dimensionless quantities

Possible only via transformation of the form              : “Dynamic 
scaling”

( )1 2t t ( )1 2L L

(See Venugopal, Foufoula-Georgiou and Sapozhnikov, 1996)

and

~ zt L



Variance of Δ ln I(t,L)
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(See Venugopal, Foufoula-Georgiou and 
Sapozhnikov, 1996)







Schematic of space-time downscaling

t1 = 1 hr.
L1 = 100 km
L2 = 2 km

z = 0.6
t2 = (L2/L1)z t1 = ~6 min.



Schematic of space-time downscaling



Space-time Downscaling preserves 
temporal persistence



Observed

Accumulation of spatially 
downscaled field (every 10 
minutes)

Space-time downscaling

(See Venugopal, Foufoula-Georgiou and 
Sapozhnikov, 1996)





5. Hydrological Applications



It is known that the land surface is not merely a static boundary to the 
atmosphere but is dynamically coupled to it.

Coupling between the land and atmosphere occurs at all scales and is nonlinear.

Land - Atmosphere 
Feedback Mechanisms

Effect of small-scale precipitation 
variability on runoff prediction
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• When subgrid-scale variability is 
introduced in the rainfall, it propagates 
through the nonlinear equations of the 
land-surface system to produce subgrid-
scale variability in other variables of the 
water and energy budgets.

• Nonlinear feedbacks between the 
land-surface and the atmosphere further 
propagate this variability through the 
coupled land-atmosphere system.

R,  VAR[R]

Tg,  VAR[Tg]

H,  VAR[H]

s,  VAR[s]

LE,  VAR[LE]

Due to the nonlinearities of the physical equations and feedback 
mechanisms of the coupled land-atmosphere system, even the 
large-scale average values are effected (i.e.,                      ).( )XFXF ≠)(

(See Nykanen and Foufoula-Georgiou, 2001)



Methods to account for small-scale variability in coupled modeling

(1) Apply the model at a high resolution 
over the entire domain.

(2) Use nested modeling to increase the 
resolution over a specific area of interest.

(3) Use a dynamical/statistical approach 
to including small-scale rainfall 
variability and account for its nonlinear 
propagation through the coupled land-
atmosphere system.



BATS
land-surface 

model

MM5
atmospheric 

model

Land Use,   
Soil Texture

required

Initialization   
of                 

Soil Moisture

optional

SDS
Statistical Downscaling 

Scheme for Rainfall

Terrain,     
Land Use

Initialization of 
the Atmosphere

Observations

required

required

optional

Boundary 
Conditions

required

(See Nykanen and Foufoula-Georgiou, 2001)



(Perica and Foufoula-Georgiou, JGR, 1995)

→ It was found that for mesoscale convective storms, that 
normalized spatial rainfall fluctuations (ξ = X´/ X) have a 
simple scaling behavior, i.e.,
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→ It was found that H can be empirically predicted from 
the convective available potential energy (CAPE) ahead of 
the storm.

→ A methodology was developed to downscale the fields 
based on CAPE ⇒ H.

Rainfall Downscaling Scheme



Simulation Experiment

•MM5: 36 km with 12 km nest
•BATS: 36 km with 3 km inside MM5’s 12 km nest
•Rainfall Downscaling: 12 km → 3 km

Domain 1:

Run MM5 BATS Rainfall
Downscaling

CTL 36 km 36 km Off
SRV 36 km 36 km Off

Run MM5 BATS Rainfall
Downscaling

CTL 12 km 12 km Off
SRV 12 km 3 km 12 km → 3 km

Domain 2:

Case Study: July 4-5, 1995

D2: 12 km

D1: 36 km

Initialization Time July 4, 1995 12:00 UTC
Integration Time Step D1: 90 sec., D2: 30 sec.

Simulation Length 48 hrs.
No. of Vertical Grid Elements 32

Horizontal Grid Resolution D1: 36km, D2: 12 km
Initial and Lateral

Boundary Conditions
NCEP Early Eta
Model Analysis

Soil Moisture Initialization Soil Hydrology Model (SHM)
(via Penn State ESSC)

Land Cover, Soil Texture USGS-EDC
Nesting Type Two-way interactive

Cumulus Parameterization Scheme Grell



MM5/BATS

Fluxes
12 km

Other
12 km

Rainfall
12 km

t = t + 1

MM5
12 km

BATS
12 km



Other
3 km

t = t + 1
Fluxes
3 km

Fluxes
12 km

Statistically Downscale
Rainfall

3 km

Other
12 km

<CAPE>
12 km

CAPE
12 km

Rainfall
12 km

t = t + 1 average

MM5
12 km

BATS
12 km

BATS
3 km

MM5/BATSSubgrid-scale implementation of 

CTL (control run)

SRV (sub-grid 
variability run)

Grid-scale

Subgrid-scale
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sub-domain @ t = 11 hrs, 20 minutes (680 minutes)



Total Accumulated Rainfall Relative Soil Moisture in top 10 cm

CTL Run

Anomalies

( SRV - CTL )

t = 27 hrs

at 12 km 
grid-scale



t = 32 hrs

at 12 km 
grid-scale

Anomalies = SRV - CTL

Relative Soil 
Moisture in 
top 10 cm

( Su )

Sensible Heat 
Flux from the 

surface

( HFX )

Latent Heat 
Flux from the 

surface

( QFX )

Surface 
Temperature

( TG )



• Statistical downscaling schemes for spatial and space-time precipitation 
are efficient and work well over a range of scales

•The challenge is to relate the parameters of the statistical scheme to 
physical observables for real-time or predictive downscaling

•The effect of small-scale precipitation variability on runoff production, 
soil moisture, surface temperature and sensible and latent heat fluxes is 
considerable, calling for fine-scale modeling or scale-dependent empirical 
parameterizations

•For orographic regions other schemes must be considered

CONCLUSIONS
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