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[1] Precipitation is a highly heterogeneous process with considerable natural variability at
scales ranging from a few meters to several hundreds of kilometers. This process is
monitored with a variety of sensors (e.g., rain gauges, radars, and satellites) which provide
direct or indirect measurements of precipitation at different scales. At the same time,
physically based models at the storm, regional, continental, and global scales are used to
predict precipitation and rely on the observed data for model verification, model
initialization, and data assimilation. Because of the tremendous scale-dependent variability
of precipitation fields, merging or comparing observations at different scales, or
comparing model outputs at one scale with observations at one or more different scales, is
not straightforward. This study explores the use of a recently developed scale-recursive
estimation (SRE) framework for the problem of Quantitative Precipitation Forecast
(QPF) verification using observations from multiple sensors. SRE can explicitly account
for the multiscale variability of precipitation and the scale-dependent uncertainty
associated with the model output and the multisensor observations. Special emphasis is
placed on the specification of the multiscale structure of precipitation under sparse or
noisy data. The results demonstrate the potential of SRE as a powerful tool for assessment
of QPFs and also for multisensor data fusion and network design studies. INDEX TERMS:
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1. Introduction

[2] Studies on verification of Quantitative Precipitation
Forecasts (QPF) are commonplace in the literature and
serve several purposes. Among these are: (1) comparison
of the performance of different models, (2) assessment of
model improvements when new parameterizations are intro-
duced, (3) assessment of model performance when resolu-
tion of the model is changed, and (4) estimation of errors of
re-analysis products when model outputs are merged with
observations to produce gridded fields for model initializa-
tion and other uses. Typically, the observations available for
QPF verification are at scales different than the scale (grid
size) of the model and comparison is not straightforward
since the variability of precipitation fields strongly depends
on the scale at which the fields are considered. For example,
for a typical summer convective storm, the standard devia-
tion of instantaneous precipitation more than halves if one
goes from 2 km to 10 km pixel scale [e.g., see Tustison et
al., 2001, Figure 1]. How this variability changes with scale
is a function of the inherent characteristics of the storm

(storm type) and the temporal integration scale (e.g., 5-min
versus 1-hour accumulations etc.).
[3] In a recent study, Tustison et al. [2001] demonstrated

the importance of accounting for the multiscale variability
of precipitation when observations at one scale are com-
pared with model output at another scale. They showed that
using typical methods of QPF verification to change the
scale of observations to the scale of model output (e.g.,
point-to-area conversion) or vice versa (area-to-point con-
version) imposes a ‘‘representativeness error’’ which is non-
zero even in the case of a ‘‘perfect’’ model. (‘‘Perfect’’
model outputs were created in the numerical experiment by
simply averaging the underlying field at several scales, and
‘‘perfect’’ observations were created by randomly subsam-
pling the underlying field at various sampling densities.) As
it was shown by Tustison et al. [2001], the representative-
ness error had significant magnitude (up to 50% of the
spatial average of the precipitation field) and considerable
scale dependency within the typical mesoscale ranges of 5–
50 km. Also, the magnitude of the error was found to
depend on the variability of the underlying field: the
smoother the field (indicated by larger values of spectral
slope), the smaller the representativeness error. It is stressed
that the representativeness error results from the treatment
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of scale effects in the comparison method and is non-zero
even in the case of a ‘‘perfect’’ forecast.
[4] We believe that a rigorous methodology which can

explicitly account for the multiscale variability of precip-
itation is needed such that observations and model outputs
at different scales can be compared or optimally merged
while explicitly accounting for their scale-dependent varia-
bility and uncertainty. Such a methodology, based on scale-
recursive estimation (SRE), is explored in this paper for the
purpose of QPF verification from multisensor observations,
typically available at different scales and with different
uncertainties. This problem is illustrated in Figure 1.
[5] The SRE technique was introduced in the signal

processing literature [Chou, 1991; Chou et al., 1994a,
1994b] as a technique which can produce the best estimate
(in terms of minimum variance of the estimation error) of the
field at any desired scale, and also the uncertainty of the
estimate, given sparse observations of the process and their
uncertainties at different scales. SRE has its philosophical
roots in the optimal recursive estimation technique known as
Kalman filtering [e.g., see Anderson and Moore, 1979; Bras
and Rodriguez-Iturbe, 1993] but instead of applying the
estimation and recursion in time, it applies it in scale. The
reader is referred to the original publications of Chou [1991]
and Chou et al. [1994a, 1994b] for mathematical details and

for demonstration of the success and computational effi-
ciency of this technique. Since its introduction, SRE has
found application in soil moisture estimation [Kumar, 1999],
precipitation data assimilation [Primus, 1996], estimation of
solute travel time distributions [Daniel et al., 2000], imaging
and remote sensing problems [Fieguth, 1995], assimilation of
remote sensing data [Daniel and Willsky, 1997], and estima-
tion of satellite altimetry [Fieguth et al., 1995].
[6] In this work, SRE is explored for the problem of QPF

verification using precipitation observations from multiple
sensors. Special emphasis is placed on the selection of the
model describing the multiscale variability of precipitation
and on its parameter estimation from sparse or noisy data.
Since the accuracy of SRE greatly depends on the above
two factors, a simulation study is presented which quantifies
the sensitivity of the SRE estimates on misspecification of
model structure and model parameters. The results point out
to the great potential of SRE for multisensor QPF verifica-
tion, but also to the importance of performing controlled
background sensitivity studies before this technique can be
used with confidence in an operational setting.
[7] This paper is structured as follows. In the next section,

a brief background on the SRE framework is presented while
leaving some of the details for an appendix. Since SRE
requires the specification of a model describing the multi-

Figure 1. Illustration of the proposed framework for QPF verification. Discrepancy of scales between
observations and model output presents a problem in QPF verification, data assimilation, and derivation
of optimal merged products. Scale-recursive estimation (SRE) can account for the multiscale variability
of the process and incorporate sparse observations and their measurement uncertainty at multiple scales
to produce an optimal estimate of the process at any desired scale together with the uncertainty of this
estimate. In this way, scale issues arising from the discrepancy of scales can be dealt with in a rigorous,
computationally efficient and statistically optimal framework.
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scale structure of precipitation, section 3 provides informa-
tion on a popular class of precipitation models (multiplicative
cascades) and how these can be adapted for incorporation in
the SRE framework. Section 4 presents the results of fitting
two types of lognormal cascades to precipitation fields
available from radars at 2 km resolution. In section 5, the
sensitivity of SRE to multiscale model selection and uncer-
tainty in the fitted parameters is investigated. In section 6, the
effect of available observations (sparsity, measurement error,
scales available) on QPF verification via SRE is studied and
trade-offs between dense observations at a fine scale versus
sparse observations at that scale and observations at another
larger scale are quantified. Finally, conclusions and open
problems are discussed in section 7.

