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THREE AREAS OF FOCUS

Developing nonparametric schemes for merging multisensor precipitation 
products
Gupta, R., V. Venugopal and E. Foufoula-Georgiou, A methodology for merging 
multisensor precipitation estimates based on expectation-maximization and scale 
recursive estimation, in press, J. Geophysical Research, 2005.

3D modeled cloud structure verification for satellite rainfall retrieval 
assessment 
Smedsmo, J., V. Venugopal, E. Foufoula-Georgiou, K. Droegmeier, and F. Kong, On 
the Vertical Structure of Modeled and Observed Clouds: Insights for Rainfall 
Retrieval and Microphysical Parameterization, in press, J. Applied Meteorology, 2005.

Fine-scale structure of rainfall in relation to simultaneous measurements 
of temperature and pressure
Lashermes, B., E. Foufoula-Georgiou and S. Roux, Air pressure, temperature and 
rainfall: Insights from a joint multifractal analysis, AGU Fall Session, San Francisco, 
December 2005.  -- add ref of Phys Letters  -- Label 1,2,3



DEVELOPING NONPARAMETRIC SCHEMES FOR MERGING MULTISENSOR 
PRECIPITATION PRODUCTS

Issues:
Precipitation exhibits scale-dependent variability

Precipitation measurements are often available at different scales and have sensor-
dependent  observational uncertainties (e.g. raingauges, radars, and satellites)

It is not straightforward to optimally merge such measurements in order to obtain gridded 
estimates, and their estimation uncertainty, at any desired scale 

Objective:
To develop a methodology that can:   

handle disparate (in scale) measurement sources

account for observational uncertainty associated with each sensor

incorporate a multiscale model (theoretical or empirical) which captures the 
scale to scale characteristics of the process 

Expected Result:
High quality merged/blended global precipitation estimates and their error statistics at 
different spatio-temporal scales
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Quadtree Representation of a Multiscale Process

Sparsely distributed measurements at the finer scale 
(gray dots), and measurements at a coarser scale 
(solid black dots), are placed on an inverted quadtree 
and merged via filtering and smoothing to obtain 
estimates at multiple scales



Scale Recursive Estimation (SRE)
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Consists of two steps

Upward Sweep (filtering)

Downward Sweep (smoothing)

Gives precipitation estimates at multiple scales + their variance (uncertainty)

Needs a multiscale model which relates the process from one scale to another

measurement update

prediction at next coarser scale

merging of predictions

incorporation of  neighborhood 
dependence

State-space equation: relates the process state from one scale to another  
),()()()()( λλγλλλ WBXAX +=

Measurement equation: relates process measurements and state 
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The parameter set of the multiscale state-space model is  

A(λ), B(λ) , C(λ), R(λ) | λ ∈ T, T is the set of all nodes in the tree

W(λ) ~ N(0,1)
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Non-Parametric Approach: Variance Reduction Curves (VRC): 

Empirical variance as a function of scale

( ) { ( ( )) ( ( ))}B Var X Var Xλ λ γλ= −

Sparsity of high-resolution data makes it difficult to estimate VRC

Proposed solution

An approach based on Expectation Maximization which does not assume any apriori 
model prescribing multiscale variability, but rather uses the observations at multiple 
scales to dynamically evolve and simultaneously identify the parameters of the state-
space equation (i.e., B(λ)).
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Estimation of Parameter B(λ)

Parametric Approach: Multiplicative Cascade models  X(λ) = X(γλ) W(λ)

Zero intermittency observed in precipitation presents a problem

Fig. 3



EM algorithm is used to iteratively solve for the Maximum Likelihood (ML) estimates of 
the parameters of the multiscale state-space equation.

