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Walter Langbein – the keen observer

1962

Courtesy of Bill Dietrich 
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Transform recurrence intervals in the partial duration 
series to those in the max annual flood series 

Walter Langbein – the practitioner

1949



Walter Langbein – the science communicator

1960



1960

USGS Water Program 
National network of hydrologic data
Flood Insurance Program
Intern. Hydrologic Decade  (1965-1974; UNESCO)
Intern. Association for Hydrologic Sciences (IAHS)
World Meteorological Organization (WMO)

Walter Langbein – the visionary  
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USGS Water Program 
National network of hydrologic data
Flood Insurance Program
Intern. Hydrologic Decade  (1965-1974; UNESCO)
Intern. Association for Hydrologic Sciences (IAHS)
World Meteorological Organization (WMO)

Walter Langbein – the visionary  

… “Science is built up with facts, as a house is with stones. But a collection of  
facts is no more a science that a heap of  stones is a house” 
– HENRY POINCARE



https://connect.agu.org/hydrology/about/vhp-scope/walterlangbein

Virtual Hydrologists Project  (VHP)





Precipitation 
estimation and 

prediction

Meandering
and braided rivers

Human dominated 
landscapes

Tributary and 
distributary Networks



Driving scientific questions

1. How do physics organize precipitation systems across spatio-temporal scales? 

2. How can this organization be used to improve estimation, modeling and 
prediction at local to global scales? 

3. How can we gain mechanistic process understanding from landscape 
patterns and form?  

4. How do perturbations propagate through a complex ecohydrological system 
determining its vulnerability to change?



Our data: multi-sensor observations  

NEXRAD

TRMM/GPM 

LIDAR

LANDSAT

Rainguage



Our data: Lab experiments  

St. Anthony Falls Laboratory, Univ. of Minnesota
Arvind Singh, Vamsi Ganti, Victor Sapozhnikov
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Across processes 
& scales
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Geodesic curve: curve with minimal cost, among all 
possible curved connecting the two point a and b
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Ω: Surface described by the regularized LIDAR data through nonlinear filtering.

Cost function ψ: cost of traveling on the curve C.

Example of river network extraction on Skunk Creek, South Fork Eel River basin, CA

Original data Likely channelized pixels
Extracted channels through
geodesics

From raw data to quantitative patterns …

GeoNet Toolbox

Geomorphologically 
Inspired image 
Processing 

Paola Passalacqua’s
Group

Passalacqua et al.
2010, 2012



1985 1990 1995 2000 2005 2010 2015

25 km

flow

Ucayali River Mining 
Landsat 
archives

to resolve bend 
scale river dynamics

RivMAP Toolbox

Schwenk et al., 2015, 2016a,b, 2017

Jon Schwenk’s group 



The life of a 
meander bend…

-- Does the shape of an oxbow lake 
carry the signature of its forming 
dynamics? 

-- Does process nonlinearity express 
Itself on the static planform geometry?

-- How far upstream and downstream 
do cutoff perturbations propagate?

Schwenk et al., 2015, 2016a,b, 2017






The complexity of 
river deltas…

-- What physical processes are recorded 
in delta channel network topology? 

-- Can a quantitative framework for delta 
classification be built based on suitable 
metrics? 

-- Is there an optimality principle 
behind the self-organization of deltas? 

Tejedor et al., 2015a,b, 2016, 2017a,b, 2018



Coupled processes 

Multi-layer 
Networks 

The complexity of 
river deltas…

Tejedor et al., 2015a,b, 2016, 2017a,b, 2018



Transition from hay and small grains to soybeans
changed the eco-hydrology of the system

20Foufoula-Georgiou et al., 2015, WRR 

(Photo: S. Levine, B. Call, P. Belmont)

Intensively managed landscapes

w/ Belmont, Hansen, Grant, Wilcock, Finlay

Czuba et al., 2014, 2015, 2017






Today’s focus: 

RAINFALL
1. Global estimation from space
2. Seasonal prediction 



1960

“… Precipitation stations are more numerous 
where people live …  than where precipitation is 
more variable and therefore most important to 
record.”