2. Scale-Recursive Estimation

[8] A multiscale process can be represented on an inverted
tree as seen in Figure 2. This tree can essentially be seen as a
way of connecting information about the process at different
scales. Each node on the tree corresponds to a unique
combination of scale and spatial location and is given a
location index l. The index gl is used to specify the value
falling directly above that node on the next coarser spatial
scale of the tree (called the parent node). Additionally, each
node has a spatial scale index m(l) which is the same for all
nodes of the same spatial scale. The inverted tree starts at a
root scale, which contains one pixel or node (called the root
node) encompassing the entire spatial domain on which the
estimation will be performed and which has scale indexm(l)
= 0. In going to the next finer scale (i.e., increasing m(l) by
1), the root node is divided into qx(l) nodes in the x-direction
and qy(l) nodes in the y-direction, so that the root node
contains q(l) = qx(l)qy(l) children. These nodes are called
children because each of them has the same parent node.

Furthermore, each of these nodes may be further subdivided
into their own children nodes across as many scales as is
desired to characterize the multiscale process. For example,
in a 2-d process where each scale contains two children in
each direction (called a quadtree), qx(l) = qy(l) = 2 for all l
and each node contains q(l) = 4 children. In general, the
number of children at each scale may differ, allowing for a
multiscale model that specifically accounts for spatial meas-
urements at sets of scales, which do not fall on a quadtree. For
a process evolving over a finite number of scales, the finest
scale is commonly referred to as the leaf scale. Obviously, the
nodes at the leaf scale have no children, as they represent the
finest scale of the process.
[9] The representation of a multiscale process on the

inverted tree is achieved via a governing state-space equa-
tion, which specifies how the state at one scale relates to the
state at other scales. This state-space equation may be
manipulated so that the state evolves from fine to coarse
(up the tree) or coarse to fine scales (down the tree). The
model from coarse to fine scales appears more intuitive and
is introduced first. Then, the model from fine to coarse
scales is introduced as an inversion of the coarse to fine
scale model. Additionally, a measurement model is intro-
duced that relates measurements of the process and their
uncertainty to the state at each node on the tree.
[10] The state-scale recursive equation specifying how the

multiscale stochastic process evolves from coarse (gl) to
fine (l) scales is of the form

X lð Þ ¼ A lð ÞX glð Þ þ B lð ÞW lð Þ; ð1Þ

where X(l) is the zero-mean state of the system, A(l) and
B(l) control the scale-to-scale composition of the process,
and W(l) � N(0,1) is a driving noise which is independent

Figure 2. Quadtree representation of a multiscale process. A hypothetical example is illustrated above
where sparse measurements of the process are available (denoted by solid circles) at two scales m(l) = 2
and m(l) = 1. Scale-recursive estimation (SRE) operates on the quadtree and involves an upward sweep
(filtering) which consists of initialization, measurement update, variance propagation and merging and a
downward sweep (smoothing) which allows the exchange of information between nodes of close
proximity.
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of the state. The state can be a multidimensional vector
composed of several variables. However, in this work, the
interest is in estimating a scalar quantity (rainfall), and the
state will be treated as a scalar throughout. It is noted that
the state-space equation above can encompass a larger than
first-order Markovian class of systems using the technique
of ‘‘state augmentation’’ which has been extensively
explored in state-space recursive estimation (e.g., see
Szollosi-Nagy [1976] for several examples in the water
resources literature). It is also worthwhile to note that
although this formulation generally allows for the quantities
A(l), B(l), and W(l) to change with location at a given
scale (i.e., to change in space), they are typically considered
to depend only on the scale (i.e., they are constant for all
spatial locations at a given scale) unless otherwise
appropriate.
[11] Along with the estimate of the state, we are also

interested in the scale-to-scale propagation of its variance
in order to estimate the uncertainty of the estimates.
Defining the variance of the state as Px(l) = E[X2(l)],
using (1) and the fact that the state and noise term are
independent, PX (l) can simply be shown to evolve from
coarse to fine scales as

PX lð Þ ¼ A2 lð ÞPX glð Þ þ B2 lð Þ: ð2Þ

This recursive equation shows that the variance of the state
at one location is related to the variance of the state of its
parent. Of course, before the state has been estimated, this
variance is unknown and must therefore itself be estimated.
Due to the recursive nature of (2), estimating the variance of
the state at all scales may be accomplished by estimating the
variance of the state at one scale, typically the root scale,
and subsequently propagating it to all other scales through
(2).
[12] The coarse to fine scale recursive model given by (1)

can be inverted to give a model evolving recursively from
fine to coarse scales

X glð Þ ¼ F lð ÞX lð Þ þW* lð Þ; ð3Þ

where W*(l) � N[0,Q(l)] and F(l) can be shown to take
the form

F lð Þ ¼ PX glð Þ
PX lð Þ A lð Þ: ð4Þ

Additionally, by taking E[X2(gl)], the variance of the state
can simply be shown to evolve from fine to coarse scales as

PX glð Þ ¼ F2 lð ÞPX lð Þ þ Q lð Þ; ð5Þ

recalling that Q(l) is the variance of W*(l). Notice that if
PX (l) decreases with coarsening scale, and A(l) is one or
less in absolute value, then the magnitude of F(l) will also
be less than 1. This means that when going from fine to
coarse scales (decreasing m(l)), F(l) will act to bring the
state X(l) closer to the process mean and reduce its
variance PX (l), as would be expected. It is noted that the
above equations were presented for scalar states for
reasons of simplicity. If X(l) is a vector, the equations

become more complicated and their form is given by Chou
et al. [1994a].
[13] In order to incorporate the measurements of a proc-

ess at different scales into this framework, it is necessary to
form a measurement model that relates the measurements
and the state of the system at a given location. The
measurement model takes the form

