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ABSTRACT

A coupled modeling framework is used in this study to investigate the effect of subgrid-scale rainfall variability
on the spatial structure of the evolving storm and on other surface variables and water and energy fluxes. The
Fifth-Generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model
coupled with the Biosphere–Atmosphere Transfer Scheme is combined with a dynamical/statistical scheme for
statistically downscaling rainfall. Model simulations with and without including subgrid-scale rainfall variability
are compared at the grid scale to quantify the propagation of small-scale rainfall heterogeneities through the
nonlinear land–atmosphere system. It was found that including subgrid-scale rainfall variability (here on the
order of 3 km) affects the spatial organization of the storm system itself, surface temperature, soil moisture,
and sensible and latent heat fluxes. These effects were found to occur at spatial scales much larger than the
scale at which rainfall variability was prescribed, illustrating the pronounced nonlinear spatial dynamics of the
land–atmosphere system and its important role on hydrometeorological predictions.

1. Introduction

Understanding the space–time variability of rainfall
at a range of spatial and temporal scales and improving
its representation in coupled atmospheric–hydrologic
models is of critical importance in advancing our ability
to predict variations in weather and climate. This study
investigates to what degree the small-scale (#10–20
km) variability of rainfall is important in modulating
the spatial organization of water and energy fluxes in
the coupled land–atmosphere system.

Observed rainfall has been shown to have significant
variability at scales much smaller than the typical grid
sizes of mesoscale or global circulation models, down
to the scale of a few meters (e.g., Schertzer and Lovejoy
1987; Gupta and Waymire 1990; Perica and Foufoula-
Georgiou 1996a; Harris et al. 1996). Previous studies
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have documented the importance of small-scale rainfall
variability on the simulated runoff from a basin using
rainfall–runoff models for which rainfall was prescribed
offline and was not coupled to the land surface (e.g.,
see Kouwen and Garland 1989; Krajewski et al. 1991;
Ogden and Julien 1993, 1994; Michaud and Sorooshian
1994; Obled et al. 1994; Faures et al. 1995; Winchell
et al. 1998). It is known, however, that the land surface
and the atmosphere interact and influence each other
through nonlinear feedbacks and act as a coupled sys-
tem. Thus, a more accurate evaluation of the effects of
subgrid-scale rainfall variability is expected to result
when a coupled land–atmosphere model is used.

The impact of ignoring the subgrid-scale rainfall var-
iability (i.e., second- and higher-order moments) and the
propagation of this variability via the nonlinear equa-
tions of the coupled land–atmosphere system can result
in significant biases of the predicted variables at scales
larger than the scale of the prescribed rainfall variability.
This point is schematically illustrated in Fig. 1 which
considers the nonlinear evolution of a variable X at two
different scales: a small scale (top) and a larger scale
(bottom). This schematic demonstrates that, even if the
scale of interest is large, predicting the evolution of X
at a later time [i.e., X → F(X) where F is a nonlinear
operator] is not the same as predicting that variable at
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FIG. 1. Nonlinear evolution of a variable X at two different scales. Depending on the temporal gradient of the nonlinear operator
F and the magnitude of the subgrid-scale variance of X, the prediction at the larger scale F(X) (bottom) can be very different from
the average of the small-scale predictions F(X ) (top).

smaller scales and computing an average of these pre-
dictions, that is, F(X) 5 [F(X1) 1 F(X2) 1 F(X3) 11

4

F(X4)] ± F(X). The approach on top has explicitly con-
sidered the subgrid-scale variability of the variable, and
F(X) includes this effect; the approach at the bottom
has ignored the subgrid-scale variability. Depending on
the temporal gradient of the operator F and the mag-
nitude of the subgrid-scale variance, F(X) can be very
different from F(X).

A first step toward evaluating the effects of subgrid-
scale rainfall variability in the coupled land–atmosphere
system was done by Zhang and Foufoula-Georgiou (1997).
That study used The Fifth-Generation Pennsylvania State
University–National Center for Atmospheric Research
Mesoscale Model (MM5) with its Blackadar planetary
boundary layer scheme to assess the effects of subgrid-
scale rainfall variability on the surface temperature distri-
bution and further development of the storm system itself.
The results indicated significant effects and pointed out
the need for more rigorous quantitative assessment, es-
pecially using more accurate representation of the land–
atmosphere exchanges. The current study aims toward this
direction. It uses the MM5 model coupled with the Bio-
sphere–Atmosphere Transfer Scheme (BATS) to capture
better the nonlinear feedbacks between the highly variable

rainfall and the surface/subsurface response of a basin.
The scope is to investigate how subgrid-scale variability
of rainfall affects the prediction of the evolving storm,
surface variables, and water and energy fluxes when the
coupling of the land and atmosphere is properly acknowl-
edged.

This paper is structured as follows. In section 2, the
MM5–BATS model is briefly described together with the
statistical rainfall downscaling scheme and its two-way
coupling with MM5–BATS. Section 3 presents the details
of the numerical experiment. The research methodology
used in this study to allow the subgrid-scale rainfall var-
iability to propagate through the coupled MM5–BATS
land–atmosphere system is described in section 4. This
section also presents verification that the variability added
to the rainfall at the subgrid scale is reasonable. The results
of the numerical experiment are discussed in section 5,
and conclusions are presented in section 6.

2. Model description

a. MM5–BATS coupled model

The MM5 mesoscale model coupled with the BATS
land surface scheme was used in this study to simulate
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atmospheric and surface conditions over a 48-h period.
The MM5 modeling system contains state-of-the-art fea-
tures such as multiple-nest capability, hydrostatic and
nonhydrostatic dynamics, four-dimensional data assim-
ilation, vertical terrain-following sigma coordinate,
many physics options, as well as multitasking capabil-
ities on shared- and distributed-memory machines (Grell
et al. 1995; Michalakes 1998).

