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[1] Ensemble forecasting can be seen as serving two purposes: (1) by comparison of
the control and ensemble members to the observed precipitation field, one can assess
the forecast performance probabilistically; and (2) by comparison of ensemble
members to the control forecast, one can assess the ‘‘diversity’’ of an ensemble and
quantify the uncertainty of the forecast. Both problems are grounded to the basic
requirement of being able to compare spatially nonhomogeneous, intermittent fields
and come up with low-dimensional metrics that can summarize this comparison.
Several standard metrics exist (e.g., root mean square error (RMSE), Brier score, and
equitable threat score (EqTh)) and are adopted in many operational studies. We studied
(1) a fine-scale ensemble precipitation forecast produced from the Advanced Regional
Prediction System (ARPS) and (2) forecasts from multiple models (e.g., the 1998
Storm and Mesoscale Ensemble Experiment (SAMEX ’98)) for the purpose of
exploring how the selection of the performance metric can affect inferences about the
quality and uncertainty of a forecast. We propose a new measure called forecast quality
index, which combines image analysis and nonlinear shape comparison features, and
we show that it is a more robust and informative metric compared to traditional
metrics such as RMSE and EqTh.
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1. Introduction

[2] Ensemble prediction at the mesoscale has been
actively explored in the scientific community and opera-
tional ensemble prediction systems exist in most forecast
centers (e.g., ECMWF [see Buizza, 1997; Buizza and
Palmer, 1995] and NCEP [see Toth and Kalnay, 1993,
1997]). As the spatial resolution of the forecasts becomes
finer (due to improved computing resources) and also as
the need for hydrologically useful precipitation forecasts
at a resolution (grid size) of a few square kilometers
becomes more acute, producing a large number of en-
semble members from a numerical weather prediction
model becomes a problem. This problem has driven
research on how to generate ensembles such that, with
the fewest possible members, they are able to characterize
the probability structure of the forecast and thus define its
uncertainty. Toward that end, several methodologies based
on the fastest modes of growth have been promoted [e.g.,
Toth and Kalnay, 1997]. Along similar lines, efforts to
identify the ‘‘best member’’ of an ensemble and dynam-
ically evolve the state of the system around it as the
forecast proceeds, have been explored, although under
intense controversy [e.g., see Roulston and Smith, 2003;
Bright and Nutter, 2004]. Both of the above problems

have been exacerbated by the fact that at high spatial
resolutions, the variability of precipitation increases
(higher spread of PDFs) and more realizations are needed
to accurately define the higher moments (tails) of this
distribution. Also the fine resolution forecasts make the
problem of summarizing (ideally, with a single measure)
the comparison of ensemble members with observations
and among themselves more difficult.
[3] It makes intuitive sense that the selection of a

particular measure/metric (we use measure and metric
interchangeably in the rest of the paper) to compare
precipitation patterns versus another measure might gen-
erally lead to different inferences about the forecast
performance and ensemble spread. Standard measures
are typically based on root mean square error (RMSE),
equitable threat score (EqTh), correlation coefficient and
Brier score [see, e.g., Ebert et al., 2003; Jolliffe and
Stephenson, 2003] (see also http://www.bom.gov.au/bmrc/
wefor/staff/eee/verif/verif_web_page.shtml). Here, we in-
troduce a new measure called forecast quality index (FQI)
and show that, in comparison to RMSE and EqTh, it
provides important additional information that is able to
pick up the difference in patterns such that robust
inferences can be made. Section 2 introduces the new
metric and demonstrates its potential on some illustrative
examples, while section 3 discusses two case studies: (1)
a set of ensemble forecasts generated by the Advanced
Regional Prediction System (ARPS) and (2) multimodel
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ensemble forecasts from the 1998 Storm and Mesoscale
Ensemble Experiment (SAMEX ’98). Finally, section 4
provides conclusions and discusses possible future work.

2. Forecast Quality Index: A Theoretical
Background

2.1. A Brief Survey of Image Comparison Measures

[4] Objective image quality measures are important in
image processing applications, and are a subject of continu-
ing interest [Gesù and Starovoitov, 1999]. These measures
can be broadly classified into two types: those that are
mathematically defined (RMSE, signal-to-noise ratio (SNR)
etc.), and those that are formulated based on human per-
ceptions [see Wang and Bovik, 2002; Pappas and Safranek,
2000]. In this work, we focus our attention on mathematical
measures, which can be further classified into two types: (1)
amplitude-based and (2) distance-based. We briefly discuss
below the pros and cons of each type of measures and how a
combination of the two (a hybrid metric) could use the best
qualities of each and perhaps serve as a bridge between
them.
2.1.1. Amplitude-Based Measures
[5] Coefficient of correlation, RMSE and SNR are often

used as a way to compare images. Wang and Bovik [2002]
formulated a measure, which they termed a universal image
quality index (UIQI), based on the first two moments (mean
and standard deviation/covariance) of the given images.
Mathematically, it is defined as

