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Abstract 
 
Many recent studies have been devoted to the investigation of the nonlinear dynamics of 

rainfall or streamflow series based on methods of dynamical systems theory. Although finding 
evidence for the existence of a low-dimensional deterministic component in rainfall or 
streamflow is of much interest, not much attention has been given to the nonlinear dependencies 
of the two and especially on how the spatio-temporal distribution of rainfall affects the nonlinear 
dynamics of streamflow at flood time scales. In this paper, a methodology is presented which 
simultaneously considers streamflow series, spatio-temporal structure of precipitation and 
catchment geomorphology into a nonlinear analysis of streamflow dynamics. The proposed 
framework is based on “hydrologically-relevant” rainfall-runoff phase-space reconstruction 
acknowledging the fact that rainfall-runoff is a stochastic spatially extended system rather than a 
deterministic multivariate one. The methodology is applied to two basins in Central North 
America using 6-hour streamflow data and radar images for a period of five years. The proposed 
methodology is used to: (a) quantify the nonlinear dependencies between streamflow dynamics 
and the spatio-temporal dynamics of precipitation; (b) study how streamflow predictability is 
affected by the trade-offs between the level of detail necessary to explain the spatial variability 
of rainfall and the reduction of complexity due to the smoothing effect of the basin; and (c) 
explore the possibility of incorporating process-specific information (in terms of catchment 
geomorphology and an a-priori chosen uncertainty model) into nonlinear prediction.  Preliminary 
results are encouraging and indicate the potential of using the proposed methodology to 
understand via nonlinear analysis of observations (i.e., not based on a particular rainfall-runoff 
model) streamflow predictability and limits to prediction as a function of the complexity of 
spatio-temporal forcing relative to basin geomorphology.    
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1. INTRODUCTION 
 
Increasing implementation of remote sensing technologies for observation of atmospheric 

processes, and in particular, the availability of radar and satellite estimates of rainfall, provides a 
good base for improving the accuracy of flood prediction. Although the remotely sensed 
information of hydrological processes has become more detailed and reliable and the theoretical 
basis for developing sophisticated data mining and statistical learning algorithms has been 
pursued vigorously during the last decade, there is only a limited number of hydrologic studies 
exploring the use of spatial information of precipitation for understanding the dynamics of basin 
response based on a nonlinear dynamical systems perspective, as opposed to 
conceptual/empirical modeling.  

The idea of nonparametric streamflow prediction based on past rainfall and streamflow time 
series was first introduced by the pioneering work of Yakowitz [1987] and Yakowitz and 
Karlsson [1987], who implemented the nearest neighbor approach for streamflow prediction at 
daily time scale. After that, many studies have been devoted to the implementation of the time 
series phase-space method for prediction and/or finding evidence for the existence of a 
deterministic component in hydrologic time series. Studies investigating hydrologic 
predictability based on past data and nonlinear dynamical methods can be divided into two 
groups: (1) studies limited to the rainfall process [e.g. Hense, 1987; Rodriguez-Iturbe et al., 
1989; Sharifi et al., 1990; Tsonis et al., 1993; Jayawardena and Lai, 1994; Georgakakos et al., 
1995; Koutsoyiannis and Pachakis, 1996; Sivakumar et al., 1998], and (2) studies limited to 
streamflow [Jayawardena and Lai, 1994; Porporato and Ridolfi, 1996, 1997; Liu et al.,1998; 
Wang and Gan, 1998, Babovic and Keijzer, 1999, Sivakumar et al., 2002, Phoon et al., 2002, 
Islam and Sivakumar, 2002, among others]. Only recently [e.g. Sivakumar et al., 2001, 
Porporato and Ridolfi, 2001] the phase-space approach has been applied to the coupled rainfall-
runoff process. This was accomplished by considering either the phase-space of the runoff 
coefficient (runoff divided by precipitation) or the multivariate rainfall-runoff phase-space where 
rainfall was measured at several locations.  

In most of the papers, the analysis is based on the method of optimal phase-space 
reconstruction as it was originally developed for univariate time-series [see Takens,1981, Farmer 
and Sidorowich, 1987, Casdagli et al., 1991, and Sauer et al., 1993] and  extended lately to the 
multivariate case [e.g. Cao et al., 1998 among others]. However, the applicability of this 
approach in the context of rainfall-runoff nonlinear prediction (i.e. considering the rainfall-runoff 
as a nonlinear deterministic uni/multivariate process) has been questioned in the literature 
recently [see Pasternack, G. B., 1999 and Schertzer et al., 2002]. The reason for the criticism is 
the fact, that, considered simultaneously, the rainfall and runoff processes truly represent a 
spatially extended dynamical system and any attempt to consider such a system as a 
uni/multivariate one by means of spatial subsampling (i.e. rainfall and/or runoff at fixed 
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locations) has to be met with skepticism. This is because, an extended system has infinitely many 
degrees of freedom and is thus making the question of “optimal” phase-space reconstruction and, 
in general, the search for low dimensional attractor meaningless. Rigorous theoretical treatments 
of spatially extended dynamical systems are in their infancy. They typically relate to representing 
such systems as coupled maps on a lattice [e.g. see Bohr et al., 1998 and Parlitz and Merkwirth, 
2000], but this approach in hydrology would be only applicable for the spatially distributed 
atmospheric forcing, i.e. rainfall. When the interaction between the atmospheric forcing and the 
land surface is to be considered in relevance to the produced streamflow, the analysis becomes 
much more complicated [e.g. Dodov and Foufoula-Georgiou, 2001]. For example, factors such 
as catchment geomorphology make the “importance” of inputs at different space-time locations 
different. Moreover, unobserved processes such as land-atmosphere interactions, hydraulic 
dispersion, etc. can be considered to act as stochastic filters on the observations and make them 
uncertain, with uncertainty dependent on the space-time location of the inputs.  

In the above context, any methodology for multivariate rainfall-runoff nonlinear prediction at 
flood time scale based on phase-space reconstruction [e.g. see recent studies Sivakumar et al., 
2001, and Porporato and Ridolfi, 2001] can be considered as an approximate technique without 
any formal warrantee of optimality in the reconstruction of phase-space and in the prediction. 
This does not mean that such techniques are not valuable tools in understanding the complex 
rainfall-runoff dynamics and any modifications resulting in improvements should be considered 
valuable.  

In this paper, we propose a methodology for rainfall-runoff nonlinear analysis and prediction 
based on “hydrologically-relevant” phase-space reconstruction acknowledging the fact that 
rainfall-runoff is a stochastic and extended rather than deterministic and multivariate system. The 
main innovations of the proposed approach are: (a) in contrast to subsampling at a few locations 
or a priori aggregating the spatially variable rainfall without considering its interaction with land 
surface, we reduce the system’s dimensionality using aggregation determined by the catchment 
geomorphology; (b) we explicitly incorporate the catchment’s hydrologic response as an 
additional space-time varying dimensionality reduction factor (operating on already aggregated 
rainfall data) which, in fact, is used to define the “hydrologically optimal” state of the system, 
and respectively phase-space;  (c) in order to treat the uncertainty due to the stochastic processes 
in the catchment (e.g. hydraulic dispersion) we project this uncertainty on the rainfall input, 
through an uncertainty model, thus accepting a scheme for nonlinear prediction in which the 
processes in the catchment are considered as deterministic and all the uncertainty is captured by 
the forcing.  

