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[11 Understanding and quantifying the multiscale interactions between surface shear stress
and velocity in the boundary layer is essential to improving boundary condition
parameterizations used in numerical models of turbulent boundary layers. In this study,
high-frequency measurements obtained in a wind tunnel are used to identify dominant scales
of interaction (quantified in terms of scale-dependent linear correlation) between wind
velocity and shear stress via wavelet cross-correlation analysis. Three ranges of scales of
interaction are identified: (1) in the inertial subrange the correlation is negligible; (2) in the
energy production range the correlation follows a logarithmic law and exhibits scale
invariance under normalization of scale with distance to the surface, z; and (3) for scales
larger than the boundary layer height, §, the correlation reaches a plateau value which is a
function of z/6. Our results allow us to estimate the linear correlation between shear stress and
wind velocity at multiple scales and assess the reliability of typical boundary condition
formulations in numerical models (for instance, large-eddy simulation) that compute shear
stress (or its fluctuations) as a linear function of wind velocity at the first vertical grid
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1. Introduction

[2] Flow properties, such as velocity and surface shear
stress, in turbulent boundary layers (e.g., the atmospheric
boundary layer (ABL)) exhibit considerable variability over
a broad range of spatial and temporal scales. Understanding
the multiscale interactions between these flow properties is
essential to improving parameterizations used in high-reso-
lution numerical models of turbulent transport. For instance,
an important parameterization in large-eddy simulation
(LES) is the surface boundary condition which relates the
surface shear stress to the “resolved” velocity. Typical
boundary condition formulations consist of using similarity
theory to compute the surface shear stress as a linear
function of the horizontal velocity (spatially filtered with
a filter of size equal to or slightly larger than the grid size).
However, similarity theory is valid only for mean quantities
and over homogeneous surfaces. This approach is therefore
questionable for general unsteady conditions and over
heterogeneous natural surfaces (in the ABL). Given the
importance of the boundary condition on the dynamics of
the flow near the surface, obtaining physically more realistic
boundary condition formulations has been recognized as
one of the most urgent challenges that needs to be met to
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make LES a more reliable tool in simulations of high-
Reynolds-number boundary layers in both engineering and
environmental applications [Piomelli et al., 1999; Piomelli
and Balaras, 2002]. In order to achieve this goal, we need a
better understanding of the relation between the surface
shear stress and the velocity at different scales, particularly
at the grid/filter scale in a simulation. To this end, wavelets
[e.g., see Mallat, 1989a, 1989b; Daubechies, 1992] provide
a convenient and powerful framework to probe into the
scales of complex interactions between these two processes.

[3] Over the last decade, starting with the works of
Meneveau [1991] and Farge [1992], wavelet transforms
have been successfully applied to study atmospheric turbu-
lence. The studies have ranged from identifying coherent
structures from time series of velocity and temperature in
the atmospheric boundary layer [e.g., Hagelberg and
Gamage, 1994; Howell and Mahrt, 1994; Brunet and
Collineau, 1994], to investigating intermittency [Katul et
al., 1994], to exploring energy cascading in the dynamic
sublayer [Katul and Chu, 1998], to studying the effect of
topography on the scales of response of a simulated con-
vective boundary layer [Roy and Avissar, 2000]. Correlation
measures in the wavelet domain were used by Meneveau
and Lund [1994] to show that propagation of kinetic energy
from a particular scale to smaller scales can be characterized
by a peak in the correlation coefficient between local kinetic
energies at different scales. Along similar lines, Arnéodo et
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al. [1998] used space-scale correlations obtained from
wavelet transforms of turbulent velocity signals to identify
what kinds of multiplicative cascades (correlated weights or
not) can be used to statistically model turbulence.

[4] The purpose of this work is to quantify the multiscale
interactions between surface shear stress and velocity over a
homogeneous surface and discuss the implications of our
results toward characterizing the surface boundary condition
in high-resolution models. The spatial and temporal informa-
tion about the flow properties in a boundary layer needed to
study the aforementioned multiscale interactions cannot be
obtained in the field, even with state-of-the-art measurement
techniques. On the other hand, a wind tunnel offers an optimal
setting for controlled experiments, wherein simultaneous
high-frequency measurements of the surface shear stress
and the velocity field can be obtained using special hot wire
and hot film sensors mounted on the surface of the tunnel [see
Chew et al., 1998; Marusic et al., 2001]. Such data have been
used in our analysis and are described in section 2.

