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[1] Predictability analysis based on the maximum Lyapu-
nov exponent considers infinitesimal perturbations, which
are associated with errors in the smallest fastest-evolving
scales of motion. However, these errors become irrelevant
for the predictability of larger scale motions. In this study
we employ the newly developed Finite Size Lyapunov
Exponent (FSLE) analysis to assess predictability of
atmospheric boundary layer flows as a function of scale.
We demonstrate the expected enhanced predictability at
large scales and quantify the dependence of predictability
on the stability of the atmospheric environment. INDEX
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1. Introduction

[2] Atmospheric boundary layer turbulence possesses
many scales of motion not all of which are resolved in
numerical prediction models of the atmosphere. When
numerical prediction models are used to assess the predict-
ability of atmospheric flows (via identical twin experi-
ments), the perturbations of the initial conditions are of
finite size and apply to scales of motion that are larger than
the smallest characteristic scales of the atmosphere. In this
case, the standard maximum Lyapunov exponent analysis
has been found to give predictability times much smaller
than those inferred by verification studies [Lorenz, 1996].
This is because the effect of the smallest fast-evolving
scales (considered by the maximum Lyapunov exponent
analysis) becomes irrelevant for the predictability of larger-
scale motions. To address this problem Aurell et al. [1996a]
introduced the concept of Finite Size Lyapunov Exponent
(FSLE) that becomes particularly useful when there exists a
hierarchy of characteristic scales such as the eddy turnover
times in three-dimensional fully developed turbulence.
FSLE has been verified in the literature through various
numerical experiments (coupled map lattices, shell models
and toy models of atmosphere) [see, e.g., Aurell et al., 1997;
Boffetta et al., 1998a, 1998b] but, to the best of our
knowledge, has not been exploited yet on actual observa-
tions or numerical weather prediction model outputs to
assess atmospheric predictability as a function of scale.

[3] In this paper, we use long records of high-resolution
atmospheric turbulence data to quantify the predictability of
atmospheric boundary layer flows over a homogeneous
terrain. The results clearly demonstrate that predictability
strongly depends on the scale at which the process is
considered with larger predictability at larger scales. They
also demonstrate that the degree of predictability varies
according to the stability of the atmospheric conditions. In
general, the more stable the environment the more predict-
able it is (at least over a wide range of prediction error
tolerances), a result that would be difficult to obtain from
the maximum Lyapunov exponent analysis.

2. Finite Size Lyapunov Exponent

[4] In chaotic dynamical systems sensitivity to initial
conditions limits the predictability time to:

Tp �
1

lmax

ln
�

d

� �
ð1Þ

where lmax denotes the maximum Lyapunov exponent, d is
the size of initial perturbations and � is the prediction error
tolerance. The above formula holds only for infinitesimal
perturbations and in nonintermittent systems. Aurell et al.
[1996a] introduced a generalization of the maximum
Lyapunov exponent to allow for finite perturbations relevant
to the predictability of complex systems comprising of a
wide spectrum of scales. This new measure, properly named
as ‘‘finite size Lyapunov exponent’’ (FSLE) is based on the
idea of error growing time Tr(d), which is the time it takes
for a perturbation of initial size d to grow by a factor r
(equals to

ffiffiffi
2

p
in this work). The FSLE is then defined as
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nrh i
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d nrð Þ
d
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where d(nr) is the size of the perturbation at the time nr at
which this perturbation first exceeds (or becomes equal to)
the size rd. The average h. . .i is over an ensemble of many
realizations. In this case, for an initial error d and a given
tolerance �, the average predictability time can be written
as:

Tp ¼
Z�

d

d ln d0

lðd0Þ
ð3Þ

In the limit of infinitesimal perturbations (d ! 0), l(d)
approaches lmax and Tp takes the usual form (equation 1)
[see Aurell et al., 1996a for details].
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[5] It is seen that for systems which possess many scales
of motion, from the smallest fast evolving low-energy
containing scales to the largest slow-evolving high-energy
containing scales, lmax does not characterize the predict-
ability of the system. It only characterizes the growth of
infinitesimal errors associated with the smallest scales.
Larger errors, which typically occur at larger scales (for
example, at the grid scale of a numerical model) will grow
with a different rate as prescribed by the FSLE l(d).