The developed methodology is used to: (1) analyze the nonlinear dependencies between the 
dynamics of catchment-scale runoff and the spatio-temporal dynamics of precipitation 
considered at different spatial scales; (2) study the way by which runoff predictability is affected 
by the trade-offs between the level of detail necessary to explain the dynamics of forcing and the 
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reduction of complexity due to the smoothing effect of the basin; (3) analyze different ways of 
incorporating uncertainty in the catchment response and prior knowledge about basin 
geomorphology in the phase-space approach; (4) analyze the effect of geologic controls on 
streamflow predictability. 

In Section 2 we introduce the phase-space approach and how it is used as a tool for nonlinear 
prediction. Section 3 discusses the specifics related to the reconstruction of the rainfall-runoff 
phase-space and introduces distance measures (specific for comparison of rainfall images as well 
as catchment-specific distance measures based on catchment geomorphology and an a-priori 
chosen uncertainty model) capable of evaluating the “hydrologic similarity” between rainfall-
runoff states. In section 4 we analyze real data by applying the above approaches to two basins in 
Central North America using 6-hr rainfall accumulation radar rainfall images and 6-hr 
streamflow data for a period of approximately 6 years. Summary and conclusions are given in 
section 5. 

 
2. THE PHASE-SPACE APPROACH  
 
2.1. General definition 
 
The state space (or phase-space) is a finite dimensional vector space Rd, such that specifying 

a point in this space uniquely specifies the state of a dynamical system or stochastic process and 
vice versa. A large class of processes, in which a prominent member is the stochastic Markov 
processes, can be described by a set of states (possibly infinite) and some kind of transition rules 
specifying how the system proceeds from one state to another.  An essential feature of Markov 
processes is that the future evolution at any given time t depends on the state of the system at that 
time only and not on states of the past.  For stochastic processes, the evolution in time is given in 
the form of a set of transition probabilities, according to which the future states of the system are 
chosen probabilistically. In this general framework, a purely deterministic system can be 
considered as a limiting case of a Markov process on the continuum of states, where evolution to 
a new state occurs with probability 1 along some particular direction and any other transition has 
probability 0. Such a general framework is useful when it is considered in the context of 
predictions based on phase-space reconstructed from time series: the evolution of a deterministic 
system (for short enough time intervals) can be approximated by a simple linear, or low order 
polynomial relationship. In contrast, the transition of a stochastic system to a new state can be 
considered only in terms of its expectation, i.e. as the average over all possible future states, 
given the current one. However, from a clearly approximation point of view the two cases are 
very similar and consist of (i) proper phase-space reconstruction, (ii) choice of a similarity metric 
between the system’s states, and (iii) definition of a local model for prediction. 
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2.2. Optimal phase-space reconstruction from time series 
 
While for stochastic systems there is no specific rule for phase-space reconstruction except 

some physical and/or statistical considerations, the optimal phase-space reconstruction of a 
deterministic uni/multivariate nonlinear system is obtained by “embedding” the dynamics of the 
process utilizing the so-called delay time method [see Takens, 1981; Casdagli et al., 1991, and 
Sauer et al., 1993 for the univariate case]. This approach was originally applied for univariate 
time-series, representing the “state” of the system by the vector 

- -( 1){ , , ..., },t t t mX X Xτ τ−tX  =    (1)  

where τ  is called the delay time, and m the embedding dimension representing the 
dimensionality of the phase-space. The important issues for an optimal choice of τ  and m, and 
thus, optimal phase-space reconstruction from univariate time series are: (1) two successive 
elements of a state-vector ( 1), , 2t j t jX X j mτ τ− − + < − , have to be “optimally” (but not 
completely) uncorrelated in order that every new element of the vector brings enough “new” 
information about the state of the system; and (2) the embedding dimension m has to be small 
enough to ensure maximally low dimensionality of the phase-space and at the same time large 
enough to uniquely “unfold” the state of the system. In other words, an optimal embedding 
dimension is the smallest number m, for which a neighborhood of k states in an m dimensional 
phase-space remains a neighborhood (i.e. the states are still close to each other) in a ( 1)m +  
dimensional phase-space. 

In the case of multivariate time series, say of dimensionality M, the state vector is given as 
 

1 1 1

2 2 2

(1) (1)(1)
- -( 1)

(2) (2)(2)
- -( 1)

( ) ( )( )
- -( 1)

{ , , , ,

, , , ,

, , , }
M M M

t t t m

t t t m

M MM
t t t m

X X X

X X X

X X X

τ τ

τ τ

τ τ

−

−

−

…
…

… … … …
…

tX  =   

  

  

 (2) 

where  M  is  the  number  of observables, and the dimensionality of the phase-space is 

1
M

jjd m== ∑ . Examples of such multivariate time series could be streamflow at M gauges, or a 
vector composed of precipitation intensities at M pixels of a radar image, or a combination of 
those. The problem of choice of optimal parameters jm  and jτ , j = 1,…, M for this case is much 
more delicate and less explored. Some methodologies are suggested in Cao et al., [1998] and 
Phoon et al., [2002], but the analysis of all possible combinations still remains valuable [e.g. see 
Porporato and Ridolfi, 2001].  

The phase-space reconstructed by means of the delay time method is considered to be a 
linear vector space where the distance between two states can be measured as the Euclidean 
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distance between two d-dimensional points. Given the reconstructed d-dimensional phase-space 
and a distance metric in this space, the overall nonlinear behavior of a dynamical system (both 
deterministic or stochastic) can be approximated locally by a simple nonparametric model. 
Below, a general form of selection of such a local model is presented, applicable for both 
deterministic and stochastic time series.  

 
2.3. Choice of a local regression model for prediction 
 
The core idea of nonlinear phase-space prediction is: given some “new” reference state 0X , 

and the set of all observed state vectors { , 1,.., }N t t N= =XX  predict a future value of some of 
the components of the system (say the j-th component). In other words, construct the predictor  

0 0( ) { , }jx t T F Ν+ = X X  (3) 

where T is some prediction horizon and F is a nonlinear function.  
Let us assume that we have constructed a neighborhood function (sometimes called the 

kernel function) 0( , , )K d wX  around a reference state 0X , based on some distance metric  
( , )i jd X X  measuring the similarity between two state vectors iX  and jX , and a window 

parameter w determining the size of the neighborhood and thus the “locality” of the prediction. 
Let ( )wΩ  denote the neighborhood defined by w around a state 0X  and ( )wΩX  the subset of 

ΝX  defined by the kernel function 0( , , )K d wX . Then, an estimate of 0( )jx t T+ , 0ˆ ( )jx t T+ , is 
computed by the local prediction model 0 ( )

ˆ{ , }wF ΩX X , i.e., 
 

0 0 ( )
ˆˆ ( ) { , }j

wx t T F Ω+ = X X  (4) 

where the nonlinear function F̂  is chosen among a set of polynomial functions ( )P Θ  (usually, 
first or zero-th order) with parameters Θ  such that a quadratic error between the predicted and 
observed states is minimized (in the usual least squares optimization framework). 