[5] Insection 3 atheoretical background on wavelet-based
analysis techniques is presented. The results of applying
these methodologies to decompose the cross correlation
between shear stress and velocity series at multiple scales
are presented in section 4. The implications of our findings in
improving surface boundary condition parameterization are
elaborated in section 5. Finally, section 6 summarizes our
findings and discusses future research.

2. Data Description

[6] The data analyzed in this work were collected by
I. Marusic et al. at the University of Minnesota. The reader
is referred to Marusic et al. [2001] for a detailed description
of the data collection procedures (sensor calibration, correc-
tion, etc.). Only a brief description of the measurement setup
is provided here. The working section of the wind tunnel is
1.2 m wide, 4.7 m long, and nominally 0.3 m high. Measure-
ments were made at a location 3.2 m downstream of a
trip wire, where the boundary layer thickness (hereinafter
referred to as §) is 64 mm. The Reynolds number based on
momentum thickness Ry = U; 0/v = 3500, where 0 is
momentum thickness and U; = 8.9 m s~ ' is the free
stream velocity. This corresponds to a Karman number,
Re, = U. /v =350, where U, (= \/—T\/p; T, is the mean
wall shear stress, and p is the density of the fluid) is the shear
velocity (ms™')and v is the kinematic viscosity (m*s ™ "). In
all, the experimental setup contains nine wall shear stress
sensors (TSI hot film) and three velocity sensors (x wire
probes). In this study we used data from one wall-mounted
shear stress sensor and one velocity sensor located immedi-
ately above the shear sensor. In addition, in order to study
how the interaction between shear stress and velocity changes
with height, the velocity sensor was positioned at six different
heights (measured from the surface), z = 4.7, 5.9, 7.5, 9.4,
11.9,and 15 x 10~ m. The equivalent wall-normal positions
arez =zU./u=98,123,155,196,247,and 311, respectively.
Velocity and shear stress measurements were made at a
frequency of 10 kHz over a time period of 105 s. Figure 1
shows a small sample of the measurements taken when the
velocity sensor was positioned at a height of 4.7 mm.

[7] The first step in studying the correlation between
shear stress and velocity is to perform a standard cross-
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Figure 1. (top) Horizontal velocity, # (m s~"), measured at
z = 4.7 mm and (bottom) shear stress, T (N m 2). The
overall record length is 105 s at a frequency of 10 kHz
(~10° points). A sample of size 2000 points is shown in the
above plots.

correlation analysis between u and T for different positions
of the velocity sensor (see Figure 2a). (A standard two-
point linear correlation between u and T is computed, i.e.,
C.~ (A?) = E[(u(t) — u), (1 (t + Af) — T)]/(0,0,), where u
and T represent the mean of u and T, respectively.) As
expected, the maximum correlation decreases with increas-
ing sensor height. Furthermore, the lag to maximum corre-
lation increases with sensor height in a manner consistent
with the hypothesis of Piomelli et al. [1989], which asserts
that eddies develop as structures inclined at an angle of
~12°~15° to the surface (see Figure 2b).

[8] It is important to note here that the correlation
between two multiscale processes (characterized by the
presence of energy over a broad range of scales, as is the
case with shear stress and velocity) can be decomposed into
correlations at multiple scales. In other words, if one were
able to represent two multiscale processes as a combination
of “functions” at different scales, then a simple two-point
linear correlation between the components (at different
scales) would quantify the contribution of each scale to
the overall correlation and would thus help one understand
the scale-to-scale interaction between the two processes.
To this end, wavelet transforms, which have seen significant
theoretical developments and applications in the past
decade, provide a convenient framework in which to study
the contribution of correlations from multiple scales. Sec-
tion 3 defines the relevant quantities to aid the reader with
the terminology used in our multiscale analysis.