UIQI R1;R2ð Þ ¼ sR1;R2

sR1
sR2

�
2mR1

mR2

mR1

2 þ mR2

2
� 2sR1

sR2

sR1
2 þ sR2

2
ð1Þ

where R1 and R2 represent the fields being compared, mR1
,

mR2
are the means, sR1

, sR2
, the standard deviations,

respectively of the two fields, and sR1
,R2

represents the
covariance between the two fields. It is evident from the

equation above that the proposed measure is a combination
of three properties: (1) correlation (the left most term on the
right-hand side), (2) brightness (bias) and (3) distortion
(variability). (The terms brightness/bias and distortion/
variability are used in the image processing (geophysics)
community, respectively.) Each of these components in
themselves have been used extensively, but the combination
of all three is a new approach. For instance, two images
could be perfectly correlated (in the linear sense) but differ
in magnitude, i.e., biased. This is taken into account by the
second component. The combination of these three
components results in a range of UIQI between �1 and 1.
When UIQI is 1, it means that we have an exact match of
the two images. The smaller the value of UIQI, the more the
distortion. That said, however, it can immediately be seen
that UIQI is an entirely amplitude-based measure, and thus
would not be efficient in characterizing whether two
patterns differ because of discrepancies in their amplitudes
or simply because the two patterns are displaced. While the
covariance could be made a function of lag (to account for
displacements), the complication that arises from such a
formulation is the need to define an objective function
(penalization factor) that would enable one to estimate
which lag yields the maximal similarity between the images
being compared. It is quite well-known that numerical
weather prediction models often produce forecasts that are
displaced (both in time and space). To account for this kind
of problem, we turn our attention to distance-based
measures, which are useful primarily for binary images
(each pixel is either 0 or 1).
2.1.2. Distance-Based Measures
[6] For binary image comparison, the Hausdorff distance

is a natural choice. Intuitively, the Hausdorff distance metric
measures the degree of mismatch between two finite sets A
and B by measuring the distance of the point in the set A that
is farthest from any point in the set B and vice versa. In
other words, if H(A, B) = d, then every point of A must be
within a distance d of some point of B and vice versa
[Huttenlocher et al., 1999]. Given two finite point sets A =
{a1,.., ap} and B = {b1,.., bq}, the Hausdorff distance metric
(see Figure 1 for a schematic) is defined as:

H A;Bð Þ ¼ max h A;Bð Þ; h B;Að Þð Þ

where

h A;Bð Þ ¼ max
a2A

min
b2B

k a� b k
� �

and k.k is some underlying Hölder norm on the points of A
and B. A Hölder norm Lp is a generalization of the
Euclidean distance between two points inRn, and is defined
as Lp = krkp = (

Pn
i¼1jrij

p)1/p for some n-dimensional vector
r [see, e.g., Golub and van Loan, 1996]. For two
dimensions, i.e., R2, the (well-known) Euclidean distance

is given as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
. In this work, we have used the ‘‘taxi

cab’’ distance, which is an L1 norm given by krk1 = jrxj +
jryj. In other words, taxi cab distance is measured as the sum
of x and y movement in the Euclidean plane. For instance,
the distance from (0,0) to (1,1) in the Euclidean plane is

ffiffiffi
2

p
,

but the distance in a taxi cab geometry would be 2. For
more details on the taxi cab distance, see Krause [1986].

Figure 1. Schematic illustrating the idea of Hausdorff
distance between two sets, A and B. For each point in A,
the minimum distance to all points in B is measured (see
broken lines). The maximum distance in this set of
minimum distances is known as the forward distance,
and is denoted by h(A, B) (see thick broken line between
a1 and b2). This process is repeated from B to A, and
the resulting maximum is known as the backward
distance, and is denoted by h(B, A). The maximum of
h(A, B) and h(B, A) is the Hausdorff distance between
the sets A and B.
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[7] In the case of binary fields or images, only the
nonzero pixels form a valid set. For example, in the case
of two binary images R1 and R2, the Hausdorff distance can
be re-written as follows:

H R1;R2ð Þ ¼ max h R1;R2ð Þ; h R2;R1ð Þð Þ

where

h R1;R2ð Þ ¼ max
R1 i;jð Þ2NR1

min
R2 l;mð Þ2NR2

k R1 i; jð Þ � R2 l;mð Þ k
� �

¼ max
R1 i;jð Þ2NR1

min
R2 l;mð Þ2NR2

i� lj j þ j� mj jð Þ
� �

NR1 and NR2 are the sets of nonzero pixels of images R1 and
R2 respectively and the spatial coordinates are represented
by (i, j) and (l, m). The above classical definition of the
Hausdorff distance is very sensitive to outliers. An outlier is
often the point where the Hausdorff distance is achieved,
giving too large a value for H [Moeckel and Murray, 1997].
Using a generalization of the Hausdorff distance by taking
the kth percentile distance rather than the maximum, one
can avoid this outlier problem. This generalized Hausdorff
distance is known as the partial Hausdorff distance (PHD)
and rarely obeys the metric properties (see Rucklidge [1996]
for a discussion on this). The Partial Hausdorff distance can
be written as:

