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ABSTRACT

Small-scale (less than ~15 km) precipitation variability significantly affects the hydrologic response of abasin
and the accurate estimation of water and energy fluxes through coupled |and—atmosphere modeling schemes. It
aso affects the radiative transfer through precipitating clouds and thus rainfall estimation from microwave
sensors. Because both land—atmosphere and cloud-radiation interactions are nonlinear and occur over a broad
range of scales (from a few centimeters to several kilometers), it is important that, over these scales, cloud-
resolving numerical models realistically reproduce the observed precipitation variability. Thisissue is examined
herein by using a suite of multiscale statistical methods to compare the scale dependence of precipitation
variability of a numerically simulated convective storm with that observed by radar. In particular, Fourier
spectrum, structure function, and moment-scale analyses are used to show that, although the variability of modeled
precipitation agrees with that observed for scales larger than approximately 5 times the model resolution, the
model shows afalloff in variability at smaller scales. Thus, depending upon the smallest scale at which variability
is considered to be important for a specific application, one has to resort either to very high resolution model
runs (resolutions 5 times higher than the scale of interest) or to stochastic methods that can introduce the missing
small-scale variability. The latter involve upscaling the model output to a scale approximately 5 times the model
resolution and then stochastically downscaling it to smaller scales. The results of multiscale analyses, such as
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those presented herein, are key to the implementation of such stochastic downscaling methodologies.

1. Introduction

The numerical simulation of precipitation at high spa-
tial resolution (1-10 km) has undergone a period of
rapid development over the last decade as a result of
the increasing computational power of massively par-
allel computers and substantial improvementsin the col-
lection and assimilation of high-resolution observations
of the atmosphere [e.g., satellite, Weather Surveillance
Radar-1988 Doppler (WSR-88D), and ground-based in
situ networks; e.g., Droegemeier (1997)]. Of great in-
terest are the hydrological applications of these numer-
ical forecasts for flood prediction over small- to me-
dium-sized basins (a few to several hundred square ki-
lometers), as recently discussed by the U.S. Weather
Research Program Prospectus Development Team Nine
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(Droegemeier et al. 2000). Another application involves
the use of 3D numerically simulated cloud fields in
Bayesian inversion algorithms used to estimate rainfall
from satelliteborne passive microwave radiometers
(Kummerow et a. 1996; Kummerow and Giglio 1994).

In these and other applications, the modeled precip-
itation variability over a wide range of scales is im-
portant. For example, studies of the effect of precipi-
tation variability on basin response (e.g., Ogden and
Julien 1993, 1994; Winchell et al. 1998) suggest that
runoff volume is sensitive to the small-scale spatial and
temporal variability of the precipitation field, which is
provided as input to a rainfall-runoff model. The spe-
cific study of Winchell et al. (1998) found systematic
and significant decreases in simulated infiltration—ex-
cess runoff volume as the spatial resolution of the radar-
estimated precipitation fields was decreased from 1 to
16 km. Another example of the importance of small-
scale (less than 10 km) precipitation variability is pro-
vided by the coupled land—atmosphere modeling study
of Nykanen et al. (2001), in which the inclusion of
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subgrid rainfall variability at scales as small as 3 km
was found to propagate to larger-scale (greater than 20—
30 km) anomalies in soil moisture, ground temperature,
and surface runoff, as well as sensible and latent heat
fluxes.

The importance of modeled precipitation and cloud
variability for inversion algorithms used to estimate pre-
cipitation from passive microwave radiometer measure-
ments has been addressed in a number of studies (e.g.,
Kummerow et al. 1996; Kummerow and Giglio 1994;
Spencer 1986; Harris and Foufoula-Georgiou 2001) and
is generally referred to as the beam-filling problem. In
essence, simulated precipitating cloud fields are used
together with radiative transfer schemesto simulate how
a microwave radiometer would observe a real storm.
The computed microwave radiances are used to create
alarge database of precipitation—radiance pairs at ares-
olution comparable to the footprint of the microwave
radiometer. The database forms the input to a Bayesian
inversion algorithm, which is used to relate observed
radiance to likely precipitation. Given the nonlinear re-
lationship between precipitation and the upwelling mi-
crowave radiance, a microwave radiometer (which lin-
early averages the microwave radiance over the scale
of the radiometer’s footprint) necessarily performs a
nonlinear averaging of precipitation. For thisreason, the
precipitating cloud fields are simulated at resolutions
higher than the footprint of the radiometer so as to cap-
ture the small-scale variability and thus the higher sta-
tistical moments, which considerably affect the nonlin-
ear averaging.

Atmospheric numerical models are expected to un-
derrepresent the small-scale spatial variability of pre-
cipitation because their associated finite-differencecom-
putational fluid dynamical schemes contain smoothing
in the form of both implicit and explicit numerical dif-
fusion, as well as physically based subgrid-scale tur-
bulent mixing. Implicit diffusion, which arises from the
combined effects of truncation error—generated dissi-
pation and dispersion, is afundamental characteristic of
finite-difference schemes and is dependent upon grid
resolution. Higher-order and nonlinear (e.g., monotonic,
flux corrected, and positive definite) schemes tend to be
less dispersive than their low-order counterparts, though
they are computationally much more expensive.