3. Wavelet-Based Analysis: Theoretical
Background

[v] The wavelet transform of a function f(¢) with finite
energy is defined as the integral transform with a family of
functions:

1

W (f) = %w(%);a > 0;0 € R,
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Figure 2. (a) Two-point linear correlation between

velocity (1) and shear stress (7) for different sensor heights
(legend shows sensor height in mm). The maximum
correlation, as anticipated, decreases with increasing sensor
height. (b) Lags to maximum correlation within the lines of
12° (dashed line) and 15° (solid line), consistent with the
hypothesis of Piomelli et al. [1989] that flow structures near
the surface are inclined at an angle of 12°—15° with respect
to the surface. U, = 0.8U,, where U; = 8.9 ms™ ! is the free
stream velocity.

all generated by translation (by b) and dilation or
contraction (by a factor of a) from a single function U,
called the “mother wavelet.” A necessary condition for a
function to be admissible as a wavelet is one of zero mean,
to ensure that the transform is invertible [e.g., see
Daubechies, 1992]. Thus the continuous wavelet transform
(CWT) of a function f'is defined as

wi(ab) = ol | f(rw(’ - b)dr, 1)

a

where a is the scale parameter and b is the location
parameter. The factor 1/+/a is a normalization constant
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chosen to ensure that the £> norm is preserved. For some
applications the normalization factor of 1/a is used, which
preserves the £' norm. Several choices of a wavelet can be
made; some popular wavelets include the second derivative
of a Gaussian (commonly called Mexican Hat), the Morlet,
the Haar, and the Daubechies wavelets.

[10] Once the function is transformed into the wavelet
domain, a suite of measures can be defined to quantify
localized scale-dependent properties of the function. For
example, two such measures are the scalogram, defined as
|Wy (a, b)|, and the wavelet variance, or wavelet spectrum
(in essence, this is similar to the Fourier spectrum), defined
as

WVita) = [ |witap) . )

[11] For two signals or functions containing energies at
multiple scales, cross-correlation analysis in the wavelet
space often offers valuable insight. For example, the wave-
let covariance of two functions f'and g is defined as

WCOV, (a) = / W (a, bYW (a,b)db 3)

and measures the “correlation” of the functions f'and g as
far as the “entities” of length scale a are concerned. In other
words, the correlation of the two functions is decomposed
across scales.

[12] The covariance of two functions can, in turn, be
related to the wavelet covariance by the following relation:

COV(f,g) :C% /da/Wf(a,b)Wg(a,b)t/z’b7

where C,, = 27/ |w| U (W)dw < oo is the so-called
“admissibility constant,” a localizing property of the
decomposing wavelet [see Daubechies, 1992].

[13] For processes that interact dynamically across scales,
one anticipates that the strongest cross correlations might
not always exist at concurrent times over all ranges of
scales. This motivates the introduction of time lag At in the
above definition of wavelet covariance, leading to what
might be referred to as the wavelet cross covariance, defined
as

WCCOV,y(a, Af) = / W (a, b)W,y(a, b+ Ad)db.  (4)

With appropriate normalization by the variance of each of
the functions in the integral, one can obtain the wavelet
cross correlation. It is important to mention here the value
of using a localized representation such as wavelet
transform, as opposed to a Fourier decomposition, which
is global in nature. While equation (3) is similar to the
product of Fourier transforms, equation (4) cannot be
obtained using a classical Fourier transform (because of
the lag Af) unless one uses a windowed Fourier
transform, which, in any case, is a special case of
wavelet transforms. The wavelet used for our analysis is
the second derivative of a Gaussian, popularly known as
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Figure 3. Timescale plots, obtained by wavelet analysis, of (a) observed horizontal velocity at height
z =4.7 mm and (b) observed shear stress. The scale shown on the y axis is in number of points.

the “Mexican Hat Wavelet,z” which has a functional form
'll)(x) — “71/4 (1 _ x2) efx /2

4. Results and Discussion

[14] In all, 500,000 sampled values of velocity and shear
stress time series were included in the analysis. The scales
analyzed ranged from 2 to 8000 points (the equivalent
timescales range from 2 x 107 to 0.8 s, given that the
sampling frequency is 10 kHz).