The neighborhood function fK  can be hard-thresholded, in which case ( )w NΩ ⊂X X  is the 
subset of states contained in the (hyper)sphere of radius w around 0X , or soft-thresholded, for 
example a Gaussian kernel of the type 2 2exp( || || / )f i jK w= − −X X , where , {1,..., }i j N∈ , in 
which case the neighborhood is extended to all the state vectors with weights that become 
smaller the further away we move from the reference state vector 0X . It is noted that if the 
neighborhood function fK  is hard-thresholded, there are two (technically speaking) different 
approaches to nonlinear prediction: (i) neighborhood of fixed radius w and changing mass 
(number of states) from one reference state to another, and (ii) neighborhood of fixed mass 
(number of states) and changing radius w. In the rest of the paper the second approach is adopted 
for nonlinear prediction. 
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If the local prediction model ( )P Θ  is of zero order the predicted value is the local (or 
weighted in the case of soft threshold) average over the future values 0( )jx t T+  of the states 

( )wΩX  in the neighborhood ( )wΩ . If ( )P Θ  is of first order the optimization is reduced to local 
(or weighted) linear fit on ( )wΩX . For deterministic dynamical systems with low noise level and 
densely populated phase-space, i.e. long enough time series, local linear fit is the most 
appropriate approach. When the noise level is high and/or the determinism is weak or not 
present, zero-th order prediction usually gives better results [Kantz and Schreiber, 1997]. 

In the next section we consider the choice of optimal phase-space parameters and distance 
measures as they apply specifically to the rainfall runoff process.  

 
3. PHASE-SPACE TECHNIQUES FOR RAINFALL-RUNOFF ANALYSIS AND 

PREDICTION: INCORPORATING KNOWLEDGE ABOUT CATCHMENT 
GEOMORPHOLOGY 

 
As discussed in Section 1, it is not correct to apply methods designed for multivariate time 

series analyses to data representing a spatially extended system by reducing the infinite 
dimensional system to a finite dimensional one via subsampling at a few discrete locations. This 
is especially so when the process under consideration has high fine-scale spatial variability, such 
as rainfall. However, during the process of runoff generation and runoff routing, a natural 
smoothing and a dampening of the effect of rainfall’s spatial variability occurs, by the storage 
effects of the most shallow aquifers and by the integration (smoothing) process taking place 
because of the natural hierarchy of the stream network topology. The most appropriate way then 
to incorporate the fine-scale spatial variability of rainfall and the smoothing effect of the basin 
simultaneously is not to increase the number of rainfall point observations to infinitely many or 
subsample a few of them arbitrarily, but rather to aggregate the spatially distributed rainfall input 
according to the catchment topology. 

Due to the effect of geomorphology, the streamflow at the outlet of the catchment at any 
moment depends in a different way on the past rainfall occurrences at different space-time 
locations. For example, rainfall occurring far back in time and far upstream may still contribute 
to the discharge at the outlet after, say, three hours, while in contrast, the one occurring relatively 
recently close to the outlet may have no contribution at all to the streamflow at this particular 
time horizon. Following this line of thinking, one could easily understand the idea that the 
information of catchment geomorphology could be used for additional reduction of 
dimensionality, by weighting or even discarding rainfall inputs according to their contributions to 
the discharge at the outlet at particular instants in time. 

The aggregation of spatially distributed rainfall according to catchment topology will reduce 
the dimensionality of the phase–space but will also reduce the uncertainty (due to smoothing) in 
the observed spatially distributed rainfall. However, there is uncertainty introduced by 
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unobserved processes such as hydraulic dispersion, acting as stochastic filters on the 
observations a posteriori. This type of uncertainty depends on the space-time locations of inputs 
and has to be addressed in the framework of nonlinear prediction.   

In order to reflect the above considerations, we propose a methodology for rainfall-runoff 
nonlinear prediction, consisting of two techniques: (1) a scheme similar to the classical 
multivariate time-series analysis with “optimal” phase-space reconstruction based on the 
introduction of a “normalized distance space”, with distance metrics that are better able to reflect 
comparison of spatially distributed fields (such as rainfall images) rather than comparison of 
multidimensional vectors, and (2) a scheme without phase-space reconstruction in the above 
sense, but based on the definition of a neighborhood in a “hydrologically optimal” phase-space 
through catchment-specific distance measures and an uncertainty model. The details of the 
proposed schemes are considered below. 

 
3.1. Technique with “optimal” phase-space reconstruction (T1) 
 
Considering the high spatial variability of rainfall, even comparison of an image to its slight 

translation in terms of their Euclidean distance could result in a huge separation in the phase-
space. However, considering the aforementioned smoothing effects in the catchment, small 
perturbations in local rainfall intensities and/or small spatial translations in rain cells are not 
expected to affect the discharge at the outlet significantly. In order to account for this effect, we 
introduce two more distance measures for image comparison, namely, Multi-Scale Root Mean 
Square error – MSRMS, and Hausdorff distance based norm – HD  (see Appendix I for details). 
Since both MSRMS and the HD are not Euclidean measures, we cannot consider the rainfall and 
streamflow data together in a single phase-space. Rather, we calculate the distances between the 
reference and all other “rainfall states” and the distances between the corresponding “streamflow 
states” (measured as Euclidean distances in the optimally reconstructed univariate phase-space 
of streamflow) and project those distances (normalized by their medians) on what we call 
“distance space”. This space can be considered as the nonnegative quadrangle of a two 
dimensional Cartesian coordinate system in which the x axis represents “streamflow distances”, 
i.e., the distances between the reference and all other streamflow states, and the y axis represents 
“rainfall distances” i.e., distances between the reference and all other rainfall states. It is in this 
space that we define the neighborhood of the collective reference state (rainfall and streamflow) 
as shown in the schematic of Fig.1. A similar approach is applied to the spatially aggregated 
rainfall time-series, with Euclidean distances between the “rainfall states” measured in the 
appropriate multivariate phase-space of aggregated rainfall.  

To assess the optimal reconstruction of the phase-space we consider the prediction accuracy 
for all possible combinations of embedding dimensions, number of neighbors and prediction 
horizons within reasonable intervals of these parameters. The delay time is chosen to be 1 time 
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step, since we assume that the catchment acts as a continuous integrator of the input and all the 
information about the rainfall is important for the discharge at the outlet. 