Walter Langbein – the visionary  



How much of the Earth’s surface is covered by raingages?

Credit: NASA & Kidd et al. BAMS, 2016
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Global precipitation

Water and energy cycles
Hydrologic prediction in remote places
Validating climate models 
Detecting changes and trends

Credit: NASA



How do we observe precipitation from space?
The GEO-IR constellation 

(NOAA-NESDIS, EUMETSAT, JMA)

- 5 IR imagers for a quasi-global coverage 

One observation every 15-30 mis



- 5 conical-scan MW imagers
- 8 cross-track MW sounders
- 1 Dual-frequency Precipitation Radar

>4
0 
GH
Z

How do we observe precipitation from space?
The LEO-GPM constellation 

One observation every 2-4 hrs

< 40GHz > 40GHz

Credit: NASA
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(GMI
Multispectral microwave signature  

10.6V 10.6H 18.7V 18.7V 37h 89V 89H 166V 166H 183+/3 183+/-723V 23V



10.6V 10.6H 18.7V 18.7V 37h 89V 89H 166V 166H 183+/3 183+/-723V 23V

Multispectral microwave signature  

Brightness Temperature (TB) 



MW imager

Retrieval is an Inverse Problem

Radiometric signature at the top of the atmosphere
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atmospheric water content

surface precipitation rate

MW imager

Retrieval is an Inverse Problem

Radiometric signature at the top of the atmosphere

1         2        3         4          5        6        7         8         9        10      11      12       13
channel #

?



GPM core satellite






The NASA GPM radiometer algorithm: GPROF

~10 km

TB observed

TB database profile #1

TB database profile #2

TB database profile #3

Step 1:  Use GPM Satellite to derive set of 
“Observed” profiles that define an a-priori 
database of possible rain structures.

Step2:  Compare observed Tb to 
Database Tb.  Select and average 
matching pairs

Courtesy of Chris Kummerow



How accurate are these retrievals globally?

https://pmm.nasa.gov/extreme-weather

https://pmm.nasa.gov/extreme-weather


THE CLASSICAL APPROACH IN COMPARING/VALIDATING RETRIEVALS
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THE CLASSICAL APPROACH IN COMPARING/VALIDATING RETRIEVALS



Tan et al. 2017 Kidd et al. 2018

Liu et al 2019

Ayehu et al. 2017

Cai et al 2015

Ali et al. 2017

Beria et al 2017

THE CLASSICAL APPROACH IN COMPARING/VALIDATING RETRIEVALS



Tan et al. 2017 Kidd et al. 2018

Liu et al 2019

Ayehu et al. 2017

Cai et al 2015

Ali et al. 2017

Beria et al 2017

Mirsha and 
Rafik 2017

THE CLASSICAL APPROACH IN COMPARING/VALIDATING RETRIEVALS

► point to point or pixel to pixel comparison



How different are these two fields?

THE CLASSICAL APPROACH IN COMPARING/VALIDATING RETRIEVALS

MRMS hourly at 1 km shifted by 7 km 



THE CLASSICAL APPROACH IN COMPARING/VALIDATING RETRIEVALS

How different are these two fields?

=> Quite different at the pixel level!

𝑹𝑹𝟐𝟐 = 𝟎𝟎.𝟓𝟓𝟓𝟓



Effective Resolution (ER)
“The finest scale at which retrievals accurately reproduce the 
local spatial variability of a reference product” 

Guilloteau et al., JHM, 2017; JTech 2018



Variance as a function of the scale

HRLR

10km20Km40Km80Km100Km

satellite 
precipitation 
field



var. of sat. precip. field

Variance as a function of the scale

HRLR

satellite 
precipitation 
field
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Variance as a function of the scale

radar 
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Variance as a function of the scale
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precipitation 
field

radar 
precipitation 
field



var. of sat. precip. field

Precipitation signal or noise?

var. explained: R2 × var(sat.) 

precipitation signal

noise

satellite 
precipitation 
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radar 
precipitation 
field
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var. of sat. precip. field

Precipitation signal or noise?

var. explained: R2 × var(sat.) 

noise

+0.45

+0.15

+0.30

+0.20
+0.28

+0.12 +0.01

+0.19

noise variance added > signal variance added

=>These scales are unresolved 

Effective Resolution = 40 km

precipitation signal

satellite 
precipitation 
field

radar 
precipitation 
field
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• 16,500 GPM orbits: March 2014 to February 2017
• Local values computed from all observations in 3°×3° boxes.

long.