[15] Figure 3 shows a part of the timescale plot (the
square of the wavelet coefficients or, equivalently, the
energy at that time and frequency/scale, with associated
uncertainties governed by the Heisenberg uncertainty prin-
ciple) for velocity (Figure 3a) and shear stress (Figure 3b).

The branching of energy from larger to smaller scales, for
both variables, is evident from these plots. To aid the reader
in visualizing the decompositions across scales, Figure 4
displays the transects through the timescale plots of Figure 3
at two different scales.

[16] If one were to sum up the squares of wavelet
coefficients at each scale (level), that would give the
equivalent of contribution of energy from each scale (an
average levelwise energy) to the overall energy. In other
words, the sum of the squares of the amplitudes of the
decomposed signals, such as those shown in Figure 4,
results in a spectrum of energy (called the wavelet spec-
trum). Figure S5a shows the wavelet spectrum of velocity for
different vertical positions of the sensor. Several well-
known facts can be noted in Figure 5a. In particular, the
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Figure 4. Transects of the timescale plots of Figure 3 at scales corresponding to (a) 4 points and (b) 128
points. The corresponding timescales are 4 x 10~* and 128 x 10~* s, respectively. The top panels
represent the wavelet decomposition, i.e., the wavelet coefficients of horizontal velocity (z = 4.7 mm) at
the two chosen scales, and the bottom panels represent the decomposition of shear stress.

existence of three ranges of scaling is evident: (1) inertial
subrange, characterized by a spectral slope of —5/3;
(2) energy production subrange, showing a —1 spectral
slope; and (3) scales larger than the integral length scale
(on the order of the boundary layer height), characterized by
a flat region (i.e., no change in contribution to the total
energy with increase in scale). As expected, and as shown
in several previous studies [e.g., see Perry et al., 1986;
Porté-Agel et al., 2000], under appropriate normalization of
both the energy (by zU.?) and the wave number, k (by z),
the spectra obtained from each sensor collapse onto each
other in the production and the inertial subranges, with the
transition from the inertial to production subrange occurring
at (kz, E(a)/zU.”) ~ (1,1). Figure 5b shows the wavelet
spectrum of shear stress. While the evidence is clear that its
“energy” (spectral density) is distributed over a wide range
of scales, there is no indication suggesting the existence of
scaling ranges similar to velocity.

[17] Similar to the quantification of the contribution of
energy at each scale to the overall energy, one can also
evaluate the contribution of correlation at each scale to
the overall correlation. Denoted as CZ,CXV T(a, Ar), this is
equivalent to computing the two-point cross correlation
between pairs of transects at different timescales (e.g., the
time series in Figure 4) and time lags (see equation (4)).
In other words, C,f 7T (a, At) is the same as the wavelet
cross covariance (equation (4)) normalized by the product of
the wavelet variance of u and T at each scale. Thus this
correlation is a function of two variables, timescale and time
lag. The cross correlation between the scale-decomposed
velocity (at z=4.7 mm) and shear stress is shown in Figure 6.
(It is noted that the timescale is normalized to be dimension-
less in Figure 6. This is done by a combination of two factors:
(1) a length scale that corresponds to the distance between
the velocity and shear stress sensors, z, and (2) a velocity
scale, 7, which corresponds to the average velocity at height
z. Such a normalization (whose importance is discussed later
in this section) results in a quantity equivalent to kz, as

obtained via application of Taylor’s hypothesis, shown in the
velocity spectra of Figure 5a. We use kz for the rest of the
discussion.)

[18] Several observations can be made from this plot. The
first relates to the existence of ranges of scales, within
which the contribution of correlation to the overall correla-
tion is markedly different. Contributionwise, three distinct
regions are identified: (1) negligible correlation at “small”
scales; (2) significant correlation increasing with scale at
“intermediate” scales; and (3) significant and constant
correlation at “large™ scales. To reduce this surface plot
into a line plot, which would enable one to understand better
the significance of these three ranges of scales, and with the
explicit understanding that the behavior at any lag, i.e., a
cross section of the surface at any lag, is qualitatively the
same, we chose to study the dependence of maximum
correlation with scale (see the bold solid line in Figure 6).