 
3.2. Technique with phase-space reconstruction based on catchment-specific distance 

measure and an uncertainty model (T2) 
 
This type of analysis is applied only with respect to spatially aggregated (over 

subcatchments) rainfall time series. In order to incorporate catchment geomorphology into the 
nonlinear prediction, we employ a geomorphologically derived response function (implementing 
the spatially distributed velocity field approach of Maidment et al., [1996] based on 
geomorphologic analysis of the catchment’s Digital Elevation Model - DEM).  This response 
function can be used to assign weights to the elements of the state vector according to how much 
they affect the streamflow at the basin outlet. The response function is nothing but a 
geomorphologically derived unit hydrograph (UH) and in particular, its discrete normalized 
version, such that 0 1U∞

= =∑ ll  (see Fig.2a). More specifically, the basin response function is 
derived as follows: 
• First, using a standard DEM analysis, a slope and an upstream contributing area are assigned 

to every pixel of the DEM. 
• Second, the at-pixel travel time is computed assuming a power-law dependence of velocity 

on the area draining to the pixel and the local slope in the form 0.5/ bL T V aA S= = , where a 
and b are parameters, A is the contributing area and S is the local slope. This assumption is 
based on previous observations showing: (i) a power law relationship between mean velocity 
V and discharge Q measured at different locations along a river network for some 
characteristic discharge of constant frequency (known as downstream hydraulic geometry - 
HG, see Leopold and Maddock, 1953 for details); (ii) power law dependence between 
characteristic discharges and contributing area (e.g. see Stall and Fok, 1968; Rodriguez-
Iturbe and Rinaldo, 1997 and Dodov and Foufoula-Georgiou, 2004 among others), and (iii) 
power law dependence of local channel slope on contributing area (e.g. see Rodriguez-Iturbe 
and Rinaldo, 1997 and references therein). It is noted that although based on the above 
observations the velocity at any pixel can be expressed solely in terms of contributing area, 
such a relationship would ignore the information about the local slopes available from the 
analysis of the DEM. Here we have retained the effect of the variability of the local slopes by 
explicitly using them in the velocity computations. 
The parameters a and b can be estimated from measurements of V corresponding to some 
characteristic discharge at many locations (gauging stations) along a river network if the 
local channel slopes at these locations are known. Specifically, these parameters are 
computed from a least squares fit of the relationship 1/ 2ln( ) ln lni i iV S a b A− = +  where Vi, Si 
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and Ai are respectively the mean velocity, the channel slope and the area draining to location 
i.  

• Third, the travel time to the outlet is computed for every pixel as: 

0.5/
D

b
i j j j

j
T L aA S

Ω∈
= ∑  (5) 

where DΩ  is the set of all pixels downstream of pixel i. To avoid infinite at-pixel travel 
times, zero-valued local slopes are first replaced by the local averages   

M
M

N
j k MkS S NΛ∈

 =  ∑   (6) 

of all pixels k that are upstream and downstream from the pixel j along the main channel with 
an averaging length MΛ  chosen to be scale dependent, i.e. 0.5

M jAΛ ∝ , where jA  is the area 
draining to pixel j.  

• Finally, the response function of any arbitrary basin/subbasin is then extracted as the 
normalized travel time histogram of all pixels covered by the corresponding areas. Only 
travel times with frequencies 5% to 95% are considered in order to obtain reasonable length 
of the state vectors. 
To better understand our approach, the reader should consider the fact that the response 

function of a basin or subbasin is actually a descriptor of the “importance” of the rainfall input 
over the basin area at moment ( )t − l  with respect to the output from the system at moment t. In 
other words, rainfall at moment ( )t − l  is seeing as contributing to the streamflow at moment t 
with weight t tw U− −≡l l , i.e., with weight equal to the ordinate of the normalized response 
function at time ( )t − l . Consequently, if we measure how “different” or “similar” two rainfall 
events are with respect to the streamflow they produce at the basin outlet at moment t, the weight 

tw −l  can be applied to the difference between the ( )t − l -th components of the state vectors. For 
the case of the whole basin the distance between two states is defined similar to the standard pL  
norm (see Appendix I) but “weighted” by the response function, i.e.  

{ }max
1/

0 ( )
ppT

p t tL w e− −== ∑ l ll  (7) 

where te −l  is the difference between any two state vectors at time ( )t − l , and Tmax is the 
maximum time of response. In the case of SN  subbasins the distance between two states is 
computed as: 

{ }max
1/

1 0 ( )S
pN T i i p

p t t SiL w e N− −= =
 =  ∑ ∑ l ll  (8) 
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where Tmax is the maximum response time for all subbasins. It is noted that the implementation of 
(7) and (8) defines a “hydrologically optimal” phase-space reconstruction and is proposed here as 
a replacement of the optimal reconstruction in the context of the “classical” nonlinear prediction. 

Although the above idea is by itself new as it applies to nonlinear analysis of the rainfall- 
runoff process, we would like to mention its general conceptual similarity to other 
dimensionality reduction approaches. Note that the discrete normalized response function can be 
considered as a multidimensional unit vector, representing the “basis” on which our data has to 
be projected in order to be transformed to some “hydrological space” relevant to the streamflow 
at the catchment’s outlet. In this context, the way we apply our weights to the difference between 
two state vectors is equivalent to the way the state vectors are projected onto the eigenbasis in 
the case of Principal Component Analysis (PCA) dimensionality reduction as it was done by 
Broomhead and King, [1986]. However, in our case the “basis” reflects the interaction between 
rainfall and land surface and includes information about basin geomorphology. 

In order to treat the uncertainty related to hydraulic dispersion, we introduce the notion of 
“comparison within some tolerance”. Let us look at the example rainfalls given in Fig. 2b. If we 
consider the two vectors formed by the history of each of rainfalls, say iX  and jX , as 
multidimensional points in Euclidean space, the difference between the points will be large. 
However, the effect of the rainfalls at times 1( )t − l  and 2( )t − l  on the streamflow at moment t 
will be quite similar if these rainfall pulses occur far away from the catchment outlet and 1l  and 

2l  are large compared to the time of concentration of the basin. This is why we consider the 
difference between the l -th components of the state vectors iX  and jX  as: 

 

{ }
{ }

, , , ,
( , )

, , , ,
( , )

max ,

max ,

i j k i j
k

j i k i j
k

if
e

if

ε ε

ε ε

∈ − +

∈ − +

 − >


= 
− <



l l ll l
l

l l ll l

X X X X

X X X X
 (9) 

where ε  is a tolerance interval around the ( )t − l -th time instance. In other words, when we 
compare the distance between the l -th components of two vectors iX  and jX , we take the 
largest value of ,i lX  and ,j lX , say ,i lX , and compute the minimal difference between this value 
and the values of ,j kX ,  { , }k l lε ε∈ − + . Thus, the difference between two strong events 
occurring in the “tail” of the system response function will be considered to be small if the time 
interval within which these events occur is less than 2ε . We consider ε to be monotonically 
increasing with time back from the moment t, which in the discrete time case is a stepwise 
constant function, e.g. 0ε = at moment ( 1)t − , 1ε =  at moment ( 2)t − , etc. In the following, we 
refer to the monotonically increasing ε with the time back from the reference moment as the 
“uncertainty model”. It is noted that once the “uncertainty” difference el  between the l -th 
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components of state vectors iX  and jX  is computed from (9), any norm can be used to express 
the “similarity” between these two state vectors. 

As was the case in the first technique, here too the distances between “rainfall states” and the 
distances between the corresponding “streamflow states” are measured differently (applying the 
above weights with respect to “rainfall states”, and for streamflow states by computing the 
Euclidean distance in the optimally reconstructed univariate phase-space) and cannot be 
considered together in a single phase-space. Therefore, similarly to T1, the two distances have to 
be projected on a “distance space” in order for the neighborhood of the collective reference space 
to be defined.  