PHDk R1;R2ð Þ ¼ max h R1;R2ð Þ; h R2;R1ð Þð Þ

where

h R1;R2ð Þ ¼ kth
R1 i;jð Þ2NR1

min
R2 l;mð Þ2NR2

k R1 i; jð Þ � R2 l;mð Þ k
� �

¼ kth
R1 i;jð Þ2NR1

min
R2 l;mð Þ2NR2

i� lj j þ j� mj jð Þ
� �

ð2Þ

In this work, we have used the 75th percentile.
2.1.3. Hybrid Measures
[8] Extending the distance-based measure for binary

images to real valued images, is a logical step. This kind
of hybrid measure would have the merits of both the
amplitude and the distance-based measures. The simplest
approach will be to generalize the classical Hausdorff
distance, by adding a component related to magnitudes, as
follows [Gesù and Starovoitov, 1999]:

GH R1;R2ð Þ ¼ max h R1;R2ð Þ; h R2;R1ð Þð Þ

where

h R1;R2ð Þ ¼ max
R1 i;jð Þ2NR1

min
R2 l;mð Þ2NR2

k R1 i; jð Þ � R2 l;mð Þ k
� �

¼ max
R1 i;jð Þ2NR1

min
R2 l;mð Þ2NR2

i� lj j þ j� mj jð Þ þ l R1 i; jð Þ � R2 i; jð Þj jf g
� �

[9] The limitation of this measure is the free normaliza-
tion parameter l, which will drastically affect the magnitude
of this generalized Hausdorff distance. It is noted however
that in practical applications such as quantitative precipita-

tion forecast verification, selecting the parameter l is not
trivial, as one has to combine distance (in km) and rainfall
intensity (in mm/hour) into one single measure.

2.2. Proposed Measure for QPF Verification

[10] In this work, we made an effort to combine both
measures (amplitude-based and distance-based) to create a
new metric called the forecast quality index (FQI). The
proposed index is defined as:

FQI R1;R2ð Þ ¼
PHDk R1 ;R2ð Þ

Mean PHDk R1;Surrogates of R1ð Þ½ �
2mR1 mR2

mR1
2þmR2

2

2sR1sR2
sR1

2þsR2
2

ð3Þ

where the means and standard deviations in the denominator
are computed for only the nonzero pixels.
[11] The numerator is a normalized partial Hausdorff

distance (PHD) between two binary fields R1 and R2, where
R1 is the reference or ‘‘true’’ field, and R2 is the field to be
compared and k is the percentile at which the computation
of PHD is done (see equation (2)). PHD is sensitive to the
percentage of nonzero pixels over the domain of observa-
tion. Therefore, if the objective is to merely compare two
images at any particular time instant, a nonnormalized PHD
would suffice in the numerator of FQI. However, this would
not be appropriate for comparison of two fields over a time
period or for comparison of two different ensemble mem-
bers to the control run or observed field, because the
percentage of nonzero pixels (rain-covered area) could
change significantly with time, or from ensemble member
to another. Thus, for consistency, one could simply normal-
ize the PHD by the total number of nonzero pixels to
account for the sensitivity, but that would not result in a
dimensionless measure. For that reason, we normalize
PHD(R1, R2) by the mean of the partial Hausdorff distance
between the R1 (reference field) and its surrogates. A
surrogate field is a stochastic realization of a process
(observed field, in this case) with the same probability
density function (PDF) and spatial correlation structure
(see Kantz and Schreiber [1997] for more details). Tradi-
tionally, surrogates are generated with either the same PDF
or the same correlation structure as the process under study,
but not both. Schreiber and Schmitz [1996] proposed an
algorithm called iterative amplitude-adjusted Fourier trans-
form (IAAFT) technique to generate surrogates which
simultaneously preserve the correlation structure and the
PDF. Thus, by taking the mean of PHD(R1, Surrogates of
R1), we normalize by a representative value of PHD
between R1 and its possible stochastic realizations within
the domain of observation. We use 10 surrogates to compute
the mean distance. To aid the reader in visualizing the
surrogates, we show a sample image and three of its
surrogates in Figure 2. We do not delve into the details of
how to compute surrogates, but refer the reader to Kantz
and Schreiber [1997] for further details. (For the interested
reader, we provide a URL in the Acknowledgments section
for obtaining Matlab scripts to generate surrogates.) It is
worth mentioning here that surrogates can be seen as a
generalization of transposes and mirrors of the original
image. In that respect, using a collection of transposed
and mirrored images can be seen as a ‘‘poor man’s’’
surrogates, and could potentially be used for normalization
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in practical applications. However, we caution that such a
normalization leads to a conservative estimate of the nu-
merator, since it is based on a restricted set of surrogates,
which exclude realizations that redistribute intensities from
a large connected area into smaller areas.
[12] The denominator of the proposed metric is a modi-