[19] The analysis was repeated for all positions of the
sensor, and the maximum correlation (MC) is plotted as a
function of scale (Figure 7). (Correlation, by definition, is
dimensionless; hence there is no need to normalize it, as
done for energy in the velocity spectral plots.) This results
in the maximum correlation curves collapsing onto
cach other. As in the case of velocity spectral collapse
(Figure 5a), there are two ranges of scales in which the MC
curves collapse; these ranges correspond to the inertial and
production subrange, while beyond the boundary layer
height (integral length scale), there is no apparent collapse.
The collapse of the MC curves suggests an invariance
concerning the size of the eddy to the height of the sensor,
ie.,

MCCWT(kl,Zl) = 1\/ICST\_‘)_VT(]€2722)7 if k]Z] = k222 =kz 22/6,

u,T

where MCL,C,Xv T (k, z) denotes the maximum correlation at
scale k& between u (at height z) and T, as obtained from a
CWT analysis.
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Figure 5. (a) Wavelet spectrum of u. (b) Wavelet spectrum

of 7. The production subrange (—1 slope) and the inertial
subrange (—5/3 slope) can be clearly identified. See the text
for additional details concerning the collapse of spectral
curves and the associated normalization. U, = 0.8U;, where
Uy =89 m s ' is the free stream velocity, and f is the
frequency or inverse of the wave number (k) at which the
signal has been decomposed.

[20] In other words, the correlation between shear stress
and velocity associated with eddies of size A (~1/k;) mea-
sured at a height z; is identical to that from eddies of size
3A(~1/ky) measured ata height 3z, (z,). This scale invariance
breaks down at scales larger than the boundary layer height.
This is to be expected since the largest possible eddy scales
are constrained by the thickness of the boundary layer.

[21] In the inertial subrange (kz 2 1) the contribution to
correlation from each scale is negligible. This is (intuitively)
consistent with the fact that eddies are smaller than the
height of the sensor, and thus the eddies that pass through
the velocity sensor will not be detected by the shear sensor,
leading to a negligible correlation. For &z < 1 (production
subrange), i.e., the eddy size is larger than the sensor height,
resulting in eddies being detected simultaneously by both
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the shear and velocity sensors, one would expect an increase
in correlation, and this is evident in Figure 7. Furthermore,
the plot of Figure 7 suggests that in the production subrange
the increase follows a logarithmic law, with a slope of —1/2.
Beyond the boundary layer height (kz < z/0) the relative
effect of larger structures in contributing to correlation is
dampened, as evidenced by the plateau in the MC curves.
[22] The fact that the MC curves for all sensor heights
show a value of zero in the inertial subrange and a constant
value (depending on the boundary layer height) in the range
of scales corresponding to boundary layer height and beyond
(integral-length scale), with a log law in the production
subrange, suggests a possible universality in the dependence
of correlation on scale, as described by the following relation:

0 kz 2 1
MCSYT(k,2) ~ ¢ Elog(hz)  z/8 5 k 2 1 (s)
tlog(z/8)  kz <z/8

The parameter ¢ in the log law was estimated to be —1/2 for
our data and (experimental) conditions. It is speculated that
while the behavior (collapse of MC curves in the production
subrange) is expected to be universal for any turbulent
boundary layer, the slope & is a function of several
parameters of the flow conditions (e.g., Reynolds number,
buoyancy) and surface properties (e.g., land surface
heterogeneity in the ABL). For instance, with increasing
Reynolds number, we expect to observe a decrease in the
slope of the log law € so as to be able to accommodate a
wider range of eddy scales. Furthermore, the dependence of
the correlation maximum on kz is expected to be
independent of surface roughness z, as long as z is in the
surface layer and z > z,, which corresponds to the region of
the flow where similarity theory holds (log layer). This is
supported by the fact that the inertial and production
subranges are found in any wall-bounded turbulent flow,
independent of Reynolds number and surface roughness
(including the ABL). The results are only expected to depart
from that behavior very close to the surface, inside the
roughness sublayer (z close to z,), which, in most cases, has
little practical significance from a modeling point of view.