The coupling of BATS with MM5 provides a more
detailed land–atmosphere interaction scheme than is
otherwise available with MM5 alone (Lakhtakia and
Warner 1994). Dickinson et al. (1993) gives a detailed
description of the physical processes and parameteri-
zations used in BATS. One of the main advantages of
BATS over the simple force–restore slab model typically
used in MM5 is that it contains a more sophisticated
biophysically based representation of vegetation and its
effects on energy and water fluxes. In addition, BATS
has more realistic soil hydrologic processes than the
standard slab-type model. BATS has three soil layers
with infiltration, percolation, vegetation root structure,
and heat exchange between the layers. It has the ca-
pability of plants to intercept and to evaporate part of
the precipitable water and can have coexistence of bare-
soil and vegetated subareas within a grid box. BATS
also has time-dependent surface characteristics and
time-dependent soil hydrologic behavior. For example,
the moisture availability changes throughout the sim-
ulation based on rainfall and evaporative processes. A
detailed description of the differences between BATS
and the slab-type land surface schemes in MM5 and the
corresponding effects of these differences can be found
in Lakhtakia and Warner (1994).

b. Subgrid-scale rainfall variability and downscaling

Based on statistical analysis of numerous mesoscale
convective storms, Perica and Foufoula-Georgiou
(1996a) found that standardized spatial rainfall fluctu-
ations (jL 5 / XL, where is the difference in rainfallX9 X9L L

intensities at adjacent pixels of scale L in the longitu-
dinal, latitudinal, and diagonal directions and XL is the
average rainfall intensity at that same scale) exhibited
Gaussianity and simple scaling (see also Kumar and
Foufoula-Georgiou 1993a,b), implying that

Hs Lj,L 11 5 , (1)1 2s Lj,L 22

where sj,L is the standard deviation of j at scale L km
and H is a scale-independent parameter. Perica and Fou-
foula-Georgiou (1996a) found this relationship to hold
within scales of 4–64 km for which observations were
available. Later studies by Venugopal et al. (1999) and
Harris and Foufoula-Georgiou (2001) found it to extend
down to the scale of 2 km (using Next-Generation
Weather Radar images) with no scaling break. Perica
and Foufoula-Georgiou (1996a) also established an em-
pirical connection between statistical and physical storm

characteristics by quantifying relations between the
scaling parameter H and thermodynamic or kinematic
indices of the prestorm environment, such as, the con-
vective available potential energy (CAPE), convective
inhibition, bulk Richardson number, wind shear, and se-
vere weather threat index. The best correlation was ob-
tained with CAPE, and only a small improvement in the
explained variability was achieved if other variables
were included in the predictive relationship. They found
that the parameter H could be predicted from CAPE
ahead of the storm as

H 5 0.052 1 0.965 CAPE 3 1024

(R 5 0.82), (2)

where CAPE is in meters squared per second squared,
H is dimensionless, and R is the correlation coefficient
between H and CAPE. The empirical coefficients in Eq.
(2) were derived from 47 selected radar scans covering
mature and dissipating stages of storm development col-
lected during the 2-month Oklahoma–Kansas Prelimi-
nary Regional Experiment for Storm-Central, field pro-
gram. Thus, this relationship is considered to be appli-
cable to midlatitude mesoscale convective systems over
terrain and land use similar to the Oklahoma–Kansas
region (for more details see Perica and Foufoula-Geor-
giou 1996a).

The relationships in Eqs. (1) and (2) allowed for the
development of a new subgrid-scale rainfall disaggre-
gation model that can statistically reproduce the rainfall
variability at scales unresolved by mesoscale models
while being conditioned on known large-scale rainfall
averages and physical properties of the prestorm envi-
ronment. In brief, a representative value of CAPE [see
Zhang and Foufoula-Georgiou (1997) and section 2c of
this paper] computed from the mesoscale model simu-
lation is used to predict the value of H from Eq. (2).
Then Eq. (1) is used to infer the variability of rainfall
fluctuations at any scale given the variability at a ref-
erence scale (here, the grid size of the mesoscale model).
Based on an inverse filtering procedure (inverse Haar
wavelet transform), these fluctuations at different scales
together with the initial large-scale average field can be
used to reconstruct statistically the subgrid-scale rainfall
variability [for details see Perica and Foufoula-Georgiou
(1996b)].

It is emphasized that any rainfall downscaling scheme
that can successfully reproduce the subgrid-scale rain-
fall variability could be used in our study in lieu of the
scheme described above. However, the selected scheme
offers some desirable advantages over other downscal-
ing schemes. The most notable advantages are that the
statistical characterization of downscaling [Eq. (1)] ap-
plies over a range of scales with a single parameter H
(scale invariance) and that the value of H is linked to
the thermodynamic properties of the prestorm environ-
ment [Eq. (2)]. The scale invariance implies a parsi-
monious statistical model, and the relation of the scaling
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parameter H to CAPE allows its prediction from a phys-
ical variable computed in most mesoscale models.
Moreover, the scaling parameter H is updated in time
as the storm evolves and its CAPE changes, and this
property allows the effects of subgrid-scale rainfall var-
iability to be followed dynamically in time throughout
the simulation. The selected rainfall downscaling
scheme has been shown to perform well in reconstruct-
ing the percent of area covered by the storm at all sub-
grid scales (Perica and Foufoula-Georgiou 1996b).

Note that the grid-scale average rainfall (i.e., starting
point for the downscaling scheme) and the computed
values of CAPE depend on the MM5 model resolution
(e.g., Zhang and Foufoula-Georgiou 1997), and thus an
indirect dependence of H on the selected model reso-
lution may result. However, Perica and Foufoula-Geor-
giou (1996b) have shown that the performance of the
downscaling scheme in terms of reproducing the statis-
tical structure of rainfall and its fractional coverage of
rainy areas is not overly sensitive to small perturbations
in CAPE; a 20% range in CAPE yielded less than 10%
error in the statistical measures of the simulated (down-
scaled) rainfall fields. As noted in Zhang and Foufoula-
Georgiou (1997), if the resolution varies within a range
such that the model still adequately captures the storm
dynamics, the resulting changes in the computed CAPE
do not induce significant changes in the statistical struc-
ture of the downscaled fields.

c. Coupling of the rainfall downscaling scheme to
MM5–BATS

As discussed in the previous section, CAPE is, in our
downscaling scheme, the critical link between the sta-
tistical description of the subgrid-scale rainfall vari-
ability and the thermodynamic behavior of the storm
environment. In a modeling system, CAPE can be com-
puted from variables (vertical profiles of temperature,
pressure, and mixing ratio of water vapor) predicted by
the model at each grid point. There are several accept-
able ways in which CAPE can be computed from model
variables. To be consistent with the method used when
the empirical relationships in Eq. (2) was derived by
Perica and Foufoula-Georgiou (1996a), a surface-based
CAPE was calculated at each model grid point using
the formulation from the General Meteorological Pack-
age (GEMPAK; University Corporation for Atmospher-
ic Research 1992).