Effective Resolution of GPROF GMI vs. KuPR

Guilloteau et al., JHM, 2017
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long.

Effective Resolution of GPROF GMI vs. KuPR

Guilloteau et al., JHM, 2017

• 16,500 GPM orbits: March 2014 to February 2017
• Local values computed from all observations in 3°×3° boxes.



RETRIEVAL DATABASE GMI + DPR

1 2

nearly identical 
spectral 

signatures

Highly Underdetermined Inverse problem



RETRIEVAL DATABASE GMI + DPR

1 2

1

2

nearly identical 
spectral 

signatures

Highly Underdetermined Inverse problem

orbit #21092 
2017-11-14  
10:30 UTC

orbit #17177 
2017-03-07 
17:15 UTC



76 mm/h 4 mm/h

RETRIEVAL DATABASE GMI + DPR

1 2

1

2

nearly identical 
spectral 

signatures

Highly Underdetermined Inverse problem

very different 
surface rain 

rates

orbit #21092 
2017-11-14  
10:30 UTC

orbit #17177 
2017-03-07 
17:15 UTC



nugget effect

Highly Underdetermined Inverse problem

4,000 neighbors in TB space
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nugget effect

Highly Underdetermined Inverse problem
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1) Increasing the 
size of the data base 
will not help

2) Improved inversion
algorithms (KNN Bayesian, 
L1-L2, etc.) limited
improvement in retrieval
accuracy/extremes 

4,000 neighbors in TB space

e.g., Ebtehaj et al., 2015, 2016  (L1-L2)

Guilloteau et al., 2018



76 mm/h 4 mm/h

RETRIEVAL DATABASE

1 2

37 GHz V TB (K)

200  210  220  230   240  250  260  270

Look at PATTERNS of TB 

We propose to look beyond the pixel …



76 mm/h 4 mm/h

RETRIEVAL DATABASE

1 2

37 GHz V TB (K)

200  210  220  230   240  250  260  270

Local depression of the 37 GHz TB 
= deep convection

We propose to look beyond the pixel …



How to extract:

-- the most informative non-local parameters from the 
TB patterns 

-- to increase identifiability and reduce retrieval 
uncertainty? 

The challenge becomes:



Gaussian

Convolution filters to extract spatial information from fields of TB

• Pattern extraction
• Spatial averaging / smoothing  
• Spatial differentiation / edge detections 

/ gradients extraction
• Multiscale decompositions (wavelets)

1st derivative 
of Gaussian

Laplacian of 
Gaussian



* =

“nonlocal” parameter

Convolution filters to extract spatial information from fields of TB



13 “pixel” TBs 
+ 2m temp. + surf. type

k,

MEAN ABSOLUTE ERROR 

Land

KNN retrieval from GMI with a 700 000 profile database 



13 “pixel” TBs 
+ 2m temp. + surf. type

13 “pixel” TBs 
+ 2m temp. + surf. type
+ 3 nonlocal param. (at 
37 and 89 V GHz)

k,

-11 %

MEAN ABSOLUTE ERROR 

Land

KNN retrieval from GMI with a 700 000 profile database 



13 “pixel” TBs 
+ 2m temp. + surf. type

13 “pixel” TBs 
+ 2m temp. + surf. type
+ 3 nonlocal param. (at 
37 and 89 V GHz)

-25 % miss rate

-20 % miss rate

RAINFALL MISS RATE

KNN retrieval from GMI with a 700 000 profile database 



• Is Machine Learning (ML) the solution? 
• Eventually maybe, but not without physically-based dimensionality 

reduction first 
• Train Convolutional Neural Networks (CNNs) and by backpropagation  

methods learn what patterns were retained in the training 
(attribution methods) 

• Could work on specific storm systems, e.g., snowstorms and learn 
patterns that “detect snow”, etc. 