Acknowledging the fact that the dynamics of the rainfall-runoff process is not considered 
deterministic, and also due to the limited length of our data series and the high level of noise in 
the radar rainfall estimates, both techniques use the zero-th order prediction scheme described in 
section 2.  

 
4. CASE STUDY 

 

4.1. Basin characteristics and data used 
 

In the present study, streamflow and rainfall data from the Chikaskia River basin, Oklahoma 
and the Gasconade River basin, Missouri, USA are used (see Fig. 3). The streamflow data are 
given as 6 hour average flows and the rainfall data consist of radar rainfall images representing 6 
hour rainfall accumulations. Every pixel in the radar image corresponds to 4×4 km area. For 
every record in the database (say 05/10/1995 6:00 am) there is one streamflow value representing 
the mean flow between 0:00 and 6:00 am and one image of 6hr rainfall accumulations with 
ending time 6:00 am. The reliability of the streamflow and rainfall data is ensured by the fact that 
the flows are unregulated and that the basins are well within (at ranges of 40 to 120 km) the 
coverage of the KVNX, KICT and KSGF radar stations. This yields reliable radar rainfall 
estimates (within a radius of ≈ 40 km a "ground clutter" generally appears, and at distances 
longer then ≈ 140 km the estimates of only intensive rainfalls are reliable). As can be seen from 
Fig. 4, the response of both basins to the basin average rainfall is realistically reflected in the 
measured streamflow at the basin outlets. 

In order to analyze the effect of geologic controls on the quality of prediction, the two basins 
were chosen to have completely different geologic environments: deep limestone aquifer 
underlying the Gasconade River basin and absence of dominating aquifer in the case of the 
Chikaskia River basin. The autocorrelation functions of the two streamflow time-series plotted in 
Fig. 5 clearly show the effect of geology on flow regime: while the autocorrelation function of 
the Gasconade River indicates high persistence due to a significant effect of a deep aquifer, in 
the case of the Chikaskia River the temporal “memory” of streamflow is much shorter.   
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Data from 37 USGS gauging stations in Kansas, Missouri, Oklahoma and Arkansas (see Fig. 
3) were used for the estimation of the parameters a and b of relationship (5). The data consisted 
of: (i) independent measurements of maximum width, mean depth, cross-sectional area, mean 
velocity and discharge under different flow conditions (up to several hundred measurements per 
station), (ii) time-series of at least 10 years of unregulated daily discharges, and (iii) channel 
slope at every station. In Fig. 3. a plot of VS-0.5 versus A is also given with the estimates of the 
parameters a and b.  

 
4.2. Reduction of dimensionality (data preprocessing), choice of reconstruction 

parameters and derivation of a catchment-specific distance function 
 
In order to analyze the effect of rainfall spatial aggregation on streamflow prediction 

accuracy, several different types of multivariate time-series were created: (1) 6-hr rainfall 
accumulations at the scale of the radar pixels covering the two basins (respectively 305 and 415 
pixels); (2) average rainfall accumulations over 9/10 subcatchments  respectively for 
Chicaskia/Gascodate River basins; (3) average rainfall accumulations over 3 subcatchments; and 
(4) average accumulations over each of the two basins. The dimensionality of the state vectors in 
the above four cases for the two basins respectively are 305/415; 9/10; 3 and 1.  

All possible combinations of the number of neighbors, prediction horizons and embedding 
dimensions (only for the case of T1) were computed respectively for the intervals 1 to 50, 1 to15 
and 1 to 20. In the case of T1, the similarity between every two states was evaluated by means of 
root mean square error (RMSE), multiscale root mean square error (MSRMS), and Hausdorff 
distance (HD) when radar images were considered for rainfall at pixel level (see Appendix I) and 
by means of Euclidean distances otherwise. 

The response functions of the two basins (and the corresponding subbasins) were obtained 
following the procedure described in section 3.2. (see Fig. 6a,b for the basin-average response of 
the two catchments, and Fig. 6c for the gray-color coded spatial travel time distribution and the 
response functions of the 3 subcatchments of Chikaskia River basin).  

To incorporate the response functions for prediction Tn  time steps ahead, we incorporate 
only the weights tw −l for which Tn>l . Thus the distances between rainfalls, contributing 
maximally to the runoff at time ( )Tt n+  will be enhanced, i.e. given more weight. For example, 
for prediction at time two time steps ahead ( Tn = 2), the distances are multiplied by the 
coefficients w3 to w16, for three time steps ahead ( Tn = 3) by the coefficients w4 to w17, etc. Since 
streamflow prediction at lead times larger than 10/15 (10/15 means 10 for Chikaskia and 15 for 
Gasconade River) time steps is mostly related to prediction of future rainfall (since the “old” 
rainfall has already drained out of the basin), we restrict ourselves to prediction horizon of nT  = 
10/15 time steps.  
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In order to account for the uncertainty related to hydraulic dispersion, we consider the fact 
that the longer the hydraulic path of a particle in the catchment, the longer the time interval of its 
possible arrival at the outlet. This in turn means that the larger the uncertainty in the time of its 
possible occurrence at a specific location in the catchment for a given prediction time horizon at 
the outlet. This translates to an increasing uncertainty (and thus greater tolerance) for increasing 
time difference between the occurrence of a rainfall pulse and its appearance at the outlet (called 
here “time lag”).  Thus tolerance can be expressed as a step function whose height increases with 
“time lag” (the uncertainty model in section 3.2).  The graphs of the tolerance thresholds we 
apply are given in Fig. 6a,b.  

A summary of the state vectors and similarity distances used, and their notations are given in 
Table 1. 

 
4.3. Prediction accuracy improvement by incorporating rainfall in the nonlinear 

prediction 
 
In this work we are interested not only in assessing maximum predictability, but also in better 

understanding the effects of the spatial distribution of rainfall and catchment geomorphology on 
the accuracy of nonlinear prediction. More specifically, we would like to explore how the 
interplay between the spatial distribution of rainfall, time of concentration of a basin and 
prediction horizon affect  streamflow predictability.   For this reason, our first step is to analyze 
what lead time (prediction horizon) gives maximum difference between prediction based on only 
streamflow data and prediction based on rainfall and streamflow measurements. In Fig.7 we plot 
the prediction accuracies, measured as correlation between the true and predicted series, based 
on different types of state vectors and different types of similarity measures (see Table 1), along 
with the “improvement” in prediction, where the “improvement” is measured in comparison to 
prediction based solely on streamflow. 

 Clearly, for short lead times (1-4 time steps, i.e., 6 to 24 hours) the improvement is  
negligible and, in the case of Gasconade River, introducing rainfall information gives worse 
prediction than using streamflow data only (shown as negative improvement in Fig. 7). This 
result coincides with the result reported by Porporato and Ridolfi [2001], where the 
improvement was of the order of 1%. Maximal improvement is achieved at lead times of 6/9 
steps (i.e. 30 hrs for Chikaskia and 54 hrs for Gasconade River), followed by fast decrease in the 
differences between the prediction accuracies based on rainfall and streamflow observations 
combined versus streamflow observations only. Three facts could explain such a behavior: (1) 
Lead times of 6/9 (Chikaskia/Gasconade) steps coincide with the corresponding mean travel 
times of the two catchments (see Fig. 6). Thus the information provided about the spatial 
distribution of rainfall will have maximum effect for these prediction horizons; (2) High 
correlation in the streamflow data at time lags up to 3-4/5-6 time steps and sharp decrease in the 
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correlation after that (see Fig.5) makes rainfall information redundant for lead times up to 
approximately 4/6 time steps. Thus, for prediction up to 4/6 time steps ahead, streamflow 
predictability is dominated by the persistence in streamflow data; (3) For prediction horizons 
longer than 7/10 time steps the spatial patterns of rainfall, contributing mostly to the future 
flows, are not yet observed. Therefore, for such lead times the uncertainty, and respectively the 
prediction error, grows rapidly. 