fied UIQI index computed from the rainfall intensity field
(and not only its binary counterpart which was used in the
numerator of equation (3)). As can be seen from equation
(1), the covariance term of UIQI is not considered, since
PHD in the numerator accounts for any discrepancies due to
displacement. Note that in creating the binary images to be
used in the computation of PHD, one could employ thresh-
olding. For instance, this could be useful in QPF applica-
tions where the interest might be primarily in those
intensities that are above a threshold (or, equivalently, when
low intensities are not of significance). In that case, the
means and standard deviations that appear in the denomi-
nator (modified UIQI) also need to be calculated for the
thresholded image. The range of PHD is [0, 1], while the
range of the modified UIQI is [0, 1], thus making the range

of FQI, [0, 1]. A value of FQI close to zero would imply
that the two sets (images) being compared are close to each
other.

2.3. Illustrative Examples

[13] To illustrate the merit of the proposed measure for
comparing precipitation patterns, we start with a very
simple example as shown in Figure 3. The field to be
studied is a disc of radius 10 units, centered at (20,20) with
exactly the same values across the disc. This is marked
‘‘original’’ in the figure and could be seen as the observed
field in a QPF context. ‘‘Member 1’’ and ‘‘member 2’’ are
shifted versions of the ‘‘original’’; member 1 has its center
at (40,40), while member 2 is centered at (70,70). In the
context of QPF, the ‘‘original’’ could be treated as the
‘‘observed’’ and ‘‘members 1 and 2’’ could potentially
represent ensemble members of a numerical weather pre-
diction model output. For these three fields, we computed
three measures, amplitude-based RMSE, distance-based
EqTh [see Miller, 2000], and the proposed hybrid, forecast
quality index (FQI). For completeness purpose, we define

Figure 2. (a) Original field at 4 km spatial resolution; (b)–(d) surrogates of this field.
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here RMSE and EqTh. Given two images R1 and R2 of size
N � N

RMSE R1;R2ð Þ ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

X
j

R1 i; jð Þ � R2 i; jð Þ½ �2
s

EqTh R1;R2ð Þ ¼ Ni � Sð Þ
Nu � Sð Þ

where Ni is the count of {NR1 \ NR2}, Nu is the count of
{NR1 [ NR2}, and S = NR1 � NR2/N, where NR1, NR2

represent the number of nonzero values in R1 and R2,
respectively. Table 1 shows the computed values of these
measures and the proposed FQI measure.
[14] It is obvious that in this example, the RMSE and

EqTh fail to capture the difference between members 1 and
2 compared to the original field, namely fail to illustrate that
member 2 is farther away from the original than member 1
is. The proposed index, however, clearly depicts this fact.
The illustrative example considered above is clearly too
simplistic, and not a reflection of the kinds of cases one
might encounter in reality. Below, we consider another case
that illustrates the shortcomings of RMSE and threat score,
and the potential of the proposed measure, FQI, in a more
realistic case.
[15] A radar-observed rainfall field over Houston, Texas,

is considered. The original observations are at 2km spatial
resolution, but for this illustrative example we have aggre-
gated the field to 4 km spatial resolution. The area of
observation is about 256 � 256 km2. Figure 4a shows the
original observations from which we constructed three
rainfall images: case 1, observation field is rotated by 90�
(Figure 4b); case 2, observation field is mirrored around a
horizontal axis passing through the center of the field
(Figure 4c); and case 3, observation field is mirrored around
a vertical axis passing through the center of the field
(Figure 4d). Cases 2 and 3 perhaps are most reflective of
a real situation, wherein a numerical forecast has predicted

the location incorrectly (in the x or y direction). The three
measures, RMSE, EqTh, and FQI are calculated for a
threshold of 2 mm, i.e., all observations less than 2mm
are not taken into consideration (considered to be zero).
[16] Visually, one would expect that case 3 is the closest

to the original field, followed by case 1 and case 2. As can
be seen from Table 2, it is clear that the relative change in
RMSE between the three cases is not very great, indicating
that RMSE is not powerful enough to distinguish well
between the three types of differences. EqTh is also not
able to distinguish cases 1 and 2 (gives a value close to zero,
just suggesting that they are different and no additional
information); however, in case 3, EqTh is higher (i.e.,
different from zero) given that there is a significant overlap.
The differences in FQI (relative change from case to case as
well) between the three cases is indicative of the power of
the proposed measure. As expected, FQI is lowest for case
3, and highest for case 2, indicating that case 3 is the closest
and case 1 is the farthest from the original field. Thus FQI is
able to incorporate the optimal qualities of distance- and
amplitude-based measures resulting in a more effective
measure (which can be used alone or in addition to other
traditional measures) for image comparison purposes.