5. Implications for Boundary Condition
Formulations

[23] Before we discuss the importance of our results in
understanding the performance and limitations of the sur-
face boundary condition for LES of high-Reynolds-number
boundary layers, we briefly review the two most typical
boundary condition formulations:

[24] 1. A common formulation consists of computing the
streamwise component of the surface shear stress (T) as
proportional to the filtered streamwise velocity (i) at the
first vertical grid point [e.g., see Schumann, 1975; Porté-
Agel et al., 2000; Piomelli and Balaras, 2002]. Mathemat-
ically, this can be expressed as

—~

.
2
where angle brackets denote ensemble averaging and the
tilde denotes spatial filtering (using a low-pass filter of a

~

u, (6)

T =

o~
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Figure 6. Correlation between horizontal velocity (1) and shear stress (1) computed in the wavelet
domain, as explained in the text, for z = 4.7 mm. The bold solid line shows the “migration” of the time
lag at which the maximum correlation at each scale is obtained.

size equal to or slightly larger than the grid size). This
formulation guarantees that the mean shear stress is pre-
served. The mean shear stress () is computed from the
average velocity () using similarity theory (e.g., the well-
known law of the wall in the case of zero buoyancy).

[25] 2. Another formulation results from the direct appli-
cation of similarity theory to compute T as a function of u
[e.g., Moeng, 1984; Albertson and Parlange, 1999]. Even
though this formulation does not guarantee that the average
shear stress is preserved, it is easier to use than equation (6)
when the mean velocity (&) is difficult to estimate (e.g.,
boundary layers over heterogeneous surfaces).

[26] In the discussion that follows, we focus on the
formulation given by equation (6). Note that equation (6)
implies that the two-point linear correlation between surface
shear stress and horizontal velocity is 1 at all resolved scales
(larger than the filter size). However, our results indicate
that this is not the case. In fact, equation (5) provides a
quantification of how the correlation between u and T
changes with scale. Moreover, our results suggest that the
filter size and its relative magnitude compared to the height
of the first grid point in a simulation (which depends on the
grid size and aspect ratio) is expected to affect the perfor-
mance of the surface boundary condition.

[27] Of particular interest from a modeling/parameteriza-
tion perspective is the significance of the plateau in the MC
curves for scales larger than the boundary layer height, 8. As
one looks at the interaction of two processes at larger and
larger scales (i.e., smoothing), intuitively, one would expect
a monotonic increase in correlation. However, the plateau
suggests otherwise. The practical implication of this is that a
linear parameterization of T in terms of u (as is often done in
high-resolution numerical models for the surface boundary
condition) cannot explain the dependence between these
two variables beyond the linear correlation suggested by the
plateau value (which is a function of z/6) of Figure 7.

[28] It is important to note that there is a fundamental
difference between the wavelet analysis filtering and the
filtering operation performed when the boundary condition
(equation (6)) is implemented. While in the former, only the
features corresponding to the scale of the analyzing function
are extracted from the signal; in the latter, all features larger
than the size of the filter are retained. Consequently, one
must remember that the correlation that one obtains from
wavelet analysis gives explicitly the contribution of each
scale, while a filtering operation would give a correlation
that is a combination of correlations corresponding to scales
larger than the filter size. To examine how the plateau value
of the MC obtained via wavelet analysis compares to that
obtained by box filtering, the velocity and shear stress
signals were filtered using a box function (i.e., a moving
average). Several lengths (widths) of the box function were
chosen for the filtering operation. Figure 8 shows, for
z = 4.7 mm, the wavelet maximum correlation as well as
the maximum correlation obtained from the filtering proce-
dure described earlier. In the inertial subrange the maximum
correlation from filtering (stars) does not change with
increasing scale. For kz < 1, there is an increase in
correlation, and finally, beyond the boundary layer height,
the correlation reaches a plateau. The value of the plateau
for the filtered signals matches that obtained by the wavelet
analysis (in this case, —1/2log (4.7/64) ~ 0.58 from
equation (5)). This was expected since, as said before, the
correlation of the filtered quantities is a combination of
correlation contributions (from each scale larger than the
filter length), which for scales larger than o are approxi-
mately the same.