The empirical relationship between the statistical
characterization of multiscale rainfall variability and
CAPE given by Eq. (2) is based on using a single value
of CAPE describing the environment ahead of the con-
vection. Thus, the CAPE computed within the model at
each time step needs to be reduced into one storm-
representative value for use in Eq. (2). Zhang and Fou-
foula-Georgiou (1997) introduced a representative
CAPE value, denoted by ^CAPE& and defined as

N1
^CAPE& 5 CAPE 3 I , (3)O i K ,isN i51s

where CAPEi are the gridpoint values computed fol-
lowing the GEMPAK formulation, Ns is the number of
grids at which CAPEi is greater than a selected threshold
value Ks, N is the total number of grid points in the
model domain, and is an indicator function that isIK ,is

either 0 or 1 depending on whether CAPEi is less or
greater than Ks (i.e., 5 0 if CAPEi , Ks or 5I IK ,i K ,is s

1 if CAPEi $ Ks). The value of Ks is kept fixed through-
out the simulation so that changes in ^CAPE& provide
meaningful information on the storm evolution. The val-
ue of Ns, which depends on the preselected value of Ks,
varies over time as the storm evolves.

It was observed by simulation (Zhang and Foufoula-
Georgiou 1997) that the spatial distribution of CAPE
tends to have higher values ahead of the convection and
lower values behind it. Therefore, by selection of an
appropriate threshold value Ks, the representative CAPE
presented in Eq. (3) filters out lower background CAPE
values and captures the CAPE ahead of the convection
into a single value for use in Eq. (2). Further discussion
on ^CAPE& and the selection of an appropriate threshold
value based on observations can be found in Zhang and
Foufoula-Georgiou (1997).

The rainfall computed by MM5 at the model grid
scale can now be statistically downscaled into subgrid
scales as follows: (a) CAPE is computed at each of the
MM5 grid points following the GEMPAK formulation,
(b) ^CAPE& is computed according to Eq. (3), (c) the
scaling exponent H is computed from Eq. (2) using the
representative value of ^CAPE&, (d) the standard devi-
ation of the standardized rainfall fluctuations at the
MM5 grid scale ( ) is computed from the MM5-sj,L1

predicted rainfall intensities, (e) the standard deviation
of rainfall fluctuations at any scale smaller than L1 is
estimated from Eq. (1), and (f ) the inverse Haar wavelet
transform and Eq. (1) are used iteratively to downscale
the MM5 rainfall to the desired subgrid scale. It is noted
that this downscaling scheme guarantees (by its spatially
localized structure) the preservation of grid-scale mean
rainfall at all grids. By including some simple image-
processing routines, we also ensure a realistic connec-
tivity between wet and dry areas at the subgrid scale.
That is, at each smaller scale the new subgrid values
generated within each of the larger grids from the pre-
vious scale are rearranged by shifting the largest inten-
sity to the subgrid box that is surrounded by high in-
tensities and the smallest intensity to the subgrid box
surrounded by the low intensities (Perica 1995). This
rearranging improves the connectivity and spatial cor-
relation of the subgrid-scale rainfall values to each other
and to surrounding grid-scale rainfall values. The reader
is referred to Perica and Foufoula-Georgiou (1996b) for
more details and statistical evaluation of the downscal-
ing scheme performance.
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FIG. 2. Experimental setup. The MM5–BATS model was run at a
grid spacing of 36 km in the outer domain (domain 1) of size 3420
km 3 4140 km (94 3 114 boxes) and at a spacing of 12 km in the
inner domain (domain 2, shown by the interior box) of size 1116 km
3 1044 km (92 3 86 boxes). The dot inside domain 2 shows the
location of the KEAX radar.

TABLE 1. Model input parameters.

Initialization time 1200 UTC 4 Jul 1995
Integration time step 90 s
Simulation length 48 h
No. of vertical grid elements 32
Horizontal grid resolution 36 km, 12 km
Lateral boundary conditions NCEP global analyses
Soil moisture initialization Soil hydrology model (via ESSC)
Land cover, soil texture USGS-EDC
Nesting type Two-way interactive
Cumulus paramterization

scheme
Grell

3. Numerical experiment

Assessment of the effects of subgrid-scale rainfall
variability on water and energy fluxes is made in this
study by comparison of a control run (called CTL) in
which the MM5–BATS model does not include subgrid-
scale rainfall variability with a run that includes statis-
tically downscaled rainfall at the subgrid scale (called
SRV). We emphasize that the assessment of the effect
of subgrid-scale rainfall variability is done in a com-
parative way (i.e., with and without variability) and not
by comparison with actual observations. However, in-
stead of creating a completely hypothetical case, we
have chosen to use a real storm that occurred on 4 July
1995 and is characterized as a multiple squall line event
that produced severe thunderstorms and damaging
winds over Kansas; a tornado in Missouri; and heavy
rainfall over Oklahoma, Iowa, and northern Texas. The
event lasted over 24 h, and maximum rainfall intensities
were in excess of 100 mm h21. A complete description
of the meteorological conditions of this 4 July 1995
event can be found in Browning et al. (1997).

The 4–5 July 1995 storm provides a good case study
for investigating the effects of subgrid-scale rainfall var-
iability and how it propagates through the coupled land–
atmosphere system over time. The long duration of the
storm provides a sufficient time for the subgrid-scale
rainfall variability to alter the state of the land surface
(e.g., soil moisture and surface temperature). The mul-
tiple-state extent of the storm provides a sufficiently
large area to study the impacts on the larger-scale spatial
organization of land–atmosphere fluxes. The location of
the storm over the central United States corresponds to
the same area for which the rainfall downscaling scheme
used in this study was derived and tested in Perica and

Foufoula-Georgiou (1996a). The numerical simulation
of this storm was reasonable, as judged by qualitative
comparison of the observed and simulated fields, al-
though no specific attempt was made to assess quanti-
tatively the MM5–BATS success in reproducing it. As
discussed in the next section, the observed rainfall fields
were only used to assess the realism of the statistical
structure of the subgrid-scale rainfall variability intro-
duced by our downscaling scheme.