Explicit numerical diffusion (also referred to here as
computational smoothing) arises by virtue of a small
damping term, typically proportional to the second- or
fourth-order partial derivative (with respect to the co-
ordinates) of a scalar (e.g., rain) or dynamical (e.g.,
velocity) quantity that isadded to the conservation equa-
tions to counter nonlinear instability. As a rule, this
damping is designed to act upon only the smallest re-
solvable scales (at which the partial derivatives are
large) up to a factor of approximately 6-8 Ax, where
AXx represents the spatial resolution of the model. Such
smoothing reduces the small-scale variability of both
dynamic and scalar fields and, in some cases, can have

HARRIS ET AL.

407

a significant impact on solution energetics (e.g., Lilly
and Jewett 1990).

Subgrid-scale turbulent mixing has essentially the
same effect in reducing variability as computational
smoothing, though it is designed to represent, in a sta-
tistical manner, the physical effects of turbulent motions
unresolvable by the grid. Thus, although its effects are
more selective (e.g., the mixing is activated only in
regions for which specific instability criteria are met,
with the mixing of scalar and momentum fieldstypically
occurring at different rates), it too reduces the small-
scale variability of both dynamic and scalar fields.

The falloff in variability in modeled precipitation as
aresult of both physically based (turbulent mixing) and
computational mixing manifests itself in the apparent
smoothness of fields in comparison with observations
and can be noticed visually. For example, Fig. 1 com-
pares the base reflectivity observed from a WSR-88D
radar (radar data processing and field estimates are dis-
cussed in the following section) with that predicted by
a 3D numerical cloud model. The modeled field is seen
to be less intermittent and smoother in the rainy areas
than its radar counterpart. Therefore, although one ex-
pects a discrepancy in variability between observed and
modeled precipitation, a key question remains to be an-
swered—how large is the discrepancy, and over what
range of scales does it occur?

To characterize and to quantify better the scale de-
pendence of precipitation spatial variability, a suite of
multiscale statistical techniquesis used in this study. To
be specific, the simulated and radar-observed rain liquid
water (RLW) fields just above the ground are compared
via their respective spatial Fourier spectra, structure
functions, and moment-scale functions. These functions
are easily computable and have conceptually accessible
physical interpretations (which are elaborated upon be-
low), allowing an understanding of the spatia structure
of the fields over a wide range of scales. Also, the use
of multiscale functions allows one to identify the range
of scales over which the scale dependence of modeled
variability may deviate from the scale dependence of
observed variability and the range of scales over which
the two agree. The choice of these methods to charac-
terize the statistical variability of precipitation is aso
influenced by the fact that they allow the development
of cascade-based stochastic downscaling methodologies
[first applied to simulated fields by Wilson et al. (1991)]
by which modeled precipitation fields can be disaggre-
gated spatialy to yield high-resolution fields with re-
alistic variability [e.g., see Harris and Foufoula-Geor-
giou (2001) for a microwave remote sensing application
of wavelet-based stochastic downscaling].

The idea of analyzing observed and modeled precip-
itation over multiple scaleswasfirst explored in Zepeda-
Arce et a. (2000) for the purposes of quantitative pre-
cipitation forecast (QPF) verification. The underlying
premise of that study was that discrepancies between
the multiscal e statistical structure and dynamics of mod-
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Reflectivity (dBZ)

Fic. 1. Visual comparison of (left) radar base-scan reflectivity with its (right) ARPS-forecast counterpart for a southern plains storm on
3 Jun 1999. The radar image (NEXRAD-KAMA) is from 0010 UTC 3 Jun. The horizontal extent of each image is 256 X 256 km?. The
radar image has 2-km resolution, and the forecast has 3-km resolution. Note the visually smoother, more spatially organized structure of the

forecast field.

el-predicted and observed precipitation could shed light
on the sources of model shortcomings and systemati-
cally guide model improvements in terms of physical
parameterizations. For that reason, the multiscal e meth-
odologies employed were centered around certain mea-
sures previously shown to have promise in relating sta-
tistical to physical propertiesof precipitation (Pericaand
Foufoula-Georgiou 1996a). Specifically, the analysisin
Zepeda-Arce et a. (2000) was based on the rate of
growth of variance of standardized spatial rainfall fluc-
tuations with scale (e.g., Perica and Foufoul a-Georgiou
1996b) and on the presence of dynamic scaling in the
spatiotemporal structure of rainfall (e.g., Venugopal et
al. 1999). A 6-km precipitation forecast was compared
with 4-km radar-observed precipitation. Because both
methodologies used in that study employed discrete or-
thogonal wavelet decomposition with dyadic changesin
scale, only comparisons of normalized rainfall gradients
at scales of 12 to 48 km (the upper limit imposed for
statistical considerations) were possible. In the current
study, a higher-resolution precipitation forecast (3 km)
is analyzed, and the methods of analysis allow direct
interpretation of the variability of rainfall intensities
themselves at scales as small as 3 km. In addition, they
alow the development of an alternative stochastic

downscaling methodology (based on multiplicative cas-
cades) to reintroduce the missing small-scale variability
for applications for which it is deemed necessary.