• Error diagnostics for multi-sensor merging (IMERG)

What’s next? 



Today’s focus: 

RAINFALL
1. Global estimation from space
2. Seasonal prediction 



30 years 

3 years 



v Minneapolis
Rain 32 inches
Snow 53 inches
Prec days 112 days
Avg T Jan 7 degrees F

Irvine
12 inches
0 inches
36 days
46 degrees F

https://www.usclimatedata.com/

https://www.usclimatedata.com/


Large interannual variability
Half of annual rain in 5-10 days



Persistent H/L-pressure ridges/troughs over the Gulf of Alaska
affect the jet stream diverting it to the N or S relative to its average latitudinal location

These pressure patterns are typically related to ENSO

Precipitation in SWUS: It all comes down to Pressure…

Figures are from Lindsey, 2016.

Typical La Niña Typical El Niño



(Trenberth et al., 1998)

Above normal SSTs in the tropical Pacific
increase convergence in the surface which
enhances air convection and leads to
anomalous divergence in the top of the
troposphere.

A quasi-stationary Rossby wave of
alternating anticyclonic and cyclonic
patterns forms, which is associated with a
southward shift of the storm tracks in the
subtropical regions.

Precipitation in SWUS: It all comes down to Pressure…
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• Mega El Niño 2015-16  => dry year
• Strong La Niña 2010-11 => wet year 
• ENSO neutral in 1992-93 => one of the wettest years in 

record



The increasing importance of Western Pacific



The increasing importance of Western Pacific
“Our analysis cautions against succumbing to the post-1980–90s 

temptation of ascribing various extratropical anomalies in the Pacific–
North American sector to ENSO—a favorite go-to mechanism…” –

Baxter and Nigam, J. Climate (2015) 

“There exists a cross-Pacific pathway of Rossby wave energy, propagating 
from the western subtropical Pacific toward the Gulf of Alaska…” –
Wang et al., GRL, (2014) on the extreme 2013/2014 North American drought

“…there are tropical heating anomalies that do not depend on ENSO that 
may excite extratropical responses that include extreme west coast 

ridges.” -- Teng and Branstator, J. Climate, (2017) 

Similar notes by Barsugli and Sardeshmukh (2002), Hoerling and Kumar (2002), Seager 
et al., (2014), Seager et al., (2017), Swain et al., (2017), Myoung et al., (2018) and 

many more… 



2018

Our study



L2
3

2 H

Above normal precipitation in the southwestern US Below normal precipitation in the southwestern US

11

3

air-sea 
couplings

New Zealand 

air-sea 
couplings

Jet Stream

Jet Stream

June July August September October November January February MarchDecember AprilMay

New Zealand
atmospheric 
bridge

atmospheric 
bridge

1. Atmospheric bridge

Cool SST Warm SST

Rainy season

2. Local air-sea couplings (Wang et al 2000)

3. Deflection of the jet stream (Wang et al 2011)

Western Pacific pathway Mamalakis et al., 2018, Nat. Communications



Western Pacific pathway hypothesis 

-60 -40 -20 0 20 40 60
0

2000

4000

6000

8000

10000

12000

A
lti

tu
de

 (m
)

Latitude

Cool NZI: Strengthened southern HC 

ITCZ

NZI cool

-60 -40 -20 0 20 40 60
0

2000

4000

6000

8000

10000

12000

A
lti

tu
de

 (m
)

Warm NZI: Weakened southern HC

New Zealand Index

Late boreal summer

ITCZ
Surface

Top of the troposphere

southern HC

Latitude

NZI warm
ITCZ

Surface

Top of the troposphere

Mamalakis et al., 2018, Nat. Communications

170°E-200°E and 25°S-40°S

Southern H

Southern H

Northern H

Northern H



Western Pacific pathway
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(Warm-Cool) NZI years