3. Fine-Scale Precipitation Forecast: A Case
Study

3.1. ARPS Ensemble Forecast and Data Description

[17] We chose the 28–29 March 2000 Fort Worth, Texas
tornadic thunderstorm for analysis purposes since this event
has been well documented in the literature and also because
high resolution numerical models have been able to suc-
cessfully simulate it. Figure 5a shows a snapshot of the
storm on 29 March, 2000 as observed by a radar. Below, we
describe briefly the generation of the ensemble members
that were used for this study. The reader is referred to Xue et
al. [2003] and Levit et al. [2004] for more details relating to
the storm conditions, and to Xue et al. [2003], Levit et al.
[2004], and Kong et al. [2004] for details pertaining to the
generation of the ensemble members.
[18] A three-nested domain system was used, the finest

resolution being 3km. The 3-km domain was centered over
Fort Worth and spanned approximately 500 � 500 km2. The
grid size of the outer two domains was 24 and 6km,
respectively [see Kong et al., 2004, Figure 2]. All the
domains used 53 terrain-following vertical layers stretching
from 20 m at the ground to approximately 800 m at the top.
In this study, the SLAF (scaled lagged average forecast)
method was used for ensemble generation, due to its
simplicity and economy [Ebisuzaki and Kalnay, 1991].
For each nested domain, a 5-member ensemble (one control
run and 4 perturbed members) was generated. To construct
the four members, the perturbation between one previous
ARPS forecast and the current analysis was scaled based on

Figure 3. A simplified case study to illustrate the utility of
the proposed index FQI.

Table 1. Three Measures Computed for the Simplified Case Study

of Figure 3 to Illustrate the Utility of the Proposed Index

RMSE EqTh FQI

Original and member 1 68.41 �0.02 0.39
Original and member 2 68.41 �0.02 1.15
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an error growth assumption and then added to and sub-
tracted from the analysis to form two (paired) members. For
the rest of the discussion, we refer to the control as Cn, and
the 4 perturbed members as S1, S2, S3, and S4 [see Kong et
al., 2004, Figure 4]. Radar-observed precipitation fields
were available every 5 min.

3.2. Results and Discussion

[19] Two types of comparisons are performed between
the 5 ensemble members of ARPS (at a spatial resolution of
3km) and radar-observed rainfall (also at the same spatial
resolution re-gridded from the original 1km resolution
fields): (1) The control run and members S1, S2, S3 and
S4 are compared with the observed field and (2) members
S1 through S4 are compared to the control run. While the
first type of comparison tells us how well the model has
done in reproducing the observed field, the second type of
comparison gives us an idea of the kind of diversity within

the ensembles (note that members S1 through S4 are the
result of perturbations around the control run).
[20] Analysis of the ensemble was performed over one

hour of simulation (forecast), but we report here only the
analysis of a specific time instant of the storm evolution
where the model appears to have mostly captured the
basic statistics of the event under study such as condi-
tional mean and standard deviation (see Figure 6 and
Table 3).

Figure 4. Illustrative example: (a) original field at 4 km spatial resolution; (b) case 1, field in Figure 4a
is rotated by 90�; (c) case 2, field in Figure 4a is mirrored around a horizontal axis passing through the
center of the field; and (d) case 3, field in Figure 4a is mirrored around a vertical axis passing through the
center of the field.

Table 2. Three Measures Computed for the Three Case Studies of

Figure 4 to Illustrate the Potential of the Proposed Index

RMSE EqTh FQI

Case 1 14.2 0.08 0.81
Case 2 15.7 �0.02 1.5
Case 3 11.4 0.27 0.2
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[21] Figure 6 shows the comparison of time variation of
the basic statistics of the observed and ensemble fields.
The statistics chosen were the conditional (nonzero) mean
and standard deviation, and percentage of rain-covered
area. Apparently, the ensemble (barring S1) has under-
estimated the percentage of rain-covered area. However, it
appears that the mean and standard deviation of the
ensemble members envelope the observed mean and
standard deviation. This, to an extent, is encouraging,
and implies that there is diversity in the ensemble
statistics around the true state of the system.