It is noted that the multiscale methodologies em-
ployed in Zepeda-Arce et al. (2000) and also in this
paper are insensitive to phase errors (large time or spa-
tial lags in the space-time location of the storm). This
is important because even a *‘perfect’” forecast, except
lagged by a few minutes in time or a few kilometersin
space, can result in poor performance according to the
traditional indices of performance such as bias, rmse,
and threat score. Although capturing the location, tim-
ing, and intensity of storms is of unguestionable im-
portance for flood estimation, there are applicationssuch
as the microwave-based rainfall estimation agorithm
discussed earlier for which the issue of space-time lo-
cation of the storm is of little relevance. Furthermore,
aswas argued in Zepeda-Arce et al. (2000), missing the
location of the storm versus not reproducing its multi-
scale variability and dynamics points to different short-
comings in the physical parameterizations of the model.
As a consequence, there exist advantages in pursuing
both traditional and multiscale verification procedures.

In this study, no attempt is made to optimize the
model (in terms of initial conditions and data assimi-
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lation) to reproduce the exact morphology of the storm.
As a result, a temporal phase error of 3 h is present
between the predicted and observed storm owing to the
model’s time lag in initiating convection. After the con-
vection was initiated, however, the modeled storm de-
veloped very similarly to the observed in terms of pre-
Cipitation amount, rate, and general structure. Because
the focus of this study is on the question of whether the
multiscale variability of the observed storm was repro-
duced in the model, analysis of the traditional statistics
such asbias and rmse, which areinfluenced by the afore-
mentioned temporal phase error, is not reported. How-
ever, other studies have addressed issues of the Ad-
vanced Regional Prediction System (ARPS) model val-
idation and forecast accuracy using more conventional
statistics (Hou et al. 2001; Miller 2000).

This paper is structured as follows. The numerical
weather prediction model used in this study is described
briefly in the next section, along with the radar data
used to provide the observed fields. The analysis tech-
niques and results are presented in section 3, and the
implications of the similarities and differences between
modeled and observed fields are discussed in the sum-
mary and conclusions (section 4).

2. Model and dataset
a. The Advanced Regional Prediction System (ARPS)

The numerical model used in this study is ARPS,
developed at the Center for Analysis and Prediction of
Storms (CAPS), University of Oklahoma. As the name
suggests, ARPS is more than a cloud model. It is a
complete numerical prediction system that incorporates
many advances in data assimilation developed at CAPS
with particular emphasis on the use of Doppler radar
data for model initialization. ARPS is currently provid-
ing real-time forecasts at horizontal resolutions as high
as 3 km (at the time of writing, examples could be found
online at http://caps.ou.edu/wx/aa). Details of the ARPS
model may be found in Xue et a. [1995 (http://
caps.ou.edu/ARPS/ARPS4.guide.html), 2000, 2001).

ARPS, like most other cloud models and mesoscale
models, is physically based and operates on finite-dif-
ference representations of the Navier—Stokes equations
and thermodynamic and microphysical processes[asix-
category water—ice microphysical parameterization
scheme (Lin et al. 1983) was used]. One might thus
expect such cloud-resolving models to reproduce close-
ly the variability found in observed fields. However, this
often is not the case over the full range of modeled
scales for the reasons concerning computational
smoothing and subgrid turbulent mixing discussed in
the previous section.

The ARPS forecast used in this study employed a
fourth-order computational mixing scheme, which adds
to the conservation equations a small term proportional
to the fourth-order partial derivatives of the perturbation
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of afield quantity from its base-state value. The pro-
portionality constants (K, for the horizontal and K, for
the vertical) in this additive term are the computational
diffusion coefficients (e.g., Pielke 1984; Xue et al.
1995), the values of which in this study were set to K,
= 4.86 X 10° m*stand K, = 1.536 X 107 m* s1.

b. Case description and forecast model configuration

Version 4.4 of ARPS was used to forecast the initi-
ation and subsequent evolution of a line of convection
that developed in eastern New Mexico on 2 June 1999
in response to forcing associated with a well-defined
dryline. By 0000 UTC 3 June, the line was located in
the western Texas Panhandle, and, during the subse-
guent 6 h, the convective system moved slowly eastward
until it began to dissipate in western Oklahoma.

ARPS was configured using three computational
grids, as shown in Fig. 2a: a continental U.S. grid of
32-km resolution (grid A), a nested 9-km grid (grid B),
and a nested 3-km grid (grid C). A schematic indicating
the initialization times and run times of the forecasts
over the three different domains is depicted in Fig. 2b.
The 36-h forecast on grid A wasinitialized at 1200 UTC
on 2 June 1999 using the National Centers for Envi-
ronmental Prediction Eta Model 12-h forecast as the
background field, to which were assimilated, via the
ARPS Data Analysis System (Brewster 1996), Geosta-
tionary Operational Environmental Satellite data, sur-
face observations, rawinsonde, and wind profiler ob-
servations. Boundary conditions for grid A were sup-
plied by the Eta forecast, interpolated in time and space
to the ARPS grid.