A nested grid configuration was used as shown in
Fig. 2. The coarse mesh (domain 1) has a horizontal
grid spacing of 36 km, and the inner nest (domain 2)
has a 12-km spacing. Two-way interactive feedback was
used between the domains; that is, the nest’s lateral
boundary conditions are provided by the coarse grid
while the feedback to the coarse mesh occurs over each
grid within the interior of the nest. The vertical grid
consists of 32 levels, with 10 levels in the lowest 1500
m of the atmosphere. The Grell cumulus parameteri-
zation scheme, which was found by Wang and Seaman
(1997) to perform well in predicting the duration and
total volume of warm-season rainfall events, was used
for both domains. The initial and lateral boundary con-
ditions were generated by interpolating the National
Centers for Environmental Prediction (NCEP) Early Eta
Model analysis and forecast fields to the MM5 grid. Soil
moisture initialization, land cover, and soil texture data
files were used as input to the BATS component of the
coupled MM5–BATS modeling system. For the soil
moisture initialization, the three-dimensional soil water
content field generated by the Soil Hydrology Model at
The Pennsylvania State University Earth System Sci-
ence Center (ESSC) was used. The land cover and soil
texture data files were obtained from the United States
Geological Survey (USGS) Earth Data Center (EDC).
Topography and land surface data were provided at the
36-km resolution. A summary of the model setup and
input parameters is given in Table 1. The simulation
experiments of the CTL and SRV runs are described in
Table 2.

4. Research methodology
a. Propagation of subgrid-scale rainfall variability

through the coupled land–atmosphere system
To assess the effects of subgrid-scale rainfall vari-

ability on other variables of the water and energy cycle,
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TABLE 2. Simulation experiments.

Runs 36 km 12 km
Subgrid rainfall

(at 3 km)

CTL
SRV

On
On

On
On

Off
On

FIG. 3. Schematic of the subgrid-scale implementation of MM5–
BATS. The dashed arrows show the flow of the original MM5–BATS
coupled model. The solid arrows show the flow of the subgrid im-
plementation of the MM5–BATS coupled model.

this variability must be allowed to propagate through
the coupled land–atmosphere system at the scale at
which it was imposed. In this study, the statistically
downscaled rainfall is used as input into the BATS com-
ponent of the coupled model, which is run at a resolution
equal to the resolution of the downscaled rainfall. The
prescribed subgrid-scale variability of rainfall propa-
gates through the linear and nonlinear equations of
BATS [e.g., see Dickinson et al. (1993) and Yang and
Dickinson (1996) for these equations] to produce sub-
grid-scale variability in other land surface variables.
Through the two-way interactive coupling of MM5 and
BATS, the resulting variability in the land surface var-
iables feeds back to the atmosphere.

Figure 3 shows a schematic of the subgrid-scale im-
plementation used in the SRV run along with the orig-
inal MM5–BATS coupling used in the CTL run. Within
domain 2, MM5 is run at the grid scale of 12 km, and
the rainfall downscaling and BATS are run at a finer
3-km subgrid scale. This was done by redistributing the
BATS input variables to the 3-km subgrids within each
of the 12-km grid boxes. To isolate the effects of the
subgrid-scale rainfall variability, the other BATS input
variables (e.g., soil properties, initial soil moisture, tem-
perature, pressure) were homogeneously distributed
within the 12-km boxes at the beginning of the simu-
lation; that is, the resolvable grid-scale value of these
variables was used for each subgrid box contained with-
in the MM5 grid box. At later time steps, the subgrid-
scale variables simulated by BATS (e.g., soil moisture,
surface temperature, surface fluxes) were allowed to
evolve in response to the imposed subgrid-scale rainfall
variability.

To be used by MM5 at the next time step, the BATS
variables were returned to MM5 by averaging over the
subgrid back to the resolvable MM5 grid scale. The
subgrid-scale values of the BATS variables that were
not altered by MM5 were kept for input at the next time
step. The BATS subgrid-scale variables that were altered
by MM5 were linearly adjusted at the next time step to
preserve the new MM5 grid-scale average. This was
done to preserve the grid-scale water and energy budgets
produced by MM5 while maintaining the subgrid-scale
variability and spatial distribution of these variables.

Implementing BATS on the subgrid scale and then
areally averaging its output variables back to the 12-km
grid to be used by MM5 for the next time step allows
for the temporal propagation of the subgrid-scale rainfall
variability through the nonlinear land–atmosphere sys-
tem to be followed in a dynamical way. That is, ex-
plicitly incorporating this subgrid-scale variability with-

in BATS and its nonlinear feedback to MM5 at the grid
scale affect how the coupled land–atmosphere system
evolves over time. Although the variability is applied
at the subgrid scale, the effects are viewed back at the
larger MM5 grid scale such that comparisons can be
made with the MM5 control run that did not include
subgrid-scale rainfall variability.

b. Ensemble simulations

Because the scheme used for downscaling rainfall is
statistically driven, each subgrid-scale rainfall field is
one realization of a realm of possible fields that can be
generated from the same large-scale average values and
the storm environmental parameters such as CAPE. To
assure that the effects we see are not artifacts of one
particular realization but are truly coming from the in-
teraction of the subgrid-scale rainfall heterogeneities
and the dynamics of the land–atmosphere system, a 15-
member ensemble of SRV runs was created by gener-
ating different realizations of standardized rainfall fluc-
tuations [from normal distributions of zero mean and
standard deviations specified by Eq. (1)] for use in the
downscaling scheme. If everything else is kept the same,
each realization of subgrid-scale rainfall will propagate
through the nonlinear system of equations in a different
way and will result, at a later time and at the same grid
box, in different values of the land–atmosphere vari-
ables, for example, latent and sensible heat fluxes.

For the effects of subgrid-scale rainfall variability to
be judged, as statistically significant, the difference be-
tween the CTL run and the average of the ensemble of
SRV runs must be outside the statistical variability of
the ensemble. Here, statistically significant differences
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FIG. 4. Nonzero instantaneous rainfall observed within the KEAX
radar domain (solid line) and the same for the MM5-simulated rainfall
without downscaling (dotted line) and with downscaling (dashed
line). Notice that the model offsets the simulated peak by approxi-
mately 4 h. Comparison of the multiscale variability of the observed
and downscaled rainfall was performed within the shaded 2-h periods
centered around the peaks.