Incorporating information about the spatial distribution of rainfall gives an improvement in 
the prediction accuracy of ∼10 to 15 % for Chikaskia River and ∼3 to 8 % for Gasconade River. 
Naturally the question arises as to whether this improvement is significant. In order to measure 
the statistical significance of the result, we evaluate the correlation coefficient for which the 
linear dependence is still significant. This critical level for the correlation coefficient rα  is given 
by: 

2/ 2r t t Nα α α= + −  (10) 

where tα  and N denote respectively the two-sided α  percentile of the Student’s t distribution 
and the sample size. For data size of N = 3615 (all points for which rainfall happens in the last 5 
time steps over the Chikaskia River basin) and confidence interval α  = 0.05 the critical 
correlation coefficient is 0.033.  For Gasconade River the values are respectively N = 3939 and 
the critical correlation coefficient 0.031. Therefore the improvement can be considered 
statistically significant.  

The aforementioned improvement is significantly larger (but for longer prediction horizons) 
than the one reported by Porporato and Ridolfi [2001], suggesting that: (i) The information 
about rainfall should be incorporated into the nonlinear prediction of streamflow, with an 
aggregation of the detail of the spatial distribution of rainfall, rather than by incorporation of   
point measurements at fixed locations of the basin, and (ii) nonlinear prediction of streamflow 
has to be considered in the context of its relation to such important factors as catchment 
geomorphology and underlying geology.  

For the purpose of comparison, the results of all analyses are reported with the same number 
of nearest neighbors of 30. This is because for most of the cases this number provided best 
prediction accuracy (see  Fig. 8 for the case of embedding dimension 14 and lead times 6/9). 

 
4.4. Effect of the embedding dimension 
 
In the case of both T1 and T2 techniques, the optimal embedding dimension for the 

streamflow was found to be 4 for Chikaskia and 6 for Gasconade River, and this result was 
shown to be independent of the change of embedding dimension of rainfall in the case of T1. 
Fig. 9 shows the prediction accuracy for different distance measures as a function of the 
embedding dimension of rainfall for prediction horizons 6/9 (Chikaskia/Gasconade) time steps, 
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and keeping the embedding dimension of streamflow 4/6. The prediction is better for small 
embedding dimensions of rainfall and gradually decreases for longer state vectors. Notice that 
for small embedding dimensions the prediction based on the mean rainfall is comparable to that 
based on different catchment subdivision schemes, while for larger lengths of the state vectors 
the discrepancy rapidly grows. These two facts could be expected for the following reasons.  
First, for lead time 6/9 steps and embedding dimension up to 6, according to Fig. 6, only the 
most important rainfalls are taken into account. For longer state vectors the probability to find 
similar pairs decreases rapidly and the effect of the noise in the data dominates.  Second, the 
information about the rainfall included in the prediction is mostly related to events corresponding 
to the mean response of the system, i.e. rainfalls, whose major intensity is located near the 
“center” of the catchment’s geometry. 

Increasing the embedding dimension incorporates more and more information about the 
rainfall back in time, thus accounting more precisely for events, whose major intensity is located 
far upstream from the streamgage. This type of events will contribute to a significant discrepancy 
between the accuracy of predictions including, versus not including information about the spatio-
temporal distribution of rainfall. Such a trend is clearly shown in Fig. 9 for embedding 
dimensions larger then 6/9. 

Our results are in good agreement with the conclusions of Porporato and Ridolfi [2001], who 
found that the optimal embedding dimension of rainfall was 2 days, i.e. the time which enables 
one to capture the entire subsequent runoff. 

 
4.5. Effects of the treatment of catchment geomorphology and uncertainty 
 
Including a geomorphologically derived response function as a tool for comparison of the 

rainfall  events definitely  improves  the  accuracy  of  streamflow  prediction  (see Fig. 10). 
Improvement is superior in the case where the prediction is based on streamflow and mean 
rainfall over the basin, which could be expected considering the fact that the IUH is derived 
according to the “mean” response of the (sub)catchment and does account for the change of 
hydrologic response with the change in the forcing.  

If in addition we include treatment of uncertainty due to unobserved processes in the 
catchment by means of an uncertainty model, an additional improvement in prediction accuracy 
is observed, especially in the case where the mean rainfall over the catchment is considered. This 
result is a consequence of the fact that our uncertainty model is also chosen according to the 
mean response of the system. Independently of the physical process by which a particular rainfall 
event contributes to the streamflow at the outlet, the uncertainty (coming from all the interactive 
processes in the catchment) is much higher when the event occurs far from the outlet. This, in 
turn, is projected to an uncertainty that depends on the spatial and temporal position of a rainfall 
event relative to the catchment outlet. 



 18 

4.6. Effect of underlying geology  
 
The improvement in prediction accuracy by including information about the spatial 

distribution of rainfall is different for the two catchments (∼10 to 15 % for Chikaskia River and 
∼3 to 8 % for Gasconade River). This difference is explainable by the fact that the limestone 
aquifer underlying the Gasconade basin, acts as a large reservoir and smooths the spatial and 
temporal fluctuations of the input over large space-time scales. As a result, the temporal 
correlation of the streamflow time series increases at the Gasconade River (see Fig. 5) and the 
improvement in streamflow prediction due to the information about the spatial distribution of 
rainfall decreases. This fact suggests that underlying geology is an important factor which has to 
be taken into account in long-term phase-space nonlinear prediction of streamflow.  

 
4.7. Predictability as a function of scale of aggregation  
 
In Fig. 10 we analyze the improvement in streamflow predictability due to information about 

the rainfall input as a function of the scale of aggregation of the input. Obviously, incorporating 
information about the spatial distribution of the rainfall significantly improves the accuracy of 
nonlinear phase-space prediction. The accuracy is affected by two opposite trends: (1) Including 
more detail about the spatial distribution of rainfall improves streamflow prediction; (2) With an 
increase in dimensionality the chance to find “similar” rainfall events, even with measures such 
as the MSRMS and HD decreases. Thus, the best method appears to be a compromise between 
the detail, necessary to explain the space-time variability of the process, and the complexity and 
uncertainty in the data.  The best result is achieved by the subdivision scheme of 3 and 9/10 
subcatchments, followed by MSRMS, Hausdorff distance and uniform error (RMSE) based 
norms.   

Based on the results of this work, we can conclude that incorporating information about 
spatially distributed forcing and catchment geomorphology in the phase-space approach, together 
with a treatment of the uncertainty due to unobserved processes in the catchment is a promising 
approach, worth of further investigation. 