[22] Another measure of closeness is a simple comparison
of the range of values in each field. Figure 7 shows
scattergrams (also known as quantile-quantile plots; see
Jolliffe and Stephenson [2003]) of the observed versus the
modeled precipitation fields shown in Figure 5. The values
plotted have been sorted in ascending order (to get an
estimate of the range), and the dotted line indicates the
perfect correspondence line. For the low intensities, S1, S3
and S4 appear to have over-estimated (above the 45� line)
the intensities relative to the observed field, while the
control run and S2 appear to have under-estimated (below

Figure 5. Comparison of snapshots at 3 km spatial scale of the radar-observed precipitation and
different ensemble realizations from the model. (a) Observed, (b) control, and (c)–(f) ensemble members
S1 through S4, respectively. Threshold equals 1 mm/hour.

Figure 6. Comparison of the time variation of basic statistics of ARPS ensemble and observations: (a)
mean conditional on rain (mR > 0), (b) standard deviation conditional on rain (sR > 0), and (c) percentage of
rain-covered area. Threshold equals 0 mm/hour.
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the 45� line) the intensities. For the high intensities, while
S1 over-predicted, the rest of the ensemble members under-
predicted. In other words, the correspondence plot of
Figure 7 seems to suggest that the ensemble members
do have a spread in their values which is comparable to
that of the observed fields, and is not systematically biased
around the range of the observed values.
[23] Simple visual inspection of Figure 5 suggests that

the control run, S2 and S4 appear to be the closest to the
observed field, while S1 and S3 seem to have ‘‘additional’’
features present (for instance, southeast corners). It is
worth repeating here that only amplitude-based or only
distance-based measures would not be sufficient to illus-
trate important differences between the observed field and
the ensemble members. Some combination of the two
types (i.e., a hybrid measure) is thus necessary to be able
to better gauge the performance of the model. Below, we
discuss the proposed hybrid measure (FQI), and compare
its performance with more traditional measures such as
RMSE (amplitude-based) and EqTh (distance-based). We
note here again that the value of PHD in the numerator of
FQI in equation (2) is computed for the 75th percentile.
Again, the comparison is done in relation to the observed
as well as the control run.
[24] The magnitudes of FQI, EqTh and RMSE (for t = 85

min. in Figure 6) when the members of the ensemble, i.e.,

control, S1, S2, S3 and S4, are compared with the respective
observed field are given in Tables 4 and 5. The comparison
has been done for different thresholds and the results are
given for 1 mm (Table 4) and 5 mm (Table 5). Several
observations can be made from Tables 4 and 5:
[25] 1. RMSE suggests that S3 is the ‘‘closest’’ to the

observed field. This appears to be contradictory to the visual
evidence that control, and S4 (or S2) are closest.
[26] 2. EqTh has a value very close to zero. This suggests

that all the ensemble member forecasts are very different
from the observed, which is certainly not the case. More-
over, it does not tell us much about the visual discrepancies
that we notice from the images (Figure 5). Given its low
values, it does not help to look at the diversity of the
ensemble.
[27] 3. The lower the value of FQI, the closer the two

fields that are being compared. With that in mind, looking at
the proposed hybrid measure, FQI, one could infer that
control, S2 and S4 are the closest to the observed. This, in
contrast to RMSE and EqTh, does indeed corroborate visual
evidence (Figure 5). Furthermore, the diversity in the
forecast can also be measured by the range of FQI (0.4 to
1.2). In essence, FQI, which captures both distance- and
magnitude-related discrepancies between the forecasted and
observed fields, definitely presents a more robust way to
characterize uncertainty of a forecast.
[28] 4. While on one hand it may be convenient to have a

single measure to evaluate the performance of a model
forecast, on the other hand, it may be equally useful to be
able to assess if the model has done ‘‘poorly’’ in reproduc-
ing amplitudes or capturing the location of features. This
can be achieved by looking at the individual components of
the proposed measure, i.e., the values of the numerator
(distance-based) and denominator (amplitude-based). In
other words, if the model forecast matched well in the
locations of the features, it would show a value close to 0
for the numerator, while if it matched well in the intensities
(irrespective of the location; i.e., the overall PDF), it would
reflect in the denominator value being close to 1. Columns 4
and 5 of Table 4 respectively show the numerator and

Table 3. Conditional Statistics of the Observed Field and the

Ensemble Members Shown in Figure 5

Mean Standard Deviation Rainy Area, %

Observed 0.51 1.42 29.98
Control 0.53 1.77 29.09
S1 0.76 1.86 50.68
S2 0.42 1.63 31.02
S3 0.45 1.18 41.58
S4 0.79 2.41 34.60

Figure 7. Scattergrams (also called quantile-quantile
plots) of the observed versus modeled (control run and
four ensemble members) precipitation fields (shown in
Figure 5). The values that are plotted have been sorted in
ascending order, and the dotted line indicates a ‘‘perfect
correspondence line.’’ Threshold equals 0 mm/hour.