The 15-h ARPS forecast on grid B, which was one-
way nested within grid A, was initialized at 1500 UTC
2 June 1999 using the 3-h forecast from grid A as the
background state, to which were assimilated surface,
satellite, and wind profiler observations. In addition,
Next-Generation Weather Radar (NEXRAD) Informa-
tion Dissemination Service reflectivity datafrom 30 ra-
dars were also assimilated at the start of the forecast to
provide storm-scal e moisture and diabatic heating fields.
The 6-h grid-C forecast, one-way nested within grid B,
was initialized at 0000 UTC 3 June 1999 using the 9-
h grid-B forecast, valid at 0000 UTC, as the background
field. Level-Il (base scan) WSR-88D data from the ra-
dars at Fort Worth, Texas, Tulsa, Oklahoma, and Fort
Smith, Arkansas—acquired as part of the Collaborative
Radar Acquisition Field Test (Droegemeier et al.
1999)—were assimilated into the grid-C forecast do-
main using the ARPS single-Doppler velocity retrieval
(SDVR) system (Shapiro et al. 1995; Weygandt 1998).
To be specific, the azimuthal and polar wind components
were retrieved from time series of radial velocity data,
and from this 3D wind field the temperature and pressure
fields were also retrieved. Data assimilation is a major
component of ARPS, and, in particular, the use of Level-
Il NEXRAD data has been shown to aid forecast ac-
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Fic. 2. (@) Map showing forecast domains and study region and (b) time line for the three
forecasts having different resolution. The largest region, grid A, represents the continental U.S.
model run at 32-km spacing over an area of 5120 X 3520 km?. Nested within grid A are regions
for the 9-km run (grid B, 2295 X 2295 km?) and the 3-km run (grid C, 855 X 945 km?). The
shaded study region is a 768 X 768 km? subdomain of grid C.

curacy significantly (Droegemeier et al. 1999). Level-
[ data unfortunately were not available for assimilation
from the Amarillo and Lubbock, Texas, radars.

Each of the ARPS computational grids used 53 levels
inthe vertical, with avertical grid interval that stretched
continuously from 20 m at ground to 740 m at an altitude
of 20 km. Model output from grid C was saved to disk
every 5 min for usein the multiscale statistical analysis.
The domain of study is shown by the shaded region in
Fig. 2a, corresponding to a 768 X 768 km? (256 X 256
pixel) region.

c. WSR-88D data

Level-11 (base scan) WSR-88D data from the Ama-
rillo (KAMA) radar were available for the storm de-
scribed above from about 2200 UTC 2 June to 0100
UTC 3 June 1999 for purposes of comparison with the
model output (as mentioned above, the Amarillo Level-
Il data were not available for assimilation using the
SDVR system). Constant-altitude plan position indica-
tor (CAPPI) maps were made from the lowest two el-
evations, corresponding to four scans given that the ra-



Aucust 2001

dar scanned at the lowest two elevations (~0.5° and
~1.5° respectively) twice. The CAPPIs were then ras-
terized at 2-km horizontal resolution to form 256 X 256
km2 images (128 X 128 pixels; see Fig. 1la) every 5
min for the entire radar dataset.

RLW concentration g, (g m—2) was estimated from
reflectivity Z following Kessler (1969):

q. = az", (1)
where
a=(L73 X 10%* and b = 4/7. 2

The peak reflectivity was marginally over 60 dBZ, in-
dicating the presence of hail, so an upper-bound reflec-
tivity threshold of 53 dBZ was applied. A lower-bound
threshold of 25 dBZ was applied corresponding to an
RLW concentration of 0.1 g m—3. The specific values
of the upper and lower bounds chosen do have, in some
instances, an effect on the results of the multiscale anal-
ysis below, although the effect was usually small. Sen-
sitivity to these bounds was examined in the analysis
by varying the lower bound between 15 and 25 dBZ
and the upper bound between 50 and 60 dBZ. The sen-
sitivities are mentioned together with the respective re-
sults of each analysis method in the following section.

3. Multiscale statistical analysis

Three methods of multiscale statistical analysis were
used in this study: Fourier power spectrum, generalized
structure function, and moment-scale analysis. Each
method is described briefly and its physical interpre-
tation is given prior to the results of the analysis. Results
are presented in this paper for a 1-h sequence of ob-
served and simulated images (1 h being approximately
the time for which the entire storm was in the field of
view of the radar). An overview and an integration of
the findings from the three methods are presented in
section 4.

a. Spatial Fourier power spectra

A simple tool for studying the variability of any field
over a wide range of scales is the Fourier power spec-
trum. The power spectrum is computed using standard
2D FFT algorithms such as those found in Press et al.
(1992). The Fourier power or energy spectrum E(k,, k,)
of any 2D field such as RLW is found by multiplying
the 2D FFT by its complex conjugate, where k, and k,
are the wavenumber components. To facilitate visuali-
zation and comparison, the 2D power spectra from the
fields are averaged angularly about k, = k, = Oto yield
what is referred to here as the isotropic energy spectrum
E(K), with k = (k2 + k2)¥2. The term isotropic energy
spectrum is not to suggest that the field is isotropic but
rather that the angular averaging about k, = k, = 0
integrates the anisotropy, thus facilitating comparisons.