Y lð Þ ¼ C lð ÞX lð Þ þ V lð Þ; ð6Þ

where Y(l) represents the measured quantity, C(l) relates
the state to the measurement, and V(l) is the measurement
error which is assumed normally distributed with zero
mean and covariance R(l), i.e., V(l) � N(0,R(l)). Notice
that this model incorporates a measurement uncertainty
which may change with sensor and scale, as, for example,
would be the case for rain gauges, radars, and satellites.
When the measurement model (6) is combined with the
fine to coarse evolution equation (3), a multiscale esti-
mation, which respects the structure of the measurement
error at every scale is obtained. Notice that C(l) = 1 when
the state coincides with the observable quantities; however
C(l) can be a complex often nonlinear transformation (a
so-called ‘‘forward model’’ or ‘‘observational operator’’)
which relates the states of the system to the observable
quantities.
[14] In order to compute estimates of the process and

their uncertainty at every scale, the fine to coarse, coarse
to fine, and measurement equations must be integrated into
a single estimation framework. The multiscale estimates
are computed from an upward sweep in which information
is passed from one scale to the next coarsest scale, and a
downward sweep which proceeds from coarse to fine
scales. The upward sweep consists of initialization, meas-
urement update, variance propagation, and merging steps.
The downward sweep is much simpler conceptually and
consists of only a smoothing step. It allows for the
exchange of information between nodes with close spatial
proximity, as spatially close nodes are not very far
removed on the inverted tree and have contributed to the
same upward sweep estimates of the state and its error
variance. The upward sweep begins at the finest scale (leaf
scale) and terminates at the coarsest scale (root scale). It
utilizes multiscale Kalman filtering which incorporates
observations and their uncertainties while estimating the
state with (3) and variance with (5) at the next coarsest
scale. In the downward sweep, information (state and error
variances) is passed from coarse to fine scale through
equations (1) and (2), respectively. The downward sweep
begins at the root scale and terminates at the leaf scale.
Used in combination, the upward and downward sweeps
represent a generalization of the Rauch-Tung-Streibel
smoothing algorithm [Chou et al., 1994a]. The details
and equations of the upward and downward sweeps are
given in Appendix A. They are also given by Chou et al.
[1994a] and Kumar [1999].

3. Multiscale Models of Precipitation

[15] The scale-recursive estimation framework is based
on specifying a model, which describes the multiscale
variability structure of the process at hand. It allows for
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the incorporation of any model whose scale-to-scale evolu-
tion can be put into the recursive additive form given by (1).
Several models have been proposed in the literature for
describing the spatial variability of precipitation over a range
of scales [e.g., see Gupta and Waymire [1990, 1993]; Love-
joy and Schertzer [1991]; Davis et al. [1994]; Kumar and
Foufoula-Georgiou [1993a, 1993b]; Harris [1998]. A class
of popular multiscale precipitation models, which naturally
fit into the SRE framework is the multiplicative cascade
models which are described below.
[16] A multiplicative cascade can be put into the recursive

form

xc lð Þ ¼ xc glð Þwc lð Þ; ð7Þ

where xc(l) is the value of the process at scale l, xc(gl) is
the value of the process at the parent node, gl, and wc(l)
are multiplicative cascade weights. If the weights come
from a lognormal distribution the cascade is called a
lognormal cascade. Here only canonical cascades are
considered, i.e., cascades for which E[wc(l)] = 1, that is,
mass is conserved in an ensemble sense rather than exactly
from scale to scale. Mass conservation can be enforced
using microcanonical cascades. However, for these cascades
no analytical relationships exist for the distribution of the
multiplicative weights (except for a special case of beta-
distributed weights [see Menabde and Sivapalan, 2000]),
and thus it is not possible to implement them in the SRE
framework.
[17] In order for a multiplicative cascade to be a good

representation of a process, the process must be multi-
scaling. That is, the process must have a Fourier power
spectrum that exhibits a power-law form

P fð Þ � f �b ð8Þ

over a wide ranges of scales and its qth-order moments must
take the form

E R lð Þq½ � � l=Lð Þ�K qð Þ; ð9Þ

where l is the spatial scale for which the moment is
computed and L is the size of the field (e.g., l = 2 km and
L = 128 km corresponds to moments computed from the 2
	 2 km2 field over a 128 	 128 km2 domain). In
multiscaling moment analysis, an empirical K(q) curve is
computed which can be fit to a theoretical K(q) function
for a specific cascade type (e.g., lognormal cascade). Since
K(q) will depend on the unknown cascade parameters, a
least squares fit of the theoretical and empirical K(q)
curves will produce an estimate of the cascade para-
meter(s) (the reader is referred to Harris [1998] for
specific details of this fitting procedure). Alternatively, the
cascade parameters for some cascade models can be
determined from a plot of the variance of the log fields
versus scale, if the specific form of the theoretical scale-
dependence of the variance is known. For example, for a
lognormal cascade on a quadtree, the change in variance
between two adjacent scales is theoretically known to be
constant (this will be seen below). Knowing this, allows a
specific model to be fit from the empirical variance of the

logs versus scale plot, which will yield the unknown
parameter(s) of the lognormal cascade.

3.1. Lognormal Cascades

[18] For the lognormal cascade on a quadtree, the cascade
weights at all scales come from the same lognormal
distribution

wc lð Þ ¼ e scZ�s2c=2ð Þ; ð10Þ

where Z is a standard normal random variable (i.e., Z �
N(0,1)) and sc

2 is the ‘‘log-variance’’ of the lognormally
distributed cascade weights, i.e., the variance of the
normally distributed log-transformed weights. The larger
the value of sc, the larger the variance of the process. For
example, a lognormal cascade with sc = 0, corresponds to a
uniform field because the weight at every step in the
cascade is one. In order for the coarse to fine scale recursive
multiscale model given by (1) to be applicable for a
lognormal cascade, the state X(l) and the driving noise
W(l) must be zero-mean processes. Since neither the logs of
the cascade values nor the logs of the cascade weights are
zero-mean, this must somehow be accounted for, when this
framework is applied to spatial rainfall. As can be seen from
(10) the logs of the lognormal cascade weights are normally
distributed and are given by

lnwc lð Þ ¼ scZ � s2c=2
� �

: ð11Þ

Recalling that Z � N(0,1) and acknowledging the
independence of sc and Z gives the mean of these weights
as E[ln wc(l)] = �sc