3. Analysis of Atmospheric Turbulence Data

[6] Data sets from a field experiment carried out over an
unobstructed flat terrain at the Campbell Tract research field
of the University of California at Davis during the summer
of 1999 were used in this study. The basic instrumentation
setup consisted of twelve three-dimensional sonic anemom-
eters arranged in two parallel horizontal arrays to simulta-
neously measure the longitudinal, lateral and vertical wind
velocity components as well as the air temperature at a
sampling frequency of 20 Hz. The details of the setup can
be found elsewhere [Porté-Agel et al., 2001]. Four longi-
tudinal velocity time series (will be referred to as uA, uB, uC
and uD) corresponding to four different atmospheric stabil-
ities (stable, moderately stable, weakly stable, unstable:
Obukhov length of 1.36 m, 9.16 m, 196.36 m and 
31.71
m, respectively; see Stull, 1988 for the definition of Obu-
khov length) were analyzed for predictability (Figure 1). All
the series were collected from one particular anemometer
(sensor height = 3.41 m) and their length was approximately
35,000 corresponding to 30 minutes of experiment period.
[7] Since nonlinearity is a necessary condition for the

presence of deterministic chaotic dynamics [Diks et al.,
1995], detection of nonlinearity is an obvious prerequisite
to avoid spurious computation of typical invariant measures
(e.g. dimensions, Lyapunov exponents, entropies etc.). In
this work we tested for nonlinearity using a newly proposed
framework [Basu and Foufoula-Georgiou, 2002], which is
based on probabilistic comparison of the phase-space of the
original series and a number of linear stochastic surrogates.
The metric used for comparison of the phase spaces is the
‘‘transportation distance’’ function [Moeckel and Murray,
1997] which accounts for both geometric and probabilistic
factors (thus superior to the ‘‘total variation distance’’), is
less sensitive to outliers, noise and discretization errors (thus
better than the ‘‘Hausdorff distance’’) and measures the long-
term qualitative differences (differences in the dynamics)
between two series (thus preferable to simple correlation
coefficient or root-mean-squared error). The set of trans-
portation distances is first computed between the original
series {xn

o} and all the surrogates {xn
i}, i = 1,. . .,Ns:

DOS ¼ doi x
o
n; x

i
n

� �
; i ¼ 1; . . . ;Ns

	 

ð4Þ

In a similar way, the set of mutual distances between the
surrogates are computed:

DSS ¼ dij x
i
n; x

j
n

� �
; i; j ¼ 1; . . . ;Ns and i 6¼ j

	 

ð5Þ

If the frequency histograms of DOS and DSS are roughly
nonoverlapping, the null hypothesis of linear stochasticity
can be rejected, and the original data can be considered to

be nonlinear at this significance level. A simple measure of
the ‘‘Degree of Nonlinearity’’(DON ) can be written as:

DON ¼ meanðDOSÞ 
 meanðDSSÞ
meanðDSSÞ

ð6Þ

In this paper, all the series were embedded in phase space of
dimension three and compared with nine surrogates with the
help of the transportation distance function (please refer to
Basu and Foufoula-Georgiou [2002] for technical details).
All series were found to exhibit nonlinearity (uA, uB, uC and
uD: DON of 53, 60, 89 and 68 percents respectively).
Generally, the degree of nonlinearity was found to increase
with the degree of instability with the exception of the
weakly stable series uC indicating stronger nonlinearity than
the unstable series uD.
[8] After detecting nonlinearity, the series were analyzed

by the FSLE algorithm to infer predictability. For the
application of FSLE algorithm the choice of optimal
embedding is crucial. Given an original scalar series, a
suitable delay time and an embedding dimension were
chosen following the ideas of mutual information and false
nearest neighbors [Kantz and Schreiber, 1997] respectively.
For the sake of brevity a detailed description of the
computation of FSLE from measured data is not covered
here. Interested readers are referred to the paper by Boffetta
et al. [1998b]. The implementation of the algorithms
(mutual information, false nearest neighbors and FSLE)
were done using the TISEAN package [Hegger et al.,
1999]. Figure 2 shows the plot of l(d) as a function of
perturbations d for all the series. It is seen, as was expected,
that for smaller d, l(d) reaches a plateau, implying that the
magnitude of lmax is approximately 3. Interestingly, all the d
vs. l(d) curves can be closely approximated by the follow-
ing simple relation:

l dð Þ ¼ 1

aþ bd2
ð7Þ

Figure 1. Time series of the longitudinal velocity
component for (a) stable, (b) moderately stable, (c) weakly
stable, and (d) unstable atmospheric conditions.
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which can be seen as providing a concise parameterization
of l(d) as a function of d (see, e.g. Figure 3 for the fit of
equation 4 to series uA).
[9] To verify our findings, we used a standard algorithm

[Rosenstein et al., 1993] to compute lmax directly from the
observed series. Figure 4 shows the typical plot of the
number of iterations versus the natural logarithm of error
divergence (the slope is the maximum Lyapunov exponent
if it is a straight line). Evidently, the straight line segments
correspond to exponential growth driven by different dom-
inant scales and the global (envelope) evolution is not

exponential but closely follows a power law as argued by
Aurell et al. [1996b]. Figure 1 of Aurell et al. [1996b] is a
similar plot for a chain of coupled maps in the context of
predictability in systems with many characteristic time
scales. The above issues question earlier predictability
studies based on standard Lyapunov exponent for turbulent
flows and force us to acknowledge the need of FSLE for
turbulence data including the estimation of lmax.
[10] Figure 5 shows the predictability of uA (mean of 2.26

m/s and standard deviation of 0.46 m/s) as a function of

Figure 2. Finite size Lyapunov exponent, l(d), as a
function of the size of initial perturbations, d, for all
longitudinal velocity time series.