Each iteration of the EM algorithm consists of two steps:

Expectation Step (E-Step) – uses Rauch-Tung-Striebel (RTS) algorithm to estimate the 
state of the process

Maximization Step (M-Step) – this step re-estimates the parameters using these uncertain 
state estimates

EM algorithm-based system identification

Main advantages of EM approach to SRE

No need for an a priori state-space model 

No need to work in log-space

Scale-to-scale covariance explicitly used in 
model identification

Observational uncertainty explicitly used in 
model identification



SRE

  0.01

0.0507

 0.257

   1.3

  6.59

  33.4

   169

20 40 60 80 100 120

20

40

60

80

100

120 2x2 km field

  0.01

0.0507

 0.257

   1.3

  6.59

  33.4

   169

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
16x16 km field

  0.1

0.303

0.917

 2.77

  8.4

 25.4

   77
Estimated field at 4x4 km

10 20 30 40 50 60

10

20

30

40

50

60

Illustration of the application of SRE-EM 
methodology for the purpose of blending 
multi-sensor precipitation estimates

Input:  2x2     km field + its uncertainty
16x16 km field + its uncertainty

Output:   4x4 km field, along with its
uncertainty.

4x4 km field
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Actual Field at 4x4 km Estimated Field at 4x4 km
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Comparison of observed vs. estimated fields

RMSE = 0.96

Bias ~ 0.00

Spatial Correlation – X direction Spatial Correlation – Y direction

Visually, the estimated 
field compares well with 
the observed field.

Comparison of basic 
statistics (mean and 
standard deviation)  
shows that SRE-EM is 
effective in producing 
unbiased estimates.

Spatial correlation is 
also reproduced well.estimated

observed

Fig. 5



Combining SRE-EM with downscaling 
schemes to produce consistent space-time 

blended precipitation products

To address the issue of merging infrequent fine-resolution observations with frequent coarse-
resolution observations to produce a consistent/reliable (in space and time) product, we 
performed a numerical experiment simulating three scenarios:

Case 1 is an idealized (best) case wherein observations are available at all times (t = 1, 2 and 
3hr) at the coarse (16km) and fine (2km) resolutions. 

Case 2 is a scenario in which high-resolution information (2km) is available only at t = 1hr and 
the coarse resolution (16km) fields are available at all times (t = 1,2,3 hr). We perform a 
simple renormalization to match the total depth of water, i.e., R2km(t=2) = R2km(t=1) * 
R16km(t=2 or 3hr) / R16km(t=1), to obtain the 2 km field at t = 2 (or 3) hr. 

Case 3 is a scenario in which the available fields are the same as Case 2, except the low-
resolution information (16km) at t = 2 and 3 hr is spatially downscaled to obtain a statistically 
consistent (moments, spatial correlation) fields at 2 km at  t = 2, 3hr.

In all cases, 16 and 2 km fields (at t = 1, 2 and 3 hr) are input to 
SRE to obtain 4km fields at the respective times and these fields, 
in turn, are accumulated to obtain the 3-hr 4km fields
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RMSE = 1.45

BIAS ~ 0.00
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BIAS ~ 0.00
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Downscaling (Case 3) improves the quality of the blended product
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Summary

Scale-recursive estimation is an effective procedure to blend 
precipitation-related information from multiple sensors.

Proposed Expectation-Maximization methodology addresses some of the 
drawbacks relating to the identification of the underlying multiscale 
structure of rainfall.

Downscaling methodologies have the potential to be used in conjunction 
with merging procedures to obtain spatially and temporally “consistent”
products.

Future research will explore ways in which the proposed approach can be 
combined with a space-time downscaling scheme and/or temporal 
evolution of precipitation at a few locations only, such that the blended 
product at a desired scale incorporates all the available information in a 
space-time dynamically consistent way.



THE END



Discussion (Fig. 7)

Case 1 being the “best” case of available information, shows the least RMSE. This often is not 
realistically possible (compare top left and top right images in Fig. 7). 

Cases 2 and 3 (with the same amount of information) represent more realistic scenarios in terms 
of available observations. However, the way we handle the information at the coarse scale dictates 
how well one can estimate an intermediate-scale field.

In case 2, since such a simple renormalization does not take into account possibilities such as the 
“appearance” of cells (or, “disappearance”), the resulting 4km field is bound to be far from the 
“truth” (compare top left and bottom left images in Fig. 7)

In case 3, we use the large-scale information effectively through a spatial downscaling scheme to 
resolve the small-scale variability. The visual comparison (compare top left and bottom right 
images in Fig. 7) of the observed and estimated (as well as quantitative comparisons such as the 
RMSE) is encouraging, and points to the advantages of using a spatial downscaling scheme.