2/2 and the zero-mean log weights may
be written as

lnwc lð Þ � E lnwc lð Þ½ � ¼ scZ: ð12Þ

Applying this definition from the root scale (l0) to
increasingly finer scales, it is easy to verify that the zero-
mean state of equation (1) may be written as

X lð Þ 
 ln xc lð Þ � E ln xc lð Þ½ �
¼ ln xc lð Þ � ln xc l0ð Þ þ m lð Þs2c=2; ð13Þ

where, m(l) is the index of the scale, as shown in Figure 2.
For simplicity the equations are developed here for dyadic
cascades where each m(l) corresponds to a scale doubling,
but can be extended to non-dyadic cascading. The
lognormal cascade model can be put into the form of the
SRE framework by using the zero-mean state given by (13)
and selecting the parameters A(l) and B(l) in (1) to be

A lð Þ ¼ 1;B lð Þ ¼ sc ð14aÞ

so that one obtains from (2) that the variance of the log-
process is

PX lð Þ ¼ PX l0ð Þ þ m lð Þs2c : ð14bÞ

3.2. Bounded Lognormal Cascades

[19] Recent studies have shown that rainfall is often better
described by a cascade whose weights change with scale
[e.g., Harris et al., 1998; Menabde, 1998]. For the bounded
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lognormal cascade on a quadtree, the cascade weights have
the same form as those of the lognormal cascade except that
now sc is a function of scale and thus is given by sbc(l).
Using the subscript ‘‘bc’’ to refer to bounded lognormal
cascade, these weights may be written as

wbc lð Þ ¼ e sbc lð ÞZ�sbc lð Þ2=2ð Þ: ð15Þ

Furthermore, sbc(l) is chosen so that the cascade weights
follow a specified change with scale

sbc lð Þ ¼ s12� m lð Þ�1½ �H ; ð16Þ

where s1 
 sbc[m(l) = 1] and the parameter H controls how
fast the variance of the weights decays with increasing scale
index m(l). Again, the state X(l) and the driving noiseW(l)
terms of (1) must be zero-mean in order for (1) to be
applicable for the bounded lognormal cascade. Borrowing
from what was done for the lognormal cascade, the zero-
mean state must follow

X lð Þ 
 ln xbc lð Þ � ln xbc l0ð Þ þ 1

2

X
l

sbc lð Þ2
" #

: ð17Þ

Notice that this relation will reduce to that of (13) if sbc(l)
does not change with scale (i.e., H = 0), as one would
expect since this scale-dependence of the weights is the only
difference between the lognormal and bounded lognormal
cascades. Additionally, following the same procedure as
before, it can be shown that the bounded lognormal cascade
model can be put into the form of the SRE framework by
selecting the parameters A(l) and B(l) to be

A lð Þ ¼ 1;B lð Þ ¼ sbc lð Þ ð18aÞ

so that one obtains from (2) together with the expression for
sbc(l) in (16) that the variance of the log-process can be
expressed as

PX lð Þ ¼ PX l0ð Þ þ
X
l

sbc lð Þ2¼ PX l0ð Þ þ s21
1� 4�m lð ÞH� �
1� 4�H

" #
:

ð18bÞ

4. Model Fitting to Precipitation Fields

[20] The lognormal and bounded lognormal multiplica-
tive cascade models were fitted to several hourly accumu-
lated rainfall fields from summer convective storms
observed by radar as shown in Table 1. Reflectivity maps
were converted to rainrate images using a Z-R relationship
of the form R = aZb, with a = 0.017, b = 0.714 [Smith et al.,
1996] and where Z is in mm6/m3 and R is in mm/hr. Hourly
accumulations were computed as simply the sum of the
instantaneous rainrate images multiplied by the time
between scans (5 minutes). The images of the accumulation
fields for the four individual radar sites analyzed here are
given by Tustison [2001] and Tustison et al. [2001].
[21] Model fitting was performed by finding the optimal

value(s) of the multiscale model parameter(s) that mini-
mized the weighted sum of the squared errors between the
empirical (computed from the natural logs of the observa-

tions) and theoretical model variance (computed from
equations (14b) and (18b)) as a function of scale. The
weights were assigned inversely proportional to the stand-
ard error of the standard deviation of the log-field at each
scale. A problem in working with the logs of the precip-
itation fields is the handling of zeroes. Unfortunately, rain-
fall observations often include a large percentage of zeroes,
and any technique based on logs will be quite sensitive to
how these zeroes are treated. One suggested treatment is to
set ln(0) to a small positive value. In this work, the
following value was used for ln(0)

ln 0ð Þ 
 ln min Y lð Þ½ � � c; ð19Þ

where min Y(l) is the minimum observation at scale l and c
is a constant. Here the value of c = 1 was selected
(corresponding to replacing zeroes with values of the order
of 10�3) after a sensitivity analysis on a range of c values
was performed. The fitted multiscale model parameters are
listed in Table 1.
[22] As can be seen from this table, most of the estimated

parameters are fairly consistent between the rainfall fields,
with only s1 for the lognormal bounded cascade model
showing significant change from storm to storm. Recall that
s1 measures the large-scale (i.e., parent node) variance of
the weights sbc(l), while H reflects the scale-to-scale
change in the variability of the weights. For the sake of
conciseness, only the variance versus scale curve for the
KEAX field (other fields show similar trends) is presented
in Figure 3. As can be seen from this figure, the bounded
lognormal cascade does a better job (as measured by
residual errors) of representing the variance as a function
of scale for this field (and the other three fields) than the
simple lognormal cascade model. This makes sense, since
the two-parameter bounded lognormal cascade model is
more flexible and can fit no worse than the one-parameter
lognormal cascade model. If the lognormal cascade model
was a good representation of the measured rainfall, then the
bounded lognormal cascade would reduce to the one-
parameter lognormal by forcing the parameter H to be zero
and the parameter s1 would be equal to sc. Despite its
shortcomings for rainfall modeling, the lognormal cascade
continues to be used in the precipitation literature and was
the model used in the SRE framework to assimilate radar

Table 1. Estimated Parameters for Each of the Two Lognormal

Cascade Models for Each of the Four Observed Hourly Rainfall

Accumulation Fieldsa

Radar Fieldb Storm

LN
Cascade Bounded LN Cascade

sc s1 H

KAMA 3 June 1999 0.7 0.99 0.29
KEAX 4 July 1995 0.66 0.97 0.33
KICT 17 August 1994 0.44 0.59 0.23
KTLX 17 August 1994 0.39 0.52 0.22
Mean 0.55 0.77 0.27
Standard

deviation
0.15 0.25 0.05

aThe mean and standard deviation of the parameters over the four fields
are also given to obtain a ‘‘representative’’ value of the parameters for field
generation.