Table 4. Comparison of Ensemble Members With Observed

Using the Three Measures Discussed in the Text for a Threshold of

1 mm/houra

RMSE EqTh NumerFQI DenomFQI FQI =
Numer FQI
Denom FQI

Control 1.31 0.05 0.52 0.89 0.58
S1 1.63 0.02 1.18 0.94 1.25
S2 1.29 0.01 0.54 0.83 0.65
S3 1.16 0.03 0.95 0.94 1.01
S4 1.73 0.02 0.36 0.80 0.45

aEnsemble members shown in Figures 5b–5f; observed shown in
Figure 5a.

Table 5. Same as Table 4, but for a Threshold of 5 mm/hour

RMSE EqTh NumerFQI DenomFQI FQI =
Numer FQI
Denom FQI

Control 1.23 0.002 0.38 0.29 1.34
S1 1.47 0.016 0.76 0.30 2.54
S2 1.21 0.004 0.70 0.20 3.49
S3 1.04 0.003 0.77 0.51 1.50
S4 1.63 �0.006 0.56 0.19 2.93
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denominator for a threshold of 1mm. We notice that the
denominator is close to 1 indicating that the magnitude of
the intensities has been captured very well by the model.
However, when we look at the numerator, it suggests that
the forecast provided by S1 is the furthest (in relation to the
other members) in terms of capturing the location of the
features. This, of course, is evident visually from Figure 5c,
where one notices that there are many small ‘‘cells’’ that are
present in comparison to the observed. Furthermore, as can
again be verified visually, S3 is the next ‘‘worst’’ in
reproducing the location of the features, and confirmed by
the relatively high value of the numerator.
[29] 5. The values of RMSE and EqTh appear to be

insensitive to the threshold value chosen to compare the fields
(see Tables 4 and 5) suggesting that the extreme precipitation
intensities are forecast with the same skill as the lower
precipitation intensities. Given that we have clearly seen from
Figure 5 that the ensemble forecast members exhibit a much
more small-scale cellular structure than the observed field, we
know that this is not the case. It is interesting to note that the
values of FQI for the two different thresholds differ signifi-
cantly as seen from Tables 4 and 5). For a threshold of 5 mm,
FQI indicates that the control run forecast is the closest to the
observed, while S2 and S4 appear to have done a poor job at
capturing the higher intensities (>5 mm), even though at a
lower threshold (1mm; see Table 4), the predicted fields from
the control run, S2 and S4 were all ‘‘close’’ to the observed
field. This, in turn, means that the inability of the ensemble
members to reproduce the location and intensity of the high
precipitation values is well depicted by the FQImetric but not
by the RMSE and EqTh metrics.
[30] 6. Increasing the threshold changes the numerator

and denominator significantly (see columns 4 and 5 in
Table 5). The values shown suggest that all of them have
done very poorly (S3 to a lesser extent) when it comes to
capturing the higher intensities. While control, S1 and S3
show a decrease in the numerator (indicating a better
match of the location of features with intensity larger than
5 mm than for 1 mm), S2 and S4 show an increase in the
numerator suggesting a poor match of location of features
with intensity larger than 5mm (in relation to a good
match when a threshold of 1 mm was applied). It is noted
that traditional measures like RMSE and EqTh are evalu-
ated and reported for different threshold values, so as to
assess the performance of a forecast in capturing extreme
events. It is suggested that the proposed measure be also
computed for different thresholds, and a curve (FQI vs.
threshold) rather than a single value be reported.
[31] From the above observations, one could infer that

using RMSE or EqTh alone would provide limited assess-

ment about model performance. At the same time, the FQI
seems to be a reliable and robust measure for QPF verifi-
cation, which could be used alone or in addition to other
measures to provide confidence in model assessment. It is
worth mentioning here that distance-based measures, and
consequently our proposed measure, are less successful in
cases where the images to be compared have 100 percent
rain coverage. However, this concern can be alleviated by
employing an appropriate threshold.
[32] Apart from the comparison of the ensemble forecast

members to the observed precipitation, equally important is
the assessment of the ‘‘spread’’ within an ensemble by
comparing the ensemble members to the control run. Tables
6 and 7 show RMSE, EqTh and FQI when S1 through S4
are compared with the control run with a threshold of 1 and
5 mm, respectively. On the basis of what the comparison
with the observed fields shows, one could anticipate that
FQI would be the least for S2 and S4 (for a threshold of
1 mm) suggesting that they are close to control (given that
control, S2 and S4 are close to the observed), and S1 and S3
comparisons should yield higher FQI values. This is exactly
what we see in Table 6. RMSE does in fact also show that
S2 and S4 are closer to the control run than S1 and S3. The
same is true with EqTh. RMSE again is insensitive to the
change in threshold, while EqTh seems to corroborate what
FQI suggests (S4 is closest to control; see Table 7).
[33] To illustrate the applicability of the proposed mea-