The spatial downscaling scheme used is based on our previous work, and its effectiveness is 
demonstrated separately in Fig. 8



Merging of infrequent high-resolution and 
frequent low-resolution precipitation observations

Given: 16 x16 km precipitation estimates every 1 hour (e.g., satellite)

2 x 2 km precipitation estimates every 6 hours    (e.g., radar)

Objective: 3-hr precipitation estimates at an intermediate scale of 4 x 4 km

along with their uncertainties
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Fig. 6
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The spatial downscaling scheme, which takes 
advantage of the presence of simple self-similarity in 
rainfall fluctuations, requires only one scaling 
parameter to resolve the small-scale variability (2km) 
given the large-scale variability (16km). This 
parameter has been found (Perica and Foufoula-
Georgiou, JGR-Atmos. 101(D3); 101(D21), 1996) to 
be dependent on the available potential energy in the 
atmosphere (CAPE), and thus provide a viable (and 
parsimonious) means of resolving small-scale 
variability.
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Performance of the spatial downscaling scheme used in Case 3



Quadtree Representation of a Multiscale Process

Sparsely distributed measurements at the finer scale (gray dots), and measurements 
at a coarser scale (solid black dots), are placed on an inverted quadtree and merged 
via filtering and smoothing to obtain estimates at multiple scales
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State-space equation: relates the process state from one scale to another

),()()()()( λλγλλλ WBXAX +=
Measurement equation: relates process measurements and state 

),()()()( λλλλ VXCY +=

The parameter set of the multiscale state-space model is 

 tree}in the nodes  theall ofset  is ,|)(),(),(),({ ΤΤ∈λλλλλ RCBA
If both measurements and the state of the system represent precipitation intensity, we 
can assume ‘A’ and ‘C’ to be unity. Therefore,
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Estimation of Parameter B(λ)

Parametric Approach: Multiplicative Cascade models  X(λ) = X(γλ) W(λ)
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• Log-normal cascade (LN):m(λ) = 0

“Root Scale”

coarse

fine

Scale

m(λ) = 1

m(λ) = 2

λ

γλ

• Bounded Log-normal cascade: Weights 
lognormally distributed, but σ is chosen as a 
function of scale, λ:

• σbc(λ) = σ12-(m(λ )-1)H

• σ1 ≡ σbc(m(λ) = 1) and H controls the 
decay rate of the variance

, Z ~ N(0,1)

It can be shown that:    B(λ) = σ

It can be shown that: B(λ) = σbc(λ)

Zero intermittency observed in precipitation presents a problem

Fig. 4



Choose an initial parameter 
set θk :- K=0

E-Step:
Estimate state using observations 

and parameter set θk

M-Step:
Compute maximum log-likelihood 
Lk+1 estimate of new parameter set 

θk+1 using estimated state

K = K+1
Check for convergence???

(| Lk+1 - Lk|< ε)

Terminology:
K = EM algorithm iteration
Lk = Log-likelihood function
ε = Tolerance
θ = Parameter set {A(λ), B(λ), C(λ), R(λ)}

EM algorithm – Flow Chart

See Appendix for details Fig. 6



APPENDIX: Details of EM algorithm

Log-likelihood function L(X,Yo,θ) is given as follows

The computation of log-likelihood function depends on three expectations
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1. Kannan, A.et. al., “ML Parameter Estimation of a Multiscale Stochastic Process Using the EM Algorithm”, 
IEEE Trans. Signal Processing, Vol. 48, No. 6, 2000.

2. M. R. Luettgen and A. S. Willsky, “Multiscale Smoothing Error Models”, IEEE Trans. Automatic Control, Vol. 
40, No. 1, 1995.
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The E-Step of the algorithm computes the expected quantities required in the M-Step 
of EM algorithm

The Expectation Step (E-step)

The terms          and            are computed by the downward sweep of the RTS 
algorithm
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),( γλλsP is computed directly in the downward sweep by using the result that the 
smoothed error is a Gauss-Markov process

)(ˆ)()(~ λλλ ss xxx −=The smoothed error has been shown to be modeled as a multiscale 
process of the following form
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Luettgen, M. R., and Willsky, A. S., “Multiscale Smoothing Error Models”
IEEE Trans. Automatic Control, Vol. 40, No. 1, 1995.
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This step maximizing the expected likelihood using multivariate regression to 
obtain new estimates of the parameters

The Maximization Step (M-step)