bAbbreviations are as follows: KAMA, Amarillo, Texas; KEAX, Kansas
City, Missouri; KICT, Wichita, Kansas; KTLX, Twin Lakes, Oklahoma.
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and satellite microwave data in the study by Primus [1996].
It is noted that other estimation techniques such as that
based on moment-scale analysis (i.e., determining the K(q)
moment scaling exponent [e.g., Harris et al., 1996, 1997;
Lovejoy and Schertzer, 1995, 1991]) can be used for fitting
the cascades to observations. These techniques account for
moments other than the second moment used above and can
provide more robust estimates of the cascade parameters.
However, they require complete fields of observations and
thus are not applicable to sparse data sets for which the
variance-based estimation remains the only choice.

5. Sensitivity of SRE to Multiscale Model

[23] There is often significant uncertainty associated with
the selection of the ‘‘best’’ multiscale model to represent a
given precipitation field and also with the estimation of the
model parameters once a model is selected. These uncer-
tainties may be due to observational noise, observational
sparseness in space and/or scale, or fundamental differences
between the structure of the multiscale model and the
rainfall process. Because at least one (and often all three)
of these sources of uncertainty is likely to be present in
selecting and fitting a multiscale model to observed precip-
itation data, it is vital to study the sensitivity of the scale-
recursive estimation to these model misspecifications. In
this section, the following three questions are addressed and
quantified via numerical experiments:
1. How sensitive is SRE to misspecification of model

structure?
2. How accurately can one estimate the true parameters

of the underlying multiscale model from noisy observa-
tions?
3. How sensitive is SRE to misspecification of the

multiscale model parameters once the form of the model has
been correctly identified?
[24] To address the first question, the KEAX hourly radar

accumulations and the two fitted cascades of the previous
section (LN with parameter sc = 0.66 and BLN with

parameters s1 = 0.97 and H = 0.33) were used. SRE was
performed using both cascade models and observations at 2
km (KEAX field) and 16 km (spatially averaged KEAX
field) to estimate the field at 8 km. The observations were
considered very accurate with measurement error variance
R(l) = 0.002 at both scales (see equation (6)). (It is noted
that this value of R(l) corresponds to multiplicative meas-
urement error e � N(0, s2) with s2 = 0.05 which is much
below the observational error of radar estimates – see
Appendix B.) The performance of the estimates was tested
against the true field at 8 km (computed by averaging the 2
km field) via RMSE and bias. As can be seen from Table 2,
the BLN cascade overperformed the LN cascade indicating,
as expected, that providing a poor model for the multiscale
structure results in poor performance of the scale-recursive
estimation even if the observations are very accurate.
[25] To address question (2), the uncertainty coming from

proper model selection must be eliminated. This can only be
achieved by working with fields generated with a known
multiscale model. For that purpose, 100 realizations from
LN and BLN cascades with parameters sc = 0.55 and s1 =
0.77, H = 0.27 (the mean parameters of the 4 radar data in
Table 1) were generated and the variance fitting method was
used to estimate the cascade parameters. Each generated
field was cascaded to 128 X 128 pixels to represent radar-
observed rainfall at 2 km pixels over a 256X256 km2

domain. (The generation was done over nine cascade scales
with an aggregation (dressing) performed over two upward
scales to end up with fields considered to represent 2 km
precipitation.) The ensemble statistics of the generated
fields are summarized in Table 3. Figure 4 (left column)
shows the histograms of the estimated parameters which
quantify the parameter estimation uncertainty due to the
natural variability of the process and the limited spatial
extent of observations available for fitting. The most sensi-
tive parameter to estimate seems to be the parameter s1 of
the BLN, which was found to have bias and considerable

Figure 3. Plot of observed variance of the natural log of
the field and associated lognormal and bounded lognormal
cascade model fitted variances versus scale for the KEAX
radar hourly accumulation image.

Table 2. Bounded Lognormal Cascade (BLN) Performancea

Model
RMSE at 8 km,

mm
Bias at 8 km,

mm

LN (sc = 0.66) 1.34 �0.682
BLN (s1 = 0.97, H = 0.33) 0.32 0.086

aBLN provides a better fit to the KEAX hourly data (see Figure 3) and
outperforms the lognormal (LN) cascade in estimation of hourly precipitation
at the 8 km scale. In both cases, the observations available for estimationwere
fields at 2 km and 16 km scales with very small measurement error. The same
results apply to estimation at other scales as well.

Table 3. Statistics of Generated Cascade Fields for 100 Realiza-

tions of the Lognormal Cascade (LN: sc = 0.55) and Bounded

Lognormal Cascade (BLN: s1 = 0.77, H = 0.27)a

Statistic

Cascade Ensemble Statistics
(100 Realizations)

LN BLN

Mean 1.06 1.08
Standard deviation 2.51 1.89
Minimum 0.002 0.001
Maximum 89.4 165.8

aAll values are in millimeters.
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spread around the ensemble mean. When noise was added
to the values of the generated cascades (to simulate the
measurement error in the radar data; s = 0.4 was used which
corresponds to the high end of observational noise as
discussed in Appendix B), the estimation of the BLN

cascade parameters was impacted significantly (see histo-
grams in the right column of Figure 4). This implies that
even if the true underlying structure of precipitation could
be well described by a BLN cascade, the presence of
measurement error (observational noise) might not allow