An empirical observation often (but not always) noted
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for awide variety of atmospheric fields is the presence of
scaling or scale invariance, which manifests itself aslog—
log linearity of the power spectrum in space or time:

E(K) ~ k. 3)

Evidence of scaling power spectrafor rain fieldsin both
space and time can be found in numerous studies (e.g.,
Harris et al. 1996; Menabde et al. 1997; Lovejoy and
Schertzer 1995; Georgakakos et al. 1994) as well asfor
cloud liquid water fields (e.g., Davis et al. 1996b; L ove-
joy and Schertzer 1995). The scaling nature of these
atmospheric fields is largely empirical, although argu-
ments in the literature suggest that the scaling of ob-
served scalars such as rainwater or cloud water islinked
to the scaling observed in turbulence (Schertzer and
Lovejoy 1991). The spectral slope 8 is an indicator of
smoothness (e.g., Daviset al. 1996b; Harris et al. 1996),
with high spectral slopes characteristic of a smoother,
more organized structure. For this specific storm and
over the scaling range observed, the full 2D power spec-
trum is nearly isotropic. For storms for which a high
degree of anisotropy is observed over the scaling range,
it may be interesting to characterize further the degree
of anisotropy by considering directional components of
the power spectrum.

The Fourier power spectra of the radar-observed and
forecast RLW fields have been computed for each image
(every 5 min for the radar and model) and are shown
on alog-og plot in Fig. 3 for the image pair shown in
Fig. 1. The spectra have been normalized by their re-
spective mean spectral energies. As was expected be-
cause of computational smoothing, a falloff in vari-
ability at small scales (high wavenumbers) is evident in
the modeled field in comparison with the observed field.
The scale of thisfalloff is estimated to be approximately
15 km, which corresponds to 5 times the horizontal
resolution of the modeled field. The scaling range for
the radar spectrum, shown in Fig. 3, extends to ~30
km and is estimated to have a slope of 8 = 3.0, which
is at the high end of the range of spectral slopes (~1.8
to ~3.0) found for rainfall radar imagery (Menabde et
al. 1999). Over the 1-h sequence of images, the esti-
mates for 8 ranged from 2.7 to 3.1, with a mean of 2.8
+ 0.2. There is some sensitivity of 8 to the value of
the upper bound placed on the reflectivity to account
for hail contamination; the lower bound had no effect.
Varying the upper bound between 50 and 55 dBZ
changed B by ~0.02. However, allowing hail contam-
ination by increasing the upper bound to 60 dBZ lowered
B by 0.1 to 0.2, which is comparable to the fit uncer-
tainty (i.e., standard error of the estimate in the least
squares fit) and temporal variability of g over the 1-h
sequence. Varying the lower bound from 15 to 25 dBZ
had no effect on B. The high values of 8 found here
are consistent with the fact that the analyzed storm is
convectively driven and thus has a highly organized and
smooth spatial structure (Harris et al. 1996). Values of
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FiG. 3. Isotropic spatial Fourier power spectral density (PSD) for forecast RLW (q,; dotted line)
and radar-observed g, (solid line). Comparison of the spectra shows reasonabl e agreement at scales
larger than 15 km. For scales smaller than 15 km, the forecast shows a rapid falloff in variability
in comparison with the radar. The estimated spectral slope with fit uncertainty is 8 = 3.0 = 0.1.

B greater than 2 are of importance for the moment-scale
analysis discussed later in this section.

b. Generalized structure function

The structure function is a popular alternative to the
covariance function when the field being analyzed is
(spatially) nonstationary but has stationary increments
(e.g., Yaglom 1987). We define the 2D structurefunction
generalized to gth order as.

S 1y) = (RX + L,y + 1)) = R W[, (4)

where R is the field of interest (e.g., RLW), () denotes
the average over the nonzero pixels in the image, and
I, and |, are the lags in the x and y directions, respec-
tively. Similar to the Fourier power spectrum, the iso-
tropic structure function was computed by averaging
S,(l., 1,) over al angles about (l,, I,) = (O, 0), giving
S,(I) where | = (12 + 12)¥2. For g equal to 2, one has
the standard semivariogram often used in the earth sci-
ences (e.g., Christakos 1992). Changing the value of q
amounts to selecting whether the statistic places em-
phasis on extreme fluctuations (high q will emphasize
these) or smaller fluctuations [low q (0 < q < 1) will
emphasize these relative to extreme increments.

The physical interpretation of the structure function
is as follows. First, one expects that the structure func-
tion increases with lag, at least for small scales [i.e.,
S,(0) is necessarily 0 and S(I) > O for | > Q]. Therate
at which Sy(l) increases with | is a measure of the
smoothness and degree of organization in the structure

of the underlying field. To illustrate, if one considers a
totally uncorrelated (white noise) field, increasing lag
has little (none in theory) effect on S,(1), giving amore
or less constant value independent of lag (I > 0). On
the other hand, a highly correlated and smoother field
exhibits small S(I) for small lag (because nearby points
are likely to be very similar in magnitude) but exhibits
increasingly greater differencesin (4) aslagisincreased,
causing a steep rise on an S,(I)-versus-| plot.

Scaling in the generalized structure function exists
when

Sq(|) ~ @, (5)

where £(q) is the structure-function scaling exponent.
In general, £(qg) is a nonlinear function of g, but for
special stochastic processes such as Brownian surfaces
it islinear in g. In this study, we focus primarily on g
= 1 because the value of the exponent (1) isthe Hurst
exponent H [e.g., see Daviset al. (1996a) and references
therein]. The Hurst exponent plays an important rolein
the moment-scal e analysis below and is elaborated upon
in the appendix.