Figure 3. l(d) vs. d for series uA and the fitted line
corresponding to equation (7).

Figure 4. Typical plot of < ln(divergence) > versus time
for the time series uA (the slope is the maximum Lyapunov
exponent if it is a straight line). Note that the slope exhibits
no global linear increase behavior.

Figure. 5. Predictability time Tp based on FSLE and
Maximum Lyapunov Exponent for the series uA (initial error
of 10
3 m/s). Note that predictability inferred by assuming
infinitesimal perturbations (dashed line/squares) is much
smaller than that inferred by finite-size perturbations (solid
line/circles).
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tolerance �. Observe that, for an initial error of 10 
3 m/s,
the maximum Lyapunov exponent analysis shows that this
error will grow to 10 
1 m/s after approximately 0.1 seconds
(2 
 100 
 1/20), at which time the predictability of the
system is almost lost (see the dashed line/squares). On the
other hand, the FSLE analysis (which is more appropriate
for an initial perturbation of 10
3 m/s, and error growth of
the order of 10 
2 to 10 
1 m/s, which are finite with respect
to the aforementioned statistical properties of the series)
shows that predictability is indeed much larger. For exam-
ple, it shows that an initial error of 10 
3 m/s will grow to
10
1 m/s, in 1 second (10 times larger than what the lmax

analysis shows) and will grow to 1 m/s (an error of the order
of the velocity itself, but still of practical interest for large-
scale motions), in 100 seconds. The interplay of d and � on
determining the predictability time is nicely seen in the
following equation easily derivable from equation (3) using
equation (7):

Tp ¼
1

lmax

ln
�

d

� �
þ b

2
�2 
 d2
� �

ð8Þ

In agreement with the previous observations, one can see
from (5) that when� is in the order of d, the first term of the
above equation is dominant; on the other hand when � is
much larger than the initial perturbation, the second term
becomes much more prevailing (lmax is roughly propor-
tional to the inverse of the smallest low-energy-containing
time scales, and, therefore, does not play any role in the
predictability of large scale motions).
[11] Furthermore, it is interesting to note (from Figure 6

and also from Figure 2) that predictability depends on the
stability of the atmospheric turbulence environment. Intui-
tively, the more stable the environment, the more predict-

able it is expected to be. This is seen from Figures 2 and 6
with the exception of the weakly stable series uC which was
found less predictable than the unstable series uD for high
prediction error tolerances (� > 1 m/s). This anomaly found
from only one series calls for further investigation. It is
noted that the dependence of predictability on the stability
of the atmospheric environment would be difficult to infer
with the standard maximum Lyapunov exponent analysis
since all four curves would saturate to almost the same
predictability time (due to similar values of lmax). Indeed,
nonlinear regression of the d vs. l(d) curves for the four
series yielded very similar values of lmax (in the range of
3.2 to 4) but diverse values of the parameter b (uA, uB, uC
and uD: b equals to 191, 226, 1912 and 6528 respectively)
reflecting different stability regimes. The effect of atmos-
pheric stability on nonlinearity and predictability is an
intriguing issue which warrants further study.

4. Conclusions

[12] In this study, we implemented the Finite Size Lyapu-
nov Exponent analysis to assess predictability of atmospheric
boundary layer turbulence as a function of scale. Using high
frequency horizontal wind velocity data collected at a fixed
height over a homogeneous terrain, we demonstrated the
enhanced predictability of larger slow-varying scales of
motion and the dependence of predictability on the stability
of the turbulent environment. Future studies will address the
characterization of predictability as related to the multifractal
nature of the wind velocity series and also the predictability
over heterogeneous terrains as a function of the characteristic
scales of heterogeneity and the height of the boundary layer.
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Minnesota, St. Anthony Falls Laboratory, Department of Civil Engineering,
Mississippi River at 3rd Ave. S. E., Minneapolis, MN 55414, USA.
(basu0009@umn.edu)

BASU ET AL.: PREDICTABILITY OF ATMOSPHERIC BOUNDARY LAYER FLOWS X - 5