Figure 4. Histograms of the estimated values of the cascade parameters from 100 realizations for
lognormal (with sc = 0.55) and bounded lognormal (with s1 = 0.77 and H = 0.27) cascades without
measurement noise (left column) and with measurement noise (right column).
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an accurate estimation of the true parameters. This uncer-
tainty in estimating the parameters of the multiscale model
must be kept in mind in all applications of SRE, including
QPF verification.
[26] Having quantified the expected bias and uncertainty

of the fitted cascade parameters, we turn our interest to
question (3), i.e., quantifying how sensitive SRE is to this
parameter uncertainty. To address this question, the follow-
ing experiment was performed. An LN cascade was gen-
erated with parameter sc,true = 0.55. Then, SRE was
performed using again the 2 km and 16 km fields as
observations both considered very accurate (variance R(l)
= 0.05 in equation (6) as before) and SRE was used to
estimate the fields at 8 km using an LN model with
misspecified parameter sc (varied around the true parameter
0.55 in a range between 0.2 and 1.0). Figure 5 shows the
results of this experiment and points out some interesting
findings. First, underestimation of sc (sc < sc,true = 0.55)
misspecifies the fields as smoother fields than they really
are and thus the estimated 8 km fields have smaller variance
than the true 8km fields. The opposite is true for sc > 0.55.
The variance of the 8 km estimated field is equal to the
variance of the true field only at sc = sc,true (see top two
curves in Figure 5). Second, the best estimates (in terms of
RMSE and uncertainty) are obtained when the specified
parameter sc is close to the true value of 0.55. This
quantifies the fundamental optimality property of SRE,
which forms the underlying premise of the proposed
method for QPF verification. It is noted that the RMSE
curve is relatively flat at the uncertainty range of the
estimate (here in the range of 0.45 to 0.65 as obtained from
the top left histogram of Figure 4). This implies that if the
model structure is specified correctly, parameter misspeci-
fication within the range of estimation uncertainty will not
have a considerable impact on the accuracy of the scale-

recursive estimates at any desired scale. From Figure 5, it is
also observed that the bias of the estimated 8 km field is
zero only when the specified sc is equal to sc,true; there is a
small negative bias for underestimation of sc (i.e., when
specifying smoother fields than they really are) and larger
positive bias for overestimation of sc (i.e., when specifying
rougher fields than they really are). Figure 5 provides all the
information one would need in quantitatively assessing the
performance of SRE due to misspecification of the multi-
scale model parameters. A similar analysis can be per-
formed for a BLN cascade. However, interpretation of the
results becomes more complicated since the curves in
Figure 5 will become now surfaces in the two-dimensional
space of the parameters s1 and H.

6. SRE Testing for QPF Verification

[27] Having established in the previous section the sensi-
tivity of SRE to uncertainties about the multiscale model
structure and the fitted model parameters, we now address
questions related to the worth of observations and trade-offs
between sampling densities and scales of available obser-
vations e.g., dense observations at a fine scale only versus
fewer observations at that fine scale and simultaneous
observations at a second larger scale. Although several
combinations of sampling designs have been tested, we
present here 5 cases only which we think elucidate the
results. These cases are summarized in Table 4.
[28] In all cases, the hourly-accumulated KEAX field

was used with the fitted BLN cascade of parameters s1 =
0.97 and H = 0.33. Sampling was done at random from the
non-zero part of the storm only. Notice that 10% sampling
corresponds to an average distance between observations
on the order of �20 km. Estimation via SRE was per-
formed at all scales, but only the 8 km results are
presented here. Comparison of case 1 with case 2 (see
Table 4) quantifies the improvement in the 8 km estimates
when the density of observations at a specific scale
increases. As was expected, increasing the availability of
observations at 2 km (from 10% to 50% sampling) resulted
in significant improvement in the estimation of the precip-
itation field at 8 km. Comparison of case 1 and case 3
quantifies the significant estimation improvement resulting

σc

Figure 5. Effect of parameter misspecification on SRE
estimates. The plot shows the RMSE, bias, mean un-
certainty of the estimates at the 8 km scale as well as the
standard deviation of the true and estimated fields as a
function of the specified cascade parameter. It is seen that
the best performance is achieved for sc = 0.58 which is very
close to the true value of the underlying lognormal cascade
sc,true = 0.55.

Table 4. Case Studies Illustrating the Worth of Observations on

the Accuracy of SRE Estimatesa

Case Observations

SRE Estimation at 8 km

Bias RMSE sest-field
Mean uncertainty

of estimates

1 10% sampling at 2 km 0.4 1.13 2.47 0.32
2 50% sampling at 2 km 0.15 0.48 2.84 0.21
3 10% sampling at 2 km;

100% at 16 km
0.17 0.84 2.80 0.3

4 10% sampling at 2 km;
100% at 32 km

0.27 1.00 2.66 0.32

5 50% sampling at 2km;
100% at 16 km.

0.10 0.45 2.88 0.21

aIt is seen that increase in sampling density and/or addition of a second
scale of observations considerably improve the estimation accuracy in terms
of bias, RMSE of the estimated field, variability of the estimated field sest-
field (compare these values to strue = 3.01 mm) and mean uncertainty of
estimates. All values are in millimeters. The mean of the KEAX hourly
accumulation field at 8 km was 1.99 mm.
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from the addition of a large-scale observing sensor (e.g.,
satellite). Comparison of case 3 and case 4 demonstrates that
if the second scale of observation becomes too large (e.g.,
from 16 km to 32 km), the additional information provided
for estimation diminishes and estimation becomes less
accurate. Comparison of case 2 and case 5 further quantifies
the estimation improvement when a large-scale observing
sensor is added. However, the improvement from case 2 to
case 5 is much less than the improvement from case 1 to case
3 quantifying that if ‘‘enough’’ observations are available at
a fine scale (e.g., 50%) the addition of the new larger-scale

sensor does not help as much as when only a few observa-
tions at the fine scale are available (e.g., from rain gauges). It
is noted that, in addition to the summary properties given in
Table 4, the probability distributions and spatial covariances
of estimation errors can also be plotted (e.g., see Figure 6 for
cases 1 and 5).
[29] All of the above findings make qualitative sense and

point to the potential of SRE as a powerful tool for assess-
ment of QPFs and also for multisensor network design
studies. It is noted that other known methods of estimation,
e.g., Kriging, do not allow easy treatment of observations at

Figure 6. Images of the original KEAX hourly accumulation field at 8 km and estimated fields at the
same scale for case 1 and case 5 of Table 4. The bottom plots show the error histograms for these two
cases. It is noted that error fields here are computed by comparison of the SRE estimates at 8 km with the
true 8 km fields (obtained by averaging of the 2 km fields). The comparison assesses the performance of
SRE estimation. If, instead of these ‘‘true’’ fields, QPFs from a NWP model at 8 km were available, the
error would quantify the performance of QPFs.
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more than one scale. At the same time, SRE can easily
incorporate any number of scales with no extra computa-
tional burden (e.g., see Chou [1994a, 1994b] for details on
the computation advantages of SRE).