The first-order (q = 1) structure functions of the ra-
dar-observed and modeled RLW fields in Fig. 1 are
shown on alog-og plot in Fig. 4. Again, a comparison
shows a steeper curve for the modeled field than the
radar RLW field at scales below 10 km, indicating a
smoother structure for the former at these scales. The
scaling for the observed field shown in Fig. 4 is not
excellent, but it is estimated to have a slope, over the
range extending up to ~10 km, of £(1) = H = 0.65.
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FiG. 4. Isotropic generalized structure function (g = 1) for forecast g, (dotted line-triangles)
and radar-observed g, (solid line—circles). Comparison of the structure functions shows a steeper
falloff for the forecast g, field. The estimated exponent with fit uncertainty is H = 0.65 = 0.05.

Over the 1-h sequence of images analyzed, H varied
from 0.53 to 0.69, with a mean value of 0.55 = 0.03.
Here, H was insensitive to the values of the upper and
lower bounds placed on the reflectivity within theranges
mentioned at the end of section 2c. This exponent is
used to differentiate fractionally the fields for the mo-
ment-scale analysis, as described in the next section and
the appendix.

¢. Moment-scale analysis

Multiscale moments of any field ¢ are computed for
a range of averaging scales r (higher r implies lower
scale),

Mq(r) = (e (% M9, (6)

where ¢, representsfield values at scaler, q isthe order
of the moment, and ( ) denotes the average over all the
pixels of scale r in an image. Note that the reason for
introducing the notation ¢ isto distinguish thefield used
in moment-scale analysis from the observed field R,
such as rainfall or RLW, for reasons explained below.
The scale of the image typically is dyadically reduced
from its original (highest) resolution by successive spa-
tial averaging of the field by a factor of two at each
step. Notice the fundamental difference between (4) and
(6): (4) involves subsampling (i.e., differences) of the
field at distances (lag) | apart; (6) involves averaging
(i.e., integrating) the field over scalesr. These two anal-
ysis methods therefore provide different information, as
will become more apparent in what follows.
Moment-scale analysis gives information about the

intermittency of a field, where the notion of intermit-
tency is generalized beyond the often-used notion of
zero intermittency (i.e., inhomogeneity of the *‘rain—no
rain” structure). This more general concept of inter-
mittency isonethat is natural to multiscaling fields(e.g.,
Davis et al. 1996a), and refers to the varying degree of
sparseness or inhomogeneity of different intensity lev-
els. With this definition, one can see that higher intensity
levels are more intermittent (sparse) than the lower in-
tensities.

To interpret the results of moment-scaleanalysis, con-
sider a highly intermittent and ** spiky”’ field featuring
highly localized peaks and sharp gradients. Degrading
the resolution of the field will diminish the spikes be-
cause they are averaged with lower surrounding values.
For moments of order q > 1, the averaging will thus
result in reduced moments that lead to negative slopes
on a plot of moment versus the averaging scale r. On
the other hand, for afield that is considerably smoother,
peaks are not so localized and averaging will have a
lesser effect because intense values are more likely to
be surrounded by other intense values. Thus the mo-
ment-versus-scale plots will be less steep for smoother
fields.

Scaling of the moments occurs when

My(r) ~ rx@, (7)

where K(qg) is the moment-scaling exponent function
that, in practice, is estimated by log—log linear regres-
sions of the gth moment of |¢,| versusr. It is clear
that K(1) = 0, because the unconditional mean of the
entire field is scale independent. Most scalar fields in
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Fic. 5. Moment scaling (q = 2) for the fractionally differentiated (H = 0.65) forecast g, field
(dotted line-triangles) and the radar observed q, field (solid line—circles). Comparison of the
moments with averaging scale shows a leveling off for the forecast q, field, indicating a falloff
in the intermittency of higher values. The estimated slope with fit uncertainty is K(2) = 0.36 *
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0.01 (see text for the selection of H = 0.65).

the geosciences, such as RLW in our case, do not show
scaling of the moments; however, the increments or fluc-
tuations do, and thisis the reason for using the notation
¢, for the moment-scale analysis, because this analysis
is often carried out on the fluctuations of the observed
field and not the field itself. Equation (7) can be shown
to be a property of multiplicative (multifractal) cascades
[e.g., Gupta and Waymire (1993) and references there],
which are popular in the phenomenological modeling
of turbulence velocity fluctuations and precipitation
fields.

A practical point to note is that the spectral slope 8
of afield is an indicator of whether the moment-scale
analysis should be carried out on the field itself or on
its fluctuations. In theory, it can be shown (Menabde et
al. 1997) that the spectral slope 8 of a multiplicative
cascade [i.e., one which is characterized by (7)] obeys
Bese = D — K(2), where D isthe geometrical dimension
of the field (i.e.,, here D = 2). Because K(2) > 0, for
a 2D spatial field one has B, < 2. Thus, only in the
case of real fields with 8 < 2 should the moment-scale
analysis be performed on the observed values [this is
rare but nonetheless possible for rainfall, as discussed
in Harris et al. (1996)]. If one wishes to adopt the mo-
ment-scale framework of analysis for an observed 2D
field for which g > 2 (as found here), then the differ-
entiation of the original field rather than the field itself
must be used. It remains to determine what order of
differentiation should be used for such a field.