Expect weakened convection in NW Pacific 
(positive anomalies in zonal mean Omega 

velocity) 
Expect increasing incoming solar radiation 

in NW Pacific

Mamalakis et al., 2018, Nat. Communications

170°E-200°E and 25°S-40°S
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Western Pacific pathway
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Western Pacific pathway
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New Zealand Index

Late boreal summer

ITCZ

southern HC

Mamalakis et al., 2018, Nat. Communications

170°E-200°E and 25°S-40°S

Cascading of NZI SST anomalies in north Pacific is 
significant even after accounting for ENSO 

Corr [NZI(Jul-Sep), SST(2, 4 months later)|ENSO(Jul-Sep)] 

2 months later
NZI anomalies cascade to NH

4 months later
NH anomalies sustained  

Is the WP Pathway “independent”of ENSO?

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

correlation
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-- Internal variability?
-- External forcing?
-- Data quality?

Based on Observations 

air-sea coupling 
~ 5 months

Atm
o

bridge 
Jul-O

ct

Has the WP Pathway amplified? 
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Based on Models: CESMv1 Large Ensemble
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“We are trying to prove ourselves wrong as 
quickly as possible, because only in that way 

we can find progress”

Richard P. Feynman 

On the Scientific method 
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Is this the best we can do? 
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SST
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. . .

t = 2019
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Explore the whole Pacific? 
Winter precipitation 

Climate predictors (e.g. SSTs, 
GPHs in Pacific ocean)

Very high dimensional problem 
SSTs @ 2x2o x 4 months=> 
5612 x4=22,448 predictors 

Weights  
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Dimensionality Reduction
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Covariance of observed SSTs
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Impose constrains that respect 
the space-time Covariance of SSTs 

. . .

Dimensionality Reduction

Stevens et al. 2019
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Promote similar β for highly correlated predictors 
to enforce sparsity and unravel the most explanatory 
features w/out specifying them a-priori

. . .

Dimensionality Reduction

Covariance of observed SSTs
Aug

Sep

Oct
Stevens et al. 2019



Winter precipitation 

Climate predictors (e.g. SSTs, 
GPHs in Pacific ocean)

Data-driven prediction

Graph Total Variation (GTV)Data fitting L1 regularizer
(LASSO)

Stevens et al. 2019

TRIPODS+CLIMATE project  



(Jul-Oct) (Jul-Oct)

TRIPODS+CLIMATE project  

GTV captures almost 40% of  
the variability in the out-sample 
period

Data-driven prediction
Training period: 1940-1990 

(with a non-stationarity filter)
Testing period: 1991-2019

ARIZONA CALIFORNIA NEVADA UTAH

Stevens et al. 2019



• Is Machine Learning (ML) the solution? 
• Eventually maybe, but not without testing the causality of 

hypothesized mechanisms & predictors
• Perform idealized perturbation experiments designed to understand 

the process chain of the WP teleconnection (e.g, differentiate between 
Rossby-wave vs. HC mediated interhemispheric propagation) 

• Study CMIP6 outputs (historical and future projections) to understand 
time-evolving dynamics relevant to prediction, spectral PCA 

• Probabilistic prediction for water resources planning 

What’s next? 





Beyond the pixel 

Beyond ENSO 



Measuring the unmeasurable and predicting the 
unpredictable

Efi Foufoula-Georgiou
University of California, Irvine Langbein Lecture 

2019 AGU



Patterns of
Life



Patterns of
Life
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X1 = contribution of member 1
X2 = contribution of member 2

X = X1 + X2 X = overall contribution

Mean(X) = Mean(X1) +Mean(X2);

Var(X) = Var(X1) + Var(X2) + COV(X1,X2)

Whole > sum of its parts Iff COV (+)

Whole > Sum (parts)?

Efi’s Group -- Positive covariances 
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THANK YOU! 

“Study hard what interests you the most in the 
most undisciplined, irreverent and original 

manner possible” 

Richard P. Feynman 
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