7. Summary and Conclusions

[30] Current methodologies for QPF verification are
lacking in their ability to properly handle the multiscale
nature of rainfall when observations at one or more scales
have to be compared to the model output at yet another
scale [e.g., see Tustison et al., 2001]. The scale-recursive
estimation (SRE) method explored in this paper can incor-
porate rainfall measurements at multiple scales, as are often
available (rain gauge, radar, satellite) together with their
measurement error to produce optimal estimates of the field
at any desired scale. By choosing the desired scale to be
the model output scale, QPF verification can be performed
by comparison of two fields at the same scale (see Figure
1). In addition, SRE provides the uncertainty of the
estimates allowing for probabilistic assessment of the
accuracy of QPFs. Since SRE is based on specification
of a model describing the multiscale structure of precip-
itation, an analysis was performed here to assess the
sensitivity of SRE to model misspecification. The results
indicated that providing a wrong model structure (e.g., in
our example LN cascade versus BLN cascade for hourly
rainfall accumulations) can have significant effects on the
estimation, and thus on the reliability of using the SRE
method for QPF verification (see Table 2). However, if the
model structure is specified correctly, misspecifying the
parameters (within their uncertainty due to the fitting
procedure, limited observations or noise in the observa-
tions, quantified in Figure 4) does not have a significant
effect on estimation (see Figure 5) and thus SRE can be
considered as a reliable and robust methodology for QPF
verification. This study offers only a preliminary assess-
ment of the potential of SRE for QPF verification. Despite
the encouraging results, there are a lot of yet unsolved
problems in adopting this methodology for real-time or
operational applications. Some open problems for future
research include: (1) exploration of SRE for robust model
fitting given sparse observations at more than one scale
(e.g., see the work of Luettgen and Willsky [1995]); (2)
extension of the SRE framework to incorporate complex
nonlinear relations (dictated by physics) between the
observed quantity and the state of the system i.e., factor
C(l) in (6) to handle, for example, conversion of reflec-
tivity to precipitation (for radars) or radiance toprecipi-
tation (for satellites); and (3) extension of the SRE
framework to incorporate the temporal dynamics of the
process.
[31] Furthermore, although this study focused solely on

the problem of QPF verification (following our continuing
interest in this problem [e.g., see Zepeda-Arce et al., 2000;
Harris et al., 2001; Tustison et al., 2001]), it is obvious that
the sensitivity analysis results presented here are pertinent to
many other applications of SRE such as data assimilation,
multi-sensor network design, derivation of initialization
fields by merging observations and model output, and also
estimation of the covariance of innovations (defined as the
differences between observations and their estimates based

on information carried by the model). This last issue is
critical to any data assimilation effort as recently empha-
sized by USWRP [2000].

Appendix A: Details of the SRE Framework

A1. Upward Sweep

[32] The upward sweep is the process by which informa-
tion is carried up the inverted tree from fine to coarse scales.
It consists of an initialization followed by three steps, which
repeat at every scale. These steps are measurement update,
scale propagation, and merging. At the leaf scale, m(l) =
mmax, the merged state (given a subscript ‘‘m’’ to refer to
merged) at each leaf node is initialized to the global mean of
the process, which is zero by definition (note that for non-
zero mean processes one works with the mean-removed
process), i.e.,

Xm lð Þ ¼ 0; 8l 3 m lð Þ ¼ mmax: ðA1Þ

Since no observations have yet been incorporated into the
estimation, the global mean is the ‘‘best guess’’ for the state.
Also, the merged error variance of the state is initialized to
the variance of the state at all leaf nodes, i.e.,

Pm lð Þ ¼ PX lð Þ; 8l 3 m lð Þ ¼ mmax: ðA2Þ

This is also a logical choice as an initial value for the error
variance. Since no measurements have yet been used, the
error variance of the estimates is equal to the variance of
the process itself. The next step in the estimation method is
the measurement update step, which provides an optimal
procedure for updating the state and its error variance with
the available measurements at a given scale. The updated
state (given a subscript ‘‘u’’) is given by

Xu lð Þ ¼ Xm lð Þ þ K lð Þ Y lð Þ � C lð ÞXm lð Þ½ �; ðA3Þ

where K(l) is the Kalman gain, a weight which is optimally
chosen such that it minimizes the expected error variance of
the state. The Kalman gain is given by

K lð Þ ¼ Pm lð ÞC lð Þ
Pm lð ÞC2 lð Þ þ R lð Þ ; ðA4Þ

where R(l) is the measurement error variance at location l
(see Chou [1991] for a proof). Notice that the multiplier of
the Kalman gain in (A3) is actually the difference between
the merged and observed values of the state. Thus, K(l) is a
weight which controls the relative contributions of the
merged state (best estimate based on the previously
available information) and the available measurement. The
updated error variance of the state is also optimal in the
minimum error variance sense and is given by

Pu lð Þ ¼ Pm lð Þ 1� K lð ÞC lð Þ½ �: ðA5Þ

If no measurement is available at location l, the values of the
state and its error variance are not updated. That is, the
merged state and error variance simply become the updated
state and error variance. The measurement updated step and
the associated Kalman gain may be easily understood when
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considering the lower and upper limits of the Kalman gain,
K(l) = 0 and K(l) = 1, respectively. The case of K(l) = 0
refers to a measuring device which is completely unreliable,
since the error variance of the measuring device, R(l), must
be infinite when K(l) = 0. This means that the available
measurement provides no additional information about the
state. In this case, we would expect the most current estimate
of the state and its error variance to remain unchanged by the
available measurement (exactly as if there was no measure-
ment available). Examination of (A3) and (A4) reveals that
this is certainly the case. The other limiting case of the
Kalman gain occurs when K(l) = 1. This corresponds to a
‘‘perfect’’ measurement, since R(l) would be zero for this
case. In this case, we would expect the state to become the
measurement and its error variance to become zero, since the
state would be known exactly. Again, examination of (A3)
and (A4) reveals that this is the case. Now that the
measurement-updated state and its variance have been
determined, they may be used to find the values of the state
and its error variance at the next coarsest scale.
[33] In the same way that a temporal Kalman filter uses

past observations and their respective error variances to
estimate the state of a system and its error variance for a
future time step, the multiple scale Kalman filter uses
observations and their respective error variances at finer
scales to get estimates of the state and its error variance at
increasingly coarser scales. Because of the discrepancy in
the number of nodes at each scale (the number of nodes
decreases as the scale index m(l) decreases), there exists a
problem with this propagation in scale. Each of the q(gl)
child nodes will predict the state Xp(gl) and error variance
Pp(gl) (subscript ‘‘p’’ is used to represent propagated) of
its parent, leaving us with q(gl) predictions for each node
at the parent scale. For now, let us ignore this problem and
use each of the q(gl) child nodes to estimate these values
at the parent scale acknowledging that this problem will be
addressed after the predictions are obtained from each
child. The variance of the normally distributed noise
W*(l) is determined from the parameters of the coarse to
fine scale evolving multiscale model and the variance of
the state and may be written as