FIG. 5. Comparison of multiscale variability of observed and MM5-
modeled and -downscaled instantaneous rainfall. The values shown
are averages over a 2-h period around the peak rainfall rate (see Fig.
7). The solid line corresponds to the rainfall observed within the
KEAX radar domain and the dashed line to the MM5-simulated rain-
fall with downscaling (SRV run). At the model grid scale of 12 km,
the standard deviation of the MM5-simulated rainfall without down-
scaling (CTL run) is also shown in the figure (circle).

were denoted as any differences that are outside the
range of the mean plus/minus one standard deviation of
the ensemble, that is, differences for which

|SRV 2 CTL| . s . (4)SRV

The results from the SRV ensemble runs were found
to be statistically and physically similar, with spread
among them much smaller than the spread between any
member of the ensemble and the control run. This result
provided reassurance that the effects of including sub-
grid-scale rainfall variability and accounting for its non-
linear propagation through the land–atmosphere system
were not merely artifacts of one particular realization
of downscaled rainfall. The accumulated rainfall and
upper-layer relative soil moisture SRV ensemble results
are discussed later, in section 5a (Figs. 7e,f). More re-
sults from the ensemble simulations can be found in
Nykanen (2000).

c. Subgrid-scale rainfall verification

Because conclusions related to the effects of subgrid-
scale rainfall on other variables in a coupled land–at-
mosphere scheme hinge on how realistic the introduced
subgrid-scale rainfall variability is, here an attempt is
made to verify that the subgrid-scale rainfall variability
added in the SRV run is reasonable when compared with
the observed subgrid-scale variability. For that purpose,
2-km-resolution observed rainfall from the KEAX radar
located at Pleasant Hill, Missouri, was compared with
the subgrid-scale rainfall added via downscaling in the
SRV run within the 256 km by 256 km KEAX coverage
area.

Comparisons of rainfall intensities between the model
and observations showed that MM5 was able to capture
reasonably the spatially averaged peak rainfall intensity
but with an offset of almost 4 h (see Fig. 4). No attempt
was made in our study to synchronize the peaks and
optimize the performance of MM5, because this offset
is of no consequence when the fluxes simulated by the
CTL and SRV runs are compared with each other but
not with the actual observed fluxes. However, to com-
pare the subgrid-scale variability of downscaled and ob-
served rainfall, the large-scale averages have to be of
comparable magnitude. For this reason, we concentrated
on a 2-h period centered around the observed and sim-
ulated peak rainfall (see Fig. 4) and compared the mul-
tiscale variability (2–12 km for radar and 3–12 km for
model-predicted rainfall). Figure 5 demonstrates that the
subgrid-scale variability introduced is realistic and is
similar to that of the actual rainfall fields. If anything,
the introduced variability is seen to be less than that
observed and therefore the impacts of accounting for
small-scale rainfall variability might be even larger than
the ones reported in this study.

Figure 6 shows the temporal evolution of the repre-
sentative CAPE (^CAPE&) and the scaling parameter H
for the 4–5 July 1995 storm as simulated by the SRV
run. The ^CAPE& and consequently H [as computed by
Eq. (2)], followed well the dynamical evolution of the
storm as it passed through domain 2. The first peak at
t 5 11 h captures the storm that moved through the
northern half of the domain, and the second peak at t
5 17 h captures the storm that moved through the south-
ern half of the domain. When the rainfall moves out of
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FIG. 6. Time evolution of ^CAPE& and H for the 4–5 Jul 1995
storm as simulated by the SRV run.

domain 2 at approximately t 5 27 h, the ^CAPE& and
H parameters rapidly decrease.

5. Results

a. Anomalies in model-predicted variables

The effects of including or omitting the subgrid-scale
variability of rainfall on other variables of the water and
energy cycle simulated through the coupled land–at-
mosphere system were quantified by comparing the CTL
and SRV model simulations. Differences between the
CTL and SRV runs are referred to as ‘‘anomalies’’ and
are expressed as SRV minus CTL. It is emphasized that,
although the rainfall variability was applied at the 3-km
subgrid scale, the results or effects of including this
variability were assessed back at the 12-km model grid
scale.

Rainfall occurred during the simulation from approx-
imately t 5 9 until t 5 27 h producing peak accumu-
lations that exceed 100 mm. Peak hourly rainfall rates
exceeded 40 mm h21 as the storm passed over Missouri,
Arkansas, and southeastern Oklahoma. The total rainfall
accumulated at 27 h into the simulation is shown for
the CTL run in Fig. 7a. The relative soil moisture in
the upper soil layer (top 10 cm) is shown in Fig. 7b for
the CTL run at t 5 27 h. Anomalies, or differences,
between the CTL and SRV accumulated rainfall and
soil moisture are shown in Figs. 7c–f. The results for
one member of the ensemble are shown in Figs. 7c and
7d, where the anomalies were computed as SRV1 2
CTL. Figures 7e,f show the results for the ensemble
average and are masked to display only the anomalies
outside plus/minus one standard deviation of the SRV
ensemble according to Eq. (4).

The anomalies in total accumulated rainfall grew and
organized as the storm progressed. The red shaded areas
indicate where the SRV run produced more rainfall than
the CTL run (SRV . CTL: positive anomalies) and the
blue shaded areas indicate where the SRV run produced

less rainfall than the CTL run (SRV , CTL: negative
anomalies). The adjacent patches of positive and neg-
ative anomalies of approximately the same magnitude
are evidence of a shifting in the location of rainfall
between the SRV and CTL runs. Patches of more intense
increase or decrease in comparison with surrounding
patches reveal changes in magnitude of rainfall accu-
mulation between the SRV and CTL runs.

It can been seen from Figs. 7c–f that any one member
of the ensemble produces very similar anomalies as
compared with the ensemble average. There are some
minor differences, but the overall trends in size, shape,
and magnitude of the larger-scale spatial organization
of the anomalies is similar. With this verification, further
discussion of the results will focus on one member of
the SRV ensemble rather than carrying all the ensemble
members throughout the analysis. Figure 7 provides ev-
idence that including subgrid-scale rainfall variability
and its nonlinear propagation through the land–atmo-
sphere system had a statistically significant effect on the
spatial organization of accumulated rainfall and upper-
layer relative soil moisture.