Thereisarich literature, largely promoted by Schertz-

er and Lovejoy (1987), that suggeststhe use of fractional
gradients, with the order of fractional differentiation be-
ing the Hurst exponent, H = £(1). In anutshell, the use
of fractional derivatives in this manner stems from an
analogy to the statistical properties of fully developed
turbulence, and an extension of the techniques used to
characterize turbulence to a wider range of geophysical
phenomena. A background and an intuitive explanation
of fractional differentiation are offered in the appendix.

One may think that by analyzing the moment scaling
of the fractionally differentiated field of interest (i.e.,
RLW), one is effectively treating the real field asafrac-
tionally integrated (i.e., a smoothed) representation of
a cascade or field, which satisfies (7). One of the mo-
tivations to treat our field of interest in this way is that
the use of cascades provides a framework of down-
scaling fieldsto afiner resolution with prescribed small-
scale variability. As discussed in the introduction, in-
troducing realistic small-scale variability via downscal-
ing might provide a necessary and cost-effective alter-
native for rainfall-runoff modeling studies and rainfall
retrieval from microwave radiometers.

Based on the arguments above, the H exponent, es-
timated at H = 0.65 from the observed field, is thus
used to differentiate fractionally both the radar-observed
and modeled RLW for the moment-scale analysis. The
second moment as a function of averaging scale r for
the fractionally differentiated radar-observed and mod-
eled RLW fields in Fig. 1 is shown on the log—log plot
in Fig. 5. The comparison shows that, for smaller scales,
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the curve for the modeled field flattens out for r < 12
km, indicating comparatively lessintermittency at these
scales than for the radar-observed RLW field. This was
found to hold for all moments g > 0, although scaling
quality is usually poorer for very low order moments
(e.g., g < 0.5), because the lower values are more in-
fluenced by noise (Harris et al. 1997). The scaling for
the radar observations in the range from 2 to 32 km is
very good, and for the entire sequence of images the
slopes for the second-order moment-scaling exponent
K(2) ranged from 0.35 to 0.44, with a mean of K(2) =
0.39 = 0.04. There is some sensitivity to the upper and
lower bounds placed on the reflectivity values. Lower
bounds only had an effect for g < 1; the upper bounds
had an effect for moments of q ~ 2 and above. Varying
the upper bound between 50 and 55 dBZ increased K(2)
by about 0.02, and allowing complete hail contamina-
tion by increasing the bound to 60 dBZ increased K(2)
estimates by about 0.1. Higher-order moments were
even more sensitive to hail contamination, increasing
K(3) from 0.75 to 1.00 and K(4) from 1.44 to 1.90. A
final point to consider concerns the specific values of
scaling exponents [B, H, and K(q)] obtained in this
study. The values are representative of the particular
storm structure analyzed. In general one expects dif-
ferent storm conditions to result in different exponents,
and a number of recent studies support this assertion.
Harris et al. (1996) and a follow-up study (Purdy et al.
2001) found significant changes in scaling exponents as
a result of changes in atmospheric stability and differ-
ences in the local orographic environment. In a similar
way, Perica and Foufoula-Georgiou (1996a) found an
empirical relation between their scaling exponents and
the representative convective available potential energy
of a storm.

4. Summary and conclusions

Of primary hydrologic importance with regard to the
quality of a precipitation forecast is of course the mag-
nitude of precipitation amounts, as well as the accuracy
of the forecast time and location of the precipitating
system. Efforts to improve these aspects of a numerical
weather prediction model depend heavily on data as-
similation methodol ogies and the improvement of phys-
ical model parameterizations. Reproducing precipitation
variability of similar statistical structure asthat observed
has received less attention. However, adequate repre-
sentation of precipitation variability has been demon-
strated to be important for accurate estimation of hy-
drologic and energy fluxes (e.g., Ogden and Julien 1993,
1994; Winchell et al. 1998; Zhang and Foufoul a-Geor-
giou 1997; Nykanen et al. 2001). Also, because precip-
itation interacts with the land surface in acomplex non-
linear way and over a wide range of scales, it isim-
portant for numerical weather prediction models to re-
produce the multiscale variability of precipitation and
not only the precipitation variability over asingle scale
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(e.g., the model resolution or the observations scale).
This also becomes especially important in other appli-
cations of numerical cloud-resolving models, such as
precipitation retrieval from microwave sensors, which
were discussed in the introduction.

In a previous study, Zepeda-Arce et al. (2000) com-
pared the multiscale rainfall variability of normalized
rainfall fluctuations over scales of 12-48 km (using a
6-km model forecast) and over a duration of 12 h. That
study found that, for the 7—8 May 1995 6-km forecast
over Oklahoma, standardized rainfall fluctuations of the
18-min and hourly rainfall accumulation fields in the
model had larger variability than in the observations but
slower growth of variability with increase of scale. Also,
the observations exhibited large temporal variability of
their multiscale properties as the storm evolved, but the
properties of the model remained aimost constant. As
discussed in the introduction, the methodologies em-
ployed in Zepeda-Arce et al. (2000) focused on rainfall
fluctuations over scales of 12 km and larger.