[29] Of particular importance is the value of this plateau.
Since & is constant for any given boundary layer, our
analysis suggests that the value of the plateau increases
with decreasing height (see Figure 7). Furthermore, the
plateau is expected to reach a value of 1 for z/6 ~ 1072
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Figure 7. Plot of maximum correlation (of the surfaces
shown in Figure 6) at each scale versus iz for different
sensor heights. The shape of the curves suggests three
distinct regions of contribution to the overall correlation: the
inertial subrange(—5/3 spectral slope), where the contribu-
tion of correlation is virtually negligible; the production
subrange (—1 spectral slope), where the correlation
increases as a log law with a slope of —1/2; and the range
in which scales are larger than the boundary layer height,
where there is no increase in correlation. The collapse of the
curves indicates a possible universality in the dependence of
correlation on scale.

(see equation (5)). In wall units, this is equivalent to a height
of z" = 14, which falls inside the buffer layer (5 <z < 30)
that corresponds to the transition between the log layer and
the viscous sublayer below [see, e.g., Tennekes and Lumley,
1994]. This limiting behavior of the correlation can be
understood considering that throughout the viscous sublayer
(0 < z" < 5) the shear stress is dominated by viscosity, and
turbulent (Reynolds) shear stress is negligible. This explains
why the boundary condition is not an issue in simulations of
low-Reynolds-number and moderate-Reynolds-number
boundary layers, where the grid size is smaller than the
depth of the viscous sublayer. On the other hand, in high-
Reynolds-number boundary layers (e.g., the ABL), compu-
tational limitations impose the location of the first grid point
well into the log layer. This affects the maximum correlation
between surface shear stress and velocity (equation (5) and
Figure 7) and, consequently, the reliability of the surface
boundary condition (equation (6)).

6. Conclusions and Future Work

[30] High-frequency measurements obtained in a wind
tunnel experiment were used to quantify the multiscale
interactions between surface shear stress and wind velocity
in a turbulent boundary layer. In particular, with the aid of
wavelet analysis we were able to quantify the degree of
correlation between the two variables as a function of scale.
This information is essential in understanding the perfor-
mance of surface boundary condition parameterizations,
typically used in large-eddy simulations, that compute the
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“instantaneous” shear stress as a linear function of the
velocity at the first grid point at the grid/filter scale.

[31] Our results suggest the presence of three distinct
ranges of scales of interaction, corresponding to three well-
known ranges in turbulent boundary layers. For the range of
scales corresponding to the inertial subrange of turbulence
the contribution to the overall correlation between shear
stress and velocity is negligible. In the range of scales
beyond the boundary layer height the correlation contribu-
tion is significant but constant. This, possibly, points to the
maximum correlation that one can achieve via a simple
linear parameterization relating velocity and shear stress for
the surface boundary condition. Finally, in the energy
production subrange the correlation contribution follows a
log law with a slope of —1/2. We hypothesize that this log
law behavior is universal, given the fact that correlation
curves are identical for any height under appropriate nor-
malization. On the other hand, we speculate that the slope
of the log law is dependent on the flow conditions. From
a modeling/parameterization point of view the universal
behavior of the interaction between shear stress and velocity
can help one understand and predict the performance and
limitations of surface boundary condition parameterizations
as a function of grid scale, height of the first grid point, and
grid aspect ratio. In large-eddy simulations the grid scale
typically falls inside the energy production range.

[32] Future work will explore the effect of high Reynolds
number on our results (i.e., universality, slope of the log
law), using data collected in the ABL. This type of data will
also allow us to study the effect of atmospheric stability on
the multiscale interactions between shear stress and velocity
and its implications for boundary condition parameteriza-
tions. It is noted that field measurements of surface shear
stress require the development of new surface shear sensors,
with a high enough frequency response to provide informa-
tion at all relevant scales. Until this technology is further
developed, wind tunnel data offer the only means to study
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these interactions for the purpose of improving numerical
model parameterizations.
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