sure over larger areas, comparisons were made between the
forecasts from the 1998 Storm and Mesoscale Ensemble
Experiment (SAMEX ’98), and the observed precipitation
available from NCEP. The SAMEX multimodel ensemble
consists of a total of 25 members from 4 different models:
5 ARPS, 5 Eta, 5 RSM and 10 MM5 members. The spatial
and temporal resolutions of both the observed and fore-
casted accumulated precipitation fields are 30 � 30 km2

and 3 hours, respectively. The spatial domain covers the
continental United States (see Hou et al. [2001] and Miller
[2000] for more details). The comparison we have done is
for a lower threshold of 5 mm. Figure 8 shows the observed
precipitation field (middle panel) and one forecasted field
from each of the aforementioned four models. Table 8 shows
the various measures computed for this case study. As can be
clearly seen from the table, both the ‘‘traditional’’ measures
(RMSE and EqTh) rank the bottom right (forecast 4) to be
the best, although it does not capture any of the features of
the observed field. However, the ranking inferred visually
and that obtained from the proposed measure (FQI) (as
shown in Table 8) are in good agreement.

4. Conclusions

[34] Rainfall being the result of complex atmospheric
phenomena possesses a complex temporal and spatial
structure. The intermittent yet organized nature of spatial
rainfall not only makes quantitative precipitation forecasting

Table 6. Comparison of Ensemble Members With the Control

Run Using the Three Measures Discussed in the Text for a

Threshold of 1 mm/houra

RMSE EqTh FQI

S1 1.68 0.08 0.73
S2 1.13 0.18 0.17
S3 1.13 0.10 0.30
S4 1.34 0.22 0.13

aEnsemble members shown in Figures 5c–5f; control run shown in
Figure 5b.

Table 7. Same as Table 6, but for a Threshold of 5 mm/hour

RMSE EqTh FQI

S1 1.55 �0.01 0.63
S2 1.13 0.10 0.42
S3 1.06 0.04 0.46
S4 1.33 0.16 0.11
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(QPF) a challenging task but also renders QPF verification
nontrivial. Some of the more common measures of QPF
verification include threat score, equitable threat score
(EqTh), brier score and bias score. Simple coefficient of
correlation and root mean squared error (RMSE) are also

used quite frequently to delineate error growth curves and
assess limits of predictability of precipitation. These com-
monly used measures can be classified under two catego-
ries: amplitude-based (e.g., RMSE) and distance-based
(e.g., EqTh). In this work, we proposed a new measure

Figure 8. Comparison of (a, b, d, e) SAMEX ’98 multimodel forecasts over the continental United
States with (c) the observed precipitation field.
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for QPF verification, called forecast quality index (FQI),
which combines both types of measures (amplitude and
distance). The distance-based measure we used is based on
a nonlinear metric called the Hausdorff distance which was
modified in our work to account for robustness to outliers.
The amplitude-based measure we used is based on a newly
developed metric called the universal image quality index.
The proposed combined measure takes advantage of both
metrics and depicts differences in both intensity and loca-
tion of two rainfall intensity fields.
[35] Precipitation fields from an ARPS ensemble were

compared with radar-observed fields using RMSE, EqTh
and FQI, and the merit of the proposed measure in QPF
verification was demonstrated. Also, we used data from the
SAMEX ’98 experiment to illustrate the potential applicabil-
ity of the proposed measure for large-scale multimodel
forecast comparison. Further analysis is needed using (1)
larger ensemble sizes; (2) forecast observation pairs for
several time instants; and (3) different types of events to
further strengthen our conclusions and establish the utility of
the proposedmeasure toward the purpose of QPF verification
(especially in ensemble forecasts). Robust and discriminatory
QPF verification metrics are expected to play an important
role in ensemble forecasting research, as for example, in
better understanding the nature of ensemble diversity (‘‘dy-
namic’’ versus ‘‘statistical’’) and also in gaining insight into
the problem of the ‘‘best ensemble member’’ (i.e., as to
whether a ‘‘best’’ member at an early stage of the forecast
remains the ‘‘best’’ throughout the forecast period).
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Table 8. Ranking of Four Forecasts According to Visual

Inspection and the Three Measures Discussed in the Text for the

SAMEX ’98 Experiment

Best Worst

Visual F1 F3/F2 F2/F3 F4
RMSE F4 (1.53) F1 (2.06) F3 (2.33) F2 (2.47)
EqTh F1 (0.15) F4 (0.15) F2 (0.12) F3 (0.10)
FQI F1 (0.18) F2 (0.20) F3 (0.24) F4 (0.54)
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