The sign of the large-scale anomalies produced in the
soil moisture by accounting for the subgrid-scale vari-
ability of rainfall can be related to the anomalies in the
accumulated rainfall and the process dominating the soil
water balance and the nonlinear shape of its parame-
terization (i.e., concave or convex). By comparing the
sign of the anomalies with the magnitude of the soil
moisture field, it was found that negative anomalies tend
to occur where the soil is wet and positive anomalies
occur where the soil is dry. Figure 8 shows in a sche-
matic the shapes of the surface runoff and maximum
sustainable transpiration rates as a function of relative
soil moisture as parameterized in BATS [Rs } s4 and
maxEtr } 1 2 (s2B 2 1)/( 2 1), where Rs is surface2Bswilt

runoff, s is the relative soil moisture, swilt is the relative
soil moisture at which permanent wilting occurs and
transpiration ceases, and B is the Clapp–Hornberger soil
parameter]. From this figure it is evident that including
subgrid-scale rainfall variability, which produces sub-
grid-scale soil moisture variability, will result in dif-
ferent signs of the anomalies at the grid scale depending
on the dominant process. When the soil is wet (s $ 0.6)
and surface runoff is the dominant process, Fig. 8a
shows that more water is removed by including subgrid-
scale variability, which means that less water will re-
main in the soil (i.e., negative soil moisture anomaly).
Figure 8b shows that, when the soil is dry (s # 0.6)
and transpiration is the dominant process, less water is
removed from the soil by including subgrid-scale var-
iability, which means that more water will remain in the
soil (i.e., positive soil moisture anomaly). This conclu-
sion is supported by Fig. 9, which shows the average
upper-layer relative soil moisture in the CTL run for
areas where positive and negative anomalies greater
than a specified threshold are located. This figure dem-
onstrates that the average soil moisture under positive
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FIG. 7. (a) Accumulated rainfall and (b) relative soil moisture in the upper soil layer for the CTL run at t 5 27 h
into the simulation. (c) Accumulated rainfall and (d) relative soil moisture in the upper soil layer at t 5 27 h with
anomalies computed as SRV1 2 CTL, where SRV1 is one member of the SRV ensemble. (e) Accumulated rainfall and
(f ) relative soil moisture in the upper soil layer at t 5 27 h with anomalies computed at SRV 2 CTL and masked to
show only those for which |SRV 2 CTL| . sSRV, where SRV and sSRV are the average and standard deviation of the
ensemble members, respectively.
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FIG. 8. Schematic illustrating the nonlinear shape of the surface
runoff Rs and maximum sustainable transpiration rate maxEtr param-
eterizations used in BATS as a function of relative soil moisture s.
The filled circle corresponds to F(s) and the star corresponds to F(s).
(a) The concave, nonlinear shape of the surface runoff parameteri-
zation gives F(s) . F(s). (b) The convex, nonlinear shape of the
maximum sustainable transpiration rate gives F(s) , F(s).

FIG. 9. Average of the upper-layer (top 10 cm) relative soil moisture
Su in the CTL run for areas where positive and negative anomalies
(i.e., SRV 2 CTL) greater than a specified threshold are located. The
average is computed in space (over domain 2 where anomalies occur)
and in time (from t 5 20 to 36 h). The solid line corresponds to
positive anomalies, and the dashed line corresponds to negative anom-
alies. This figure supports the conclusion that negative anomalies tend
to occur where the soil is wet and positive anomalies occur where
the soil is dry.

anomalies was consistently drier than that under neg-
ative anomalies. Figure 10 illustrates that including sub-
grid-scale rainfall variability has decreased the area of
near-saturated soil. This figure further supports the con-
clusion that, in wet soil where surface runoff is the
dominant process, the nonlinear propagation of subgrid-
scale rainfall variability through the surface runoff pa-
rameterization results in increased surface runoff and,
consequently, a negative soil moisture anomaly.

To assess the effects of including subgrid-scale rain-
fall variability on other variables of the water and energy
cycles, several surface variables modeled by the coupled
land–atmosphere system were compared between the
CTL and SRV runs. It was found that accounting for
the subgrid-scale rainfall variability and the small-scale
nonlinear feedbacks produced anomalies in the upper-

layer soil moisture, surface temperature, and sensible
and latent heat fluxes from the surface as shown in Fig.
11. By following the anomalies over time, it was found
that they grew and spatially organized into patches of
size much larger than the 3-km scale at which the rainfall
variability was prescribed. Anomalies in the tempera-
ture, sensible heat flux, and latent heat flux of the surface
were found to grow and to dissipate with the diurnal
cycle. Anomalies in the surface soil moisture grew dur-
ing the rainfall period and then persisted throughout the
rest of the simulation, illustrating the long memory of
soil moisture anomalies. For brevity, the surface vari-
able anomalies are only shown at t 5 32 h into the
simulation in Fig. 11.

b. Spatial and temporal organization of anomalies

The spatiotemporal organization of the anomalies was
quantitatively characterized by computing their spatial
and temporal correlations and average size of anomaly
patches above a threshold. It is emphasized that the
following observations and discussion refer to anoma-
lies that resulted from including or omitting subgrid-
scale rainfall variability.

Figure 12 shows the cross-correlation coefficient
computed from synchronized anomaly fields (time lag
0 h) of several model-predicted surface variables
throughout the simulation. The effects of the diurnal
cycle on the anomalies is evident in Fig. 12a, with the
cross correlation between the surface temperature anom-
alies and surface heat fluxes anomalies being negative
during the nighttime hours and positive during the day-
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FIG. 10. Area with upper-layer (top 10 cm) relative soil moisture
greater than or equal to 0.9 (i.e., 90% saturated). The CTL (solid
line) run produced significantly more area of near-saturated soil than
did the SRV (dashed line) run, illustrating that accounting for the
nonlinear propagation of subgrid-scale rainfall variability through the
surface runoff parameterization results in more surface runoff in wet
soils and, consequently, negative soil moisture anomalies.

time. The cross-correlation coefficient between the sen-
sible and latent heat flux anomalies also followed the
diurnal cycle. Figure 12b shows the strong, positive
correlation between the anomalies in the soil moisture
and accumulated rainfall. As expected, the correlation
between the anomalies in antecedent rainfall (past 3 h)
and the soil moisture dies off as the rainfall ceases, and
the correlation between the anomalies in the soil mois-
ture and latent heat flux from the surface grows through-
out the simulation as the soil becomes more saturated.