 
5. SUMMARY AND CONCLUSIONS 

 
This work proposes a new approach for incorporating the spatial variability of rainfall and 

basin geomorphology into rainfall-runoff nonlinear analysis and prediction. Specifically, it 
proposes a framework for nonlinear prediction of streamflow, based on “hydrologically relevant” 
rainfall-runoff phase-space reconstruction acknowledging the fact that rainfall-runoff is a 
stochastic and spatially extended rather than deterministic and multivariate system. In contrast to 
subsampling the spatially variable forcing (rainfall) at a few fixed locations and applying 
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“classical” multivariate techniques for nonlinear prediction, the proposed methodology 
incorporates information about the spatially distributed forcing and the hydrologic response of 
the system to study the interplay of spatio-temporal rainfall, catchment geomorphology and 
underlying geology as they affect the dynamics (and thus predictability) of streamflow. 

A geomorphologically derived response function was used as a tool for comparison of 
rainfall events in terms of their “hydrologic” similarity. A catchment specific uncertainty model 
was introduced in order to account for the hydraulic dispersion in the catchment occurring a 
posteriori to the rainfall input. The proposed framework can be seen as one that allows the 
incorporation of a simple conceptual rainfall-runoff model into a phase-space approach for 
nonlinear prediction of streamflow. It can also be seen as blending deterministic and stochastic 
considerations via appropriate “tolerance” distance functions in the phase-space of the system. 

The developed methodology was applied to streamflow and rainfall data from the Chikaskia 
River basin, Oklahoma and the Gasconade River, Missouri, USA. The streamflow data used 
represent 6 hour average flows and the rainfall data consisted of radar rainfall images of 6 hour 
rainfall accumulations. In order to analyze the impact of the detail at which the spatial 
distribution of rainfall is specified on the quality of streamflow prediction, several types of time-
series with different spatial resolution were analyzed: from 6-hr accumulations at 4x4 km pixel 
level, through aggregation over subcatchments of different spatial extent, to the average rainfall 
over the whole catchment. In order to analyze the effect of geologic control on the quality of 
streamflow prediction, the two basins were chosen to have completely different geologic 
environments: deep limestone aquifer underlying the Gasconade River basin and absence of 
dominating aquifer in the case of Chikaskia River.  

The most important results based on analyses of data from the two catchments are: 
• Including information about rainfall improves streamflow predictability (up to 18% in the 
case of Chikaskia River and up to 6% in the case of Gasconade River) compared to prediction 
based on only streamflow data.  
• The information about the spatial distribution of rainfall increases the prediction accuracy (up 
to 12% for Chikaskia River and up to 5% for Gasconade River), compared to prediction based on 
mean rainfall over the whole basin. 
• Best results are achieved by catchment subdivision schemes of 3 and 9/10 subcatchments 
respectively, for the two basins. Thus rainfall averaging over subcatchments of different 
subdivisions is the optimal tradeoff between the detail, necessary to explain the rainfall 
variability in space and time, the complexity of the problem and uncertainty in the data.  
• Including information about (sub)catchment’s response as a tool for comparison of rainfall 
events improves additionally the accuracy of streamflow prediction by 2 to 10 %. 
• If in addition we include treatment of uncertainty due to unobserved processes in the 
catchment (stochasticity), we increase prediction accuracy by an additional 2 to 5 %.  
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• The difference in prediction accuracy due to the information about the spatial distribution of 
rainfall depends on the geologic characteristics of the basin. This is suggested by the fact that 
more improvement is achieved in the case of Chikaskia River ( ∼10 to 15 %), while in the case of  
Gasconade River the prediction accuracy is significantly affected by the smoothing effect of the 
underlying limestone aquifer (improvement  ∼3 to 8 %).  

The main implications of the presented work, given the above results are: 
• The information about the spatial distribution of rainfall definitely increases the accuracy of 
nonlinear streamflow prediction, but has to be considered in the context of its relation to such 
important factors as catchment geomorphology and underlying geology. 
• The proposed methodology for nonlinear prediction based on a catchment-specific distance 
function and treatment of uncertainty gives the best quality of prediction and overcomes the 
shortcomings of the “classical” multivariate technique for streamflow prediction as applied to a 
spatially extended system such as rainfall-runoff. The improvement (of approximately 3 to 15%) 
suggests that this line of research needs to be explored further. We envision that the proposed 
methodology can be extended to a generalized framework, by which catchment-specific 
geomorphologic information, uncertainty in the runoff generation process and channel hydraulic 
geometry can be meaningfully considered in the context of nonlinear rainfall-runoff analysis and 
prediction. 

In view of the enormous amount of information about the spatial distribution of rainfall 
collected every day by ground radars and the still unresolved question as to how much this 
information enhances streamflow prediction when used in distributed rainfall-runoff models [e.g. 
see Obled et al.,1994; Bell and Moore, 2000], an approach such as the one proposed herein 
might provide an alternative worth of further investigation, as it is not specific to a particular 
rainfall-runoff model and its scale dependent calibration. 
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APPENDIX   Measures of Similarity Between Rainfall Patterns 
The most common way to evaluate similarity between two image functions is to use the 

uniform error function [Sendov,1990] and its associated distance measures: 

 i i ie f g= −  

where i is the point where the functions f and g are defined (considering for simplicity the 1D 
case) and e is the uniform error function. The corresponding distance norm (known also as LP 
norm) is: 
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where N is the support length. The most commonly used norms are for p = ∞, p = 1 and p = 2 
(the last known as root mean square error - RMSE), that is: 
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It is easy to see that the L2 distance norm between two images is equivalent to distance 
between two points in N dimensional Euclidean space, where N is the number of pixels in the 
images. Thus, even a small translation between a rainfall image and its copy will produce 
significant distance. Obviously, the LP norm is not the best choice for comparison of rainfall 
images. In order to meet the specifics of rainfall “similarity” relative to runoff production, we 
apply two other types of distances between rainfall images: (i) Multiscale version of the L2 norm 
for the pixels covering the basin, and (ii) L2 norm defined for Hausdorff metric. These distances 
are explained below. 
 
 Multi-Scale Root Mean Square Error (MSRMS) 

We define a multiscale version of the uniform error as S S S
i i ie f gψ ψ ψ= − , where 

S
Sf fψ = Ψ ∗  and S

Sg gψ = Ψ ∗  are respectively the convolutions between the functions f and 
g and some smooth, symmetric function ΨS with compact support determined by some scale 
factor S, satisfying the condition  ( ) 1S x dxΨ =∫ . Since we are comparing only the part of the 
images covering the catchment area, the only way for properly normalizing the smoothing 
function without including information outside the area of interest is to apply a simple “Box” 
function satisfying ( ) 1SB x dx =∫ .  In other words, we apply a moving average of varying 
support S from a set of desired supports { }: 2 2 ; 0,...,i i

k SS i n= × = , with respect to the two 
functions and then compare them by means of the distance norm  
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where nS is the number of different support lengths of the moving average and Np the number of 
pixels covering the basin. The intuitive reasoning for applying this similarity measure is that 
performing smoothing at different scales will “redistribute” spatially the “mass” of the sharp 
anomalies and thus will decrease the distance between similar but slightly translated identical 
geometries. 
 