Q lð Þ ¼ PX glð Þ � A2 lð ÞP2
x glð Þ

PX lð Þ ðA6Þ

(see Chou [1991] for a derivation). At the next coarsest
scale, the propagated state and its variance coming from the
ith child (note that i is an index to differentiate between the
different children of the same parent and ranges from 1 to
q(gl)) are given by

Xpi glð Þ ¼ F lð ÞXmi lð Þ ðA7Þ

and

Ppi glð Þ ¼ F2 lð ÞPmi lð Þ þ Q lð Þ: ðA8Þ

Notice that these equations correspond to the expected
values of (3) and (5), respectively. Now, having q(gl)
predictions for each of the parent nodes, their combination
to obtain a single predicted value for the parent will be
considered.

[34] Our goal in the combination of these q(gl) child
node estimates of the state and its variance is to find
estimates that minimize the expected error variance of the
state. Such optimally merged estimates of state and error
variance were introduced in this framework by Chou et al.
[1994a]. Realizing that we have now moved to the parent
scale, the merged error variance (given a subscript ‘‘m’’ for
merged) takes the form

Pm lð Þ ¼ 1� q lð Þ½ �
PX lð Þ þ

Xq lð Þ

i¼1

1

Ppi lð Þ

" #�1

: ðA9Þ

It can be seen that the merged error variance is a
combination of the propagated error variances from each
of the parent’s children and the prior state variance coming
from the evolution of (2). The merged estimate of the state
is determined from the merged error variance and the
propagated state and error variances from each of the
parent’s children. Specifically, the merged state is given by

Xm lð Þ ¼ Pm lð Þ
Xq glð Þ

i¼1

Xpi lð Þ
Ppi lð Þ : ðA10Þ

As can be seen, the merged state is a weighted combination
of the states propagated from each of the children where the
weights are inversely proportional to the propagated error
variances from the children. For more details, the reader is
referred to the original publications of Chou [1991] and
Chou et al. [1994a, 1994b].

A2. Downward Sweep

[35] These three steps of updating, scale propagation, and
merging are carried out until the root scale is reached, upon
which the upward sweep is terminated, and the downward
sweep may begin. The downward sweep is a coarse to fine
scale evolution beginning at the next finer scale from the
root scale, and continuing to the finest (leaf ) scale. Both the
downward sweep estimates of the state and its variance are
produced as the sum of its estimate from the upward sweep
and a weighted difference between the upward and down-
ward sweep estimates of its parent. These estimates of the
state and its variance coming from the downward sweep are
called smoothed estimates, because they come from averag-
ing, a smoothing process. The downward sweep estimates,
referred to as Xd(l), are the final estimates of the state and
its error variance from the multiscale model and are given
by

Xd lð Þ ¼ Xu lð Þ þ J lð Þ Xd glð Þ � Xu glð Þ½ � ðA11Þ

and

Pd lð Þ ¼ Pu lð Þ þ J 2 lð Þ Pd glð Þ � Pu glð Þ½ �; ðA12Þ

respectively, where J(l) is a weighting coefficient which
relates to F(l) and the measurement updated error variances
Pu(l) and Pu(gl) through

J lð Þ ¼ F lð Þ Pu lð Þ
Pu glð Þ ðA13Þ
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(see Chou [1991] for a derivation). The downward sweep
allows for the exchange of information between nodes
with close spatial proximity, as spatially close nodes are
not very far removed on the inverted tree and have
contributed to the same upward sweep estimates of the
state and its error variance. Although this is true for most
spatially close nodes, there are some nodes that occupy
close spatial locations but are quite far removed from each
other on the multiscale tree (essentially the nodes nearby
but on opposite sides of the spatial boundaries defined by
the nodes at the largest scales). This is one of the
drawbacks of the multiscale framework and has been ad-
dressed by Irving et al. [1997] with the use of overlapping
multiscale trees.

Appendix B: Observational Error
for Radar Rainfall

[36] Rainfall intensity and radar reflectivity are related
with the so-called Z-R relationship R = aZ b [e.g., see Smith
et al., 1996]. The error in this relationship is typically
considered as multiplicative [e.g., see Smith and Krajewski,
1993], that is,

R ¼ aZbe; ðB1Þ

where e � LN(me,s
2) is a lognormally distributed error

process. Treating the rain rate transformed reflectivity Rt =
aZb as the truth, a relationship between the true and
observed rain rates can be formed as

R ¼ Rt e: ðB2Þ

Taking the logs of this equation transforms the multi-
plicative relation into an additive one given by

lnR ¼ ln Rt þ ln e: ðB3Þ

This equation is in the same form as the measurement
equation of the scale-recursive model given by (6). The
analysis of Smith and Krajewski [1993] suggests that the
variance of the lognormal error process, denoted here by s2,
is near 0.12 for a range of storms in various locations.
Using the relationships between the moments of a
lognormally distributed variable and its normally distrib-
uted log transform, one can easily verify that the
corresponding variance w2 of the normally distributed
noise term ln e � N(0,w2) can be written in terms of the
variance of the lognormal variable as

w2 ¼ ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2

p

2

 !
: ðB4Þ

Using this relationship gives the variance of the normally
distributed variable as w2 = 0.10 corresponding to s2 = 0.12
found by Smith and Krajewski [1993]. In our analysis,
measurement error with s2 = 0.16 (s = 0.4) was used to
correspond to a high level of observational error (see
section 5 and also Figure 4 when noise was added to
observations). Accurate precipitation observations (i.e.,
observations with small variance R(l) in equation (6))

were given a value of s2 = 0.05 which corresponds to w2 =
R(l) = 0.002 (see section 5).
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