To follow how the anomaly fields of each variable
change over time, the cross-correlation coefficients were
computed for each anomaly field with the same variable
anomaly field at a previous time. Starting at t 5 20 h,
for example, the cross correlation was computed be-
tween the anomaly field at t 5 20 h and the anomaly
fields of the same variable at t 5 19 h, t 5 18 h, and
t 5 17 h. This computation resulted in a temporal au-
tocorrelation function of each field that depicted the
temporal persistence of the anomalies. The temporal
autocorrelation length is defined here as the time lag in
hours at which the correlation coefficient dropped below
0.3. The autocorrelation length for three different start-
ing times selected to depict the ‘‘during’’ and ‘‘after’’
rainfall and ‘‘day’’ and ‘‘night’’ conditions are shown
in Fig. 13. The accumulated rainfall and upper-layer soil
moisture anomalies grew throughout the simulation as
the storm evolved, and, as shown by Fig. 13, they ex-
hibited the longest temporal autocorrelation length (i.e.,
longest memory) among the various surface variables.
It can also be seen from Fig. 13 that the temporal au-
tocorrelation length for the surface temperature and sen-
sible and latent heat fluxes depended both on the diurnal

cycle and on the storm evolution, with the correlation
length being the longest during the night and after the
storm ended.

The anisotropy of the spatial correlation of the anom-
alies in the model-predicted surface variables was also
computed throughout the simulation. The spatial cor-
relation length, defined as the lag at which the spatial
correlation coefficient drops below 0.3, was found to
be approximately 40 km for anomalies in the upper-
layer soil moisture, surface temperature, sensible and
latent heat fluxes, and accumulated rainfall. The ori-
entation of maximum spatial correlation length was
found to be southwest–northeast (i.e., 458) for the soil
moisture and accumulated rainfall anomalies, which is
perpendicular to the overall direction in which the rain-
fall-producing storm cells were moving. The spatial cor-
relation of anomalies in the surface temperature and
surface heat fluxes were found to be almost isotropic,
with a maximum in the south–north (i.e., 908) orien-
tation.

Histograms of the patch sizes in the anomalies were
computed for various thresholds on the magnitude of
the anomalies to determine the spatial organization and
size distribution of the patches. Figure 14 shows the
histogram of patch sizes above a specified threshold for
anomalies in upper-layer relative soil moisture, surface
temperature, and sensible and latent heat fluxes from
the surface. The average and maximum sizes of the
spatially organized anomaly patches versus threshold
are given in Figs. 15 and 16, respectively. The solid
line corresponds to positive anomalies (SRV . CTL)
and the dashed line to negative anomalies (SRV ,
CTL). Figures 15a–d quantify that the average sizes of
positive anomalies are comparable to those of negative
anomalies in each of the variables except in upper-layer
relative soil moisture, which tends to have much larger
negative anomalies for small thresholds on soil mois-
ture. However, the maximum size of anomaly patches
seems to be overwhelmingly coming from positive
anomalies in surface temperature and sensible and latent
heat fluxes during the day (see Figs. 16b–d). This result
indicates that omitting small-scale rainfall variability
can result in this situation in incorrect simulation of
persistent large regions of colder surface temperatures
and lower sensible and latent heat fluxes. Figures 16b–d
illustrate that during the day the anomalies in surface
temperature and sensible and latent heat fluxes from the
surface are positive and are strongly spatially organized.
Figures 14–16 provide evidence that the anomalies pro-
duced in the surface variables by including or omitting
subgrid-scale variability in rainfall are spatially orga-
nized and are grouped in patches of size much larger
than the model grid resolution. It is noted that [even if
the average sizes and magnitudes of positive and neg-
ative anomalies are comparable (see also visually from
Fig. 11) and therefore over the whole domain their effect
can be seen as canceling] for a particular watershed of
size as small as 1000 km2 the location of these anomalies
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FIG. 11. Anomalies (SRV 2 CTL) at t 5 32 h into the simulation (1500 local time) for (a) relative soil moisture in the upper soil
layer (Su), (b) surface temperature (TG), (c) sensible heat flux from the surface (HFX), and (d) latent heat flux from the surface (QFX).

can result in large differences on predicted runoff from
the watershed.

c. Discussion

Recent research on land–atmosphere feedback mech-
anisms (Brubaker and Entekhabi 1996 and Bonan and
Stillwell-Soller 1998) has demonstrated that there exists
a strong negative correlation between soil moisture and
temperature anomalies. Figure 12a shows the presence
of this negative correlation between anomalies in sur-
face soil water content and surface temperature pro-
duced by including or omitting subgrid-scale rainfall
variability. Figure 12a also shows a positive correlation
between anomalies in the sensible and latent heat flux
with the surface temperature during the day. As shown

in Fig. 11, the anomalies are spatially organized and
grouped in patches of size much larger than the scale
at which the rainfall variability was prescribed, and they
behave according to the physical relationships between
the various surface variables. This result gives confi-
dence that the effects are due to the land–atmosphere
feedbacks and that the subgrid-scale rainfall variability
invokes systematic changes in other surface variables
through the nonlinear relationships of the land–atmo-
sphere system.

The soil moisture state plays a critical role in many
land–atmosphere feedback mechanisms. For example,
the percent of saturation condition of the soil alters the
partitioning of rainfall into infiltration and runoff. Al-
though not specifically modeled and quantified in this
study, it can be seen from Fig. 11a that the anomalies
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FIG. 12. Cross-correlation coefficient of synchronized anomaly
fields (time lag 0 h) throughout the simulation. The surface variables
shown are defined in Table 3.

TABLE 3. Surface variables.

Su Upper-layer (top 10 cm) relative soil moisture

TG
HFX
QFX
RR1
RR3
RRC

Surface temperature
Sensible heat flux from the surface
Latent heat flux from the surface
1-h accumulated rainfall
3-h accumulated rainfall
Total accumulated rainfall

FIG. 13. Temporal autocorrelation length (in hours) of anomalies
depicting the temporal persistence (i.e., memory) of anomalies (see
text for details of computation). The selected starting times corre-
spond to: t 5 20 h (during rain, night conditions), t 5 30 h (during
rain, day conditions), and t 5 40 h (after rain, night conditions). The
surface variables shown are defined in Table 3.

produced in the surface soil water content by including
subgrid-scale rainfall variability will affect the runoff
generated in these regions. Numerous studies have
shown that the soil moisture state also influences the
energy budget through the interactions between the land
and the atmosphere (see Camillo et al. 1983; Siebert et
al. 1992; Brubaker and Entekhabi 1996; Porporato et
al. 2000; among others). The availability of excess sur-
face soil water content increases evaporation and the
latent heat flux and cools the surface, whereas dry soil
results in warmer temperatures and increased sensible
heat flux so as to maintain a balance in the energy bud-
get. The state of the soil moisture thus strongly influ-
ences the partitioning of incoming solar energy between
sensible and latent heat.