 Hausdorff distance based norm (HD) 

Given two sets of points 1{ , , }mA a a= …  and 1{ , , }mB b b= … , the Hausdorff distance is 
defined as   

H(A,B)  max{ h(A,B), h(B,A) }= , where { }h(A,B) max min
b Ba A

a b
∈∈

= −  

The function ( , )h A B  is called the directed Hausdorff distance from A to B. It identifies the point 
a A∈  that is farthest from any point of B, and measures the distance from a to its nearest 
neighbor in B. Thus the Hausdorff distance, ( , )H A B , measures the degree of mismatch between 
two sets, as it reflects the distance of the point of A that is farthest from any point of B and vice 
versa. Intuitively, if the Hausdorff distance is d, then every point of A must be within a distance d 
of some point of B and vice versa. It is well known that the Hausdorff distance is a metric over 
the set of all closed, bounded sets - it obeys the properties of identity, symmetry and triangle 
inequality [Sendov,1990]. 

The concept of Hausdorff distance was extended in Sendov [1990] and Marinov [1993], to 
comparison of bounded functions, considering their “completed graphs”. Since we are interested 
in comparing rainfall images let us consider the completed graph of such an “image function”. 
The completed graph consists of horizontal pixel areas and vertical walls between pixels of 
different rainfall intensity. Let us assume that every horizontal and vertical area is represented by 
an infinitely dense set of points covering that area. Then the completed graph of the image 
function will be the union of all subsets covering such flat areas. Thus the rainfall image is 
represented as a set of points in 3D and the “distance” between two images is measured not only 
in the intensity, but also in the spatial directions. Sendov [1990] introduced the “Hausdorff error” 
for quantifying local similarity:  

max{min , min }f g
i g fi ih I C I C= − −  

where  fI  and gI  are “image” functions and  Cf and Cg are their completed graphs. 

Norms similar to those defined for the regular metric can be applied for the Hausdorff metric: 
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respectively for p = ∞ , 1 and 2 and for the general case 
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Table 1.  State vectors and similarity distances used in phase-space reconstruction and nonlinear 
prediction. 

 

 

Description Notation 
State vector Similarity measure 

F Successive streamflow measurements Euclidean distance (RMSE) 

FRA Successive streamflow measurements and 
basin average rainfall Euclidean distance (RMSE) 

FR3C Successive streamflow measurements and 3 
subcatchments average rainfall Euclidean distance (RMSE) 

FR9/10C Same as above with 9 or 10 subcatchments Euclidean distance (RMSE) 

FRA,M 
Successive streamflow measurements and 
basin average rainfall 

Euclidean distance (RMSE) with 
morphology 

FR3C,M Successive streamflow measurements and 3 
subcatchments average rainfall 

Euclidean distance (RMSE) with 
morphology 

FR9C,M Same as above with 9 or 10 subcatchments Euclidean distance (RMSE) with 
morphology 

FRRMS Successive streamflow measurements and 
radar rainfall images at 4 km resolution RMSE 

FRMSRMS Same as above Multiscale RMSE (MSRMS) 
FRHD Same as above Hausdorff distance based norm 
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Fig. 1. General scheme (consisting of steps A, B, C and D) for rainfall-runoff phase-space 
reconstruction and nonlinear prediction. After the distances between rainfall states (step A) 
and streamflow states (step B) are computed, they are projected in a ”distance space” in which 
neighborhoods are defined and used for local prediction. See text for further details. 
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Fig. 2. (a) Example of normalized unit hydrograph which acts as a weighting kernel on the 
rainfall sequences; (b) Example of two rainfall sequences which are “similar” with respect to 
their effect on the runoff at moment t, but different, if considered in terms of their Euclidean 
distance in a multidimensional space (e.g. RMSE between the two sequences). 
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Fig. 3. Location and physical characteristics of the two basins (Chikaskia and Gasconade) 
studied. The scheme of subdivision in 3 subbasins and 9/10 subbasins (respectively for 
Chikaskia/Gasconade) is also shown. 

Period of record Station 
name 

State Station 
ID 

  

Latitude Longitude Drainage 
Area 
km2 

Elevation 
m 

  

HUC 

From To 

Chikaskia 
River near 
Blackwell 

OK 7152000 36°48'41" 97°16'37" 4813.7 294.87 11060005 09/20/94 08/31/00 

Gasconade 
River at 
Jerome 

MO 6933500 37°55'47" 91°58'38" 7352.4 200.45 10290203 03/01/95 05/30/01 
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Fig. 4.  Display of the 6-hr mean precipitation over the catchment and the 6-hr average flow 
for: (a) station 07152000 (Chikaskia River near Blackwell) and (b) station 06933500 
(Gasconade River at Jerome). 

(a) 

(b) 
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Fig. 5. Autocorrelation function of streamflow time series for the two rivers. 
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Fig. 6.  (a) and (b): Geomorphologically derived basin response functions (top) and temporal 
search tolerance thresholds (“uncertainty models”) for each basin (bottom); (c): 
Geomorphologically derived response functions of the three subbasins of the Chikaskia River 
basin and gray-colored travel time to the outlet. 

(a) Chikaskia River            (b) Gasconade River 

(c) Chikaskia River 
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(a) Chikaskia River     (b) Gasconade River 

Fig. 7.  Prediction accuracies, measured as correlation between the true and predicted series 
and the “improvement” in prediction (measured relatively to using the streamflow series only) 
based on the spatial information about rainfall for (a)  station 07152000 (Chikaskia River near 
Blackwell) and (b) station 06933500 (Gasconade River at Jerome). It is clearly seen that 
incorporating the spatial distribution of rainfall instead of the basin average rainfall only, 
significantly improves streamflow predictability. The best improvement for the Chikaskia 
River is achieved at approximately 30 hours and for the Gasconade River at approximately 60 
hours. See text for more explanation and Table 1 for definitions. 
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 (a) Chikaskia River            (b) Gasconade River 

Fig. 9.  Prediction accuracy for different distance measures as a function of the embedding 
dimension i.e., how far back in time the information about rainfall and streamflow is 
important for prediction of future streamflow. The prediction lead time is 6/9 time steps (for 
Chikaskia/Gasconade) and the neighborhood size is 30. See Table 1 for definitions of 
symbols. 

 
   (a) Chikaskia River             (b) Gasconade River 

Fig. 8.  Prediction accuracy as a function of neighborhood size. A neighborhood of size 30 
was chosen for presenting the results of all analyses since for most cases this number provided 
best prediction accuracy. See Table 1 for definitions of symbols. 
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     (a) Chikaskia River          (b) Gasconade River 

Fig. 10.  Improvement of predictability due to the spatial information about rainfall as a 
function of spatial rainfall aggregation scale (prediction horizon 6 and 9 time steps for 
Chikaskia and Gasconade Rivers respectively). Increased streamflow predictability is clearly 
seen when the catchment’s morphology is incorporated and a tolerance threshold (uncertainty 
model) is introduced in assigning the contribution of a particular rainfall pulse to streamflow. 
See Table 1 for definition of symbols. 