In this study, a comparison of observed and model-
produced precipitation fields (at 3-km resolution) is per-
formed through the use of multiscale statistics such as
Fourier analysis, structure functions, and moment-scale
analysis, which allow interpretation of rainfall-intensity
variability down to the resolution of the model. These
statistical techniques revealed that the scale dependence
of precipitation variability of the 3-km-resolution mod-
eled fields was encouragingly similar to that observed
by the radar, but only above a certain scale estimated
at about 15 km. Thisis encouraging for the use of QPF
estimates in many applications for which smaller-scale
variability can be shown to be of minor importance. For
scales smaller than about 15 km, however, the modeled
variability falls off relative to radar-observed variability.
The spectrum of the modeled fields showed a falloff in
variability at high frequencies in comparison with the
observed precipitation. The structure function was much
steeper for the model, indicating a more spatially cor-
related structure than for the radar. Last, the moment-
scale analysis showed a flattening out of the moment-
scale curves, indicating a lack of intermittency, where
intermittency refers to the sparseness of sharp intensi-
ties.

The falloff in variability of modeled precipitation at
scales between the model resolution and approximately
5 times that scaleis associated with (implicit) numerical
diffusion and (explicit) computational-smoothing pro-
cedures inherent in the numerical model integration pro-
cess, the latter of which is added to ensure numerical
stability. Improving the spatial resolution will clearly
improve the ability of the model to resolve small-scale
features (e.g., Droegemeier et al. 1994, 1996; Lilly et
al. 1998), but there always will be afalloff in variability
at the smallest scales because of computational smooth-
ing. The assertion that computational smoothing is a
primary source of the lack in variability has been sup-
ported in previous work (Harris and Foufoula-Georgiou



416

2001) in which the variability at small scaleswas found
to be related directly to the computational smoothing
parameters.

The results of our study suggest that if one desires a
3-km precipitation forecast with an accurate represen-
tation of the scale dependence of precipitation vari-
ability at that scale and above, one may have to run the
model with a horizontal spacing of about 600 m [i.e.,
5-times smaller grid size than the desired scale of in-
terest (3 km)]. This requirement is costly, if not infea-
sible, for the domain sizes typically needed to capture
larger-scale forcings that influence storm dynamics. It
also is completely infeasible for ensemble predictions
and probabilistic forecasts. Of course, aviable and wide-
ly used alternative is nested gridding, but questions of
grid size and the impact of outer-domain resolution have
not yet been addressed fully.

Another aternative worth exploring is stochastic
downscaling, which can be performed on a personal
computer in a few seconds per image. Based on the
results of this study, it issuggested that the model output
aggregated to a scale approximately 5 times the model
grid resolution and then stochastically downscal ed back
to the desired smaller scales can resultin amorerealistic
representation of the small-scale rainfall variability. The
statistical methods of analysis used in this study, in par-
ticular the scaling exponents estimated from the radar
fields, can be used to construct a downscaling meth-
odology using an appropriate multiplicative cascading
process that matches the moment-scaling function K(q)
that is estimated from the radar data. A study investi-
gating the merits of this approach for improving the
accuracy of microwave remote sensing of precipitation
is currently under way.
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APPENDIX
Moment-Scaling Analysis and Fractional Deriva-
tives
In analogy to fully developed turbulence for which
one has, for velocity v,
[v(x + 1) — v(X)| ~ e3(x)I3, (A1)

where ¢ is the conserved energy flux, which is a scale-
invariant process, an approach found in the literature
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(e.g., Lovejoy and Schertzer 1995) is that there exists
a ‘‘conserved,” albeit unknown, quantity (analogous to
e in turbulence) for precipitation or any other geo-
physical field. Denoting this quantity by ¢(x), it issome-
times called the underlying ‘‘conservative’” field,
(Schertzer and Lovejoy 1987) to draw the analogy to
the conserved energy flux in turbulence. If one makes
an implicit assumption that it too is scale-invariant [as
e(x) is for turbulence, and which can later be verified
to be true or false for ¢(X)], then one has for a generic
field R, with scaling structure function,

IRX + 1) = RX)| ~ ¢2(X)IH. (A2)

Without loss of generality one can set a to unity, and
H is the scaling exponent that determines the scale de-
pendence of the first-order structure function of R.

In other words, R(X) on its own is not expected to
satisfy (7), but ¢(X) may be characterized by its scaling
moments as given by (7). To isolate ¢(x), we use the
property of a fractional derivative [e.g., Hilfer (1997);
Gorenflo and Mainardi (1998) and references therein]
in which, for H real, the operator

o 1
o m (A3
One then obtains for a field as in (A2),
I"R(X)
o oW (A4)

What remains after fractional differentiation isthefield
¢(X), which can be analyzed using the moment-scale
analysis of (6) and the scaleinvariance of ¢(x), implying
that the relation in (7) holds.

As outlined in section 3, in practice one estimates H
from the structure function [(4)], and from (5) and (A2)
one has that £(1) = H. Note that fractional differenti-
ation is reversible by fractional integration (e.g., Gor-
enflo and Mainardi 1998; Hilfer 1997), and so, in prin-
ciple, one can retrieve an observed field R from ¢ to
within a multiplicative normalization constant. In this
way R can be seen to be a smoothed representation of ¢.

Fractional differentiation and integration are most
easily carried out in Fourier space (e.g., Davis et al.
1996a). If R(K) is the Fourier transform of the (real
valued) generic field R, then the inverse Fourier trans-
form of R(K)|k|", H > 0, corresponds to fractional
differentiation, and the inverse Fourier transform of
R(K) | k| =", H > 0, correspondsto fractional integration.
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