Brubaker and Entekhabi (1996) compared the coupled
land–atmosphere response to cool/moist and warm/dry
anomalous initial states of the soil moisture and tem-
perature. They found that the surface water and energy
balances are in direct competition for restoring soil
moisture and temperature anomalies. When considered

separately, the soil water and soil energy balances each
have strong self-restoring forces. However, when con-
sidered simultaneously in a coupled land–atmosphere
system, they act against each other’s self-restoring forc-
es and instead further enhance the cool/moist or warm/
dry condition (Brubaker and Entekhabi 1996). Although
the anomalies found in our study are produced in a
completely different way (i.e., by including or omitting
subgrid-scale variability in the rainfall), Fig. 12a shows
a similar competition between the soil water and energy
balances’ self-restoring forces. During the day, the en-
ergy budget controls the partitioning between latent and
sensible heat fluxes, and the energy budget’s demand to
cool the warm (positive) anomalies is stronger than the
soil water budget’s demand to retain the current moisture
in the dry (negative) anomalies. At night, the sensible
heat flux anomalies shut down, because there is no solar
radiation to drive the heat flux and the water budget’s
demand to retain moisture in the dry (negative) anom-
alies and remove excess moisture in the wet (positive)
anomalies is stronger than the energy budget’s demand
for cooling in warm/dry soil and warming in cool/wet
soil. Figure 12a shows that the correlation between
anomalies in surface temperature and sensible heat flux-
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FIG. 14. Histogram of the patch sizes in anomalies at t 5 32 h into the simulation for anomaly
magnitudes of (a) relative soil moisture in the upper soil layer (Su) . 0.10, (b) surface temperature
(TG) . 2.0 K, (c) sensible heat flux from the surface (HFX) . 100 W m22, and (d) latent heat
flux from the surface (QFX) . 100 W m22. The gray bars correspond to positive anomalies (SRV
. CTL) and the black bars correspond to negative anomalies (SRV , CTL).

es from the surface is stronger during the day than at
night. This result is due to solar radiation being needed
to drive the heat fluxes and also reflects the strong self-
restoring forces of the energy budget during the day.

6. Concluding remarks

Our study suggests that small-scale (less than 10–15
km) heterogeneities in rainfall tend to create, through
the feedbacks of the land–atmosphere system, larger-
scale (greater than 15 km) heterogeneities in soil mois-
ture that further amplify the effects of the land surface
on energy redistribution and rainfall production at the
mesoscale. It was found that the 3-km rainfall hetero-
geneities propagate to larger-scale heterogeneities in to-
tal accumulated rainfall, soil moisture, surface temper-
ature, and sensible and latent heat fluxes from the sur-
face. The anomalies were found to be spatially orga-
nized and grouped in patches of size much larger (length
scale of approximately 40 km) than the subgrid scale
of 3 km at which the rainfall variability was prescribed.
This result suggests that the anomalies are due to the
land–atmosphere feedbacks and that the subgrid-scale
rainfall variability invokes systematic changes in other
surface variables through the nonlinear relationships of
the land–atmosphere system.

One should remember that the rainfall variability was

applied at the 3-km subgrid scale but that the results
were viewed back at the 12-km model grid. The dif-
ferences found here imply that, even if the scale of
interest is resolvable by the model physics (here the 12-
km scale of the MM5 model), the effects of subgrid-
scale rainfall variability and its interactions with other
variables at the subgrid scale are still important and
should be considered further. These results emphasize
the potential importance of accounting for subgrid-scale
rainfall variability even if the interest is in larger-scale
predictions. The anomalies in model-predicted soil
moisture, surface temperature, and surface heat fluxes
produced by including subgrid-scale rainfall variability
and its propagation through the land–atmosphere rela-
tionships and through time were found to be statistically
significant and to have a physically explainable spatial
and temporal organization. The anomalies (between in-
cluding and omitting subgrid-scale rainfall variability)
were judged to be statistically significant in the sense
that they were outside the range of statistical variability
of an ensemble of runs, all of which included subgrid-
scale rainfall variability.

It is noted that two other model configurations were
analyzed to assess whether the results were dependent
on the subgrid scale at which the rainfall variability was
prescribed and on the model grid resolution. These con-
figurations were (a) 36-km outer domain with 9-km sub-
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FIG. 15. Average size of spatially organized patches above a given threshold for anomalies in
(a) relative soil moisture in the upper soil layer (Su), (b) surface temperature (TG), (c) sensible
heat flux from the surface (HFX), and (d) latent heat flux from the surface (QFX) at t 5 32 h
into the simulation. The solid line corresponds to positive anomalies (SRV . CTL) and the dashed
line corresponds to negative anomalies (SRV , CTL).

FIG. 16. Area of the largest spatially organized patch above a given threshold for anomalies in
(a) relative soil moisture in the upper soil layer (Su), (b) surface temperature (TG), (c) sensible
heat flux from the surface (HFX), and (d) latent heat flux from the surface (QFX) at t 5 32 h
into the simulation. The solid line corresponds to positive anomalies (SRV . CTL) and the dashed
line corresponds to negative anomalies (SRV , CTL).
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grid-scale rainfall variability over the whole domain and
(b) 36-km outer domain with 12-km inner nested domain
and 6-km subgrid-scale rainfall variability over the inner
domain. The results of these simulations exhibited sim-
ilar trends in the spatial and temporal organization in
the anomalies and had similar physical explanations as
the results presented herein.

Our study quantified only the effects of subgrid-scale
variability of rainfall by keeping the vegetation type,
soil texture, and topography constant over the grid. Fu-
ture research should explore resolving these land surface
variables at a finer spatial resolution in addition to in-
cluding the subgrid-scale rainfall variability. The com-
bined effects of subgrid-scale spatial variability of more
than one interacting variable could amplify or dampen
the effects found in this study. This issue needs to be
investigated. Future research should also include inves-
tigation of the relative importance of the effects of sub-
grid-scale rainfall variability as compared with the ef-
fects produced by uncertainties in the initial conditions,
boundary conditions, or other stochastic forcings of the
atmosphere and land surface state (e.g., Warner et al.
1997; Li et al. 1995; Chu 1999; Stensrud et al. 2000).
If the anomalies found here by including subgrid-scale
rainfall variability are comparable in magnitude and size
to anomalies produced by perturbations in the model
physics and initial and lateral boundary conditions, it
could have potential implications in how ensembles can
be generated and in quantifying uncertainty of predic-
tions.
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