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Abstract. The evolution of an experimental braided river produced in our laboratory has
been monitored and analyzed. It has been shown that in addition to the spatial scaling
revealed by Sapozhnikov and Foufoula-Georgiou [1996a], braided rivers also exhibit
dynamic scaling. This implies that a smaller part of a braided river evolves identically (in
the statistical sense) to a larger one provided the time is renormalized by a factor
depending only on the ratio of the spatial scales of those parts. The small value of the
estimated dynamic exponent z is interpreted as an indication that the evolution of small
channels in a braided river system is to a large extent forced by the evolution of bigger
channels. The presence of dynamic scaling is further interpreted as indicating that braided
rivers may be in a critical state and behave as self-organized critical systems.

1. Introduction

In a recent paper [Sapozhnikov and Foufoula-Georgiou,
1996a] evidence was presented that natural braided rivers ex-
hibit anisotropic scaling (self-affinity) in their geometrical
structure, within a range of scales spanning the width of the
narrowest channel to the width of the braid plain. In simple
words, within these scales, if a small part of a braided river is
stretched in a certain way along the mainstream direction and
a certain different way along the perpendicular direction, then
this stretched part looks statistically the same as a bigger part
of the river. Such anisotropically scaled objects are called self-
affine fractals and are characterized by two fractal exponents
nx and ny. The ratio nx/ny characterizes the scaling anisotropy,
and the fractal dimension D 5 (ny 2 nx 1 1)/ny [e.g., see
Sapozhnikov and Foufoula-Georgiou, 1995] indicates how
densely the object fills the space.

In Sapozhnikov and Foufoula-Georgiou [1996a], three natu-
ral braided rivers of different scales and different hydrological
and sedimentological characteristics (Aichilik and Hulahula in
Alaska and Brahmaputra in Bangladesh) were analyzed for
spatial scaling using the logarithmic correlation integral (LCI)
method developed by Sapozhnikov and Foufoula-Georgiou
[1995]. Interestingly enough, it was observed that despite their
different scales (0.5–15 km in braid plain width), slopes (7 3
1023–8 3 1025), and types of bed material (gravel to sand), all
three rivers exhibited anisotropic spatial scaling with almost
the same fractal exponents: nx 5 0.72–0.74 and ny 5 0.51–
0.52, the x axis being oriented along the river and the y axis
being in the perpendicular direction. In simple terms this im-
plies that if parts of a braided river are stretched by l along the
mainstream direction and by lny/nx . l0.7 along the perpen-
dicular direction, the resulting images will look statistically
similar to each other (similarity within a braided river). At the
same time the invariance of nx and ny between braided rivers
of different sizes and hydrology/sedimentology suggests that
the same anisotropic scaling as above applied to different riv-
ers will result in statistically similar images, apart, possibly,

from a normalization factor to account for the different mass
of each river. (Note that “mass” here refers to the area, i.e.,
number of pixels, covered with water.) The presence of such a
statistical scale invariance in the spatial structure of braided
rivers, apart from being interesting in its own right, might
indicate the presence of universal features in the underlying
mechanisms responsible for the formation of braided rivers
and deserves further theoretical and experimental investiga-
tion.

Braided rivers, besides their complex geometry at any in-
stant of time, are also highly dynamic systems characterized by
intensive erosion, sediment transport and deposition, and fre-
quent channel shifting as they evolve. Predicting the evolution
of braided rivers in terms of frequency and magnitude of chan-
nel shifting is of paramount importance where hydraulic struc-
tures or land developments are planned or where field use
must be made of maps and air photos. It is of great practical
and theoretical value therefore to study the evolution of
braided rivers in addition to their spatial structure. In view of
the evidence for spatial (static) scaling in braided rivers the
question is asked here as to whether they also show dynamic
scaling. The presence of dynamic scaling would imply that
space and time can be appropriately rescaled such that the
evolution of the spatial structure of parts of the river of dif-
ferent size would be statistically indistinguishable. The pres-
ence of dynamic scaling would also provide a highly desirable
integrated framework for studying, simultaneously, the spatial
and temporal structure of braided rivers.

2. Dynamic Scaling: A Theoretical Framework
The idea of dynamic scaling can be qualitatively presented as

follows. Suppose there is a fractal object, of fractal dimension
D, which evolves in time such that its fractality is preserved at
all times. In our case the fractal object is the spatial pattern of
the active channels constituting a braided river which was
shown to exhibit spatial scaling by Sapozhnikov and Foufoula-
Georgiou [1996a]. The fractality (spatial scaling) of the object
implies that if one takes a picture of a part of the object of size
L1 3 L1 and a picture of a larger part of the same object of
size L2 3 L2 and projects these two pictures onto two screens
of the same size, the images on the screens will be statistically
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indistinguishable. Suppose now that one makes another step
and, instead of taking still pictures, videotapes the two regions
and observes the evolution of the images on the two screens. In
contrast to the still pictures the movies will not be statistically
indistinguishable. The rate of the evolution will be different
(slower for the larger scale). If, however, there exists a dynamic
exponent z such that for every L1 and L2 it is possible to
rescale the time as

t2

t1
5 SL2

L1
D z

(1)

or, in other words, to play the movies at different speeds such
that the rate of the evolution is the same on both screens, then
we say that in addition to static (spatial) scaling, the system
also shows dynamic scaling.

Let us characterize the evolution of a stationary fractal ob-
ject by “changes” in its pattern, where changes are defined as
parts of the space which were not occupied by the object at a
certain moment of time but became occupied after some time
lag t. Let n(L, l9 . l, t) denote the number of changes
exceeding size l after some time lag t in a region of size L 3
L. By definition, changes can only occur in parts of the space
occupied by the object. In other words, changes follow the
pattern of active channels, and thus, at every scale they are not
present in those parts of the space where active channels are
not present. Because the object is fractal, with a fractal dimen-
sion D, the number of changes scales with the size of the
observed region (see appendix) as

n~L2, l9 . l, t! 5 n~L1, l9 . l, t!SL2

L1
D D

(2)

The presence of dynamic scaling, implying the same rate of
evolution after rescaling (equation (1)) is applied, means that
the number of changes exceeding sizes l1 and l2 after time lags
t1 and t2 in the regions of size L1 3 L1 and L2 3 L2,
respectively, is the same on both screens, i.e.,

n~L1, l9 . l1, t1! 5 n~L2, l9 . l2, t2! (3)

provided that the changes are of the same relative size, i.e.,

l1

L1
5

l2

L2
(4)

and time and space have been rescaled such that

t1

L1
z 5

t2

L2
z (5)

We stress here that L1 and L2 are not the sizes of two different
systems but sizes of two different regions of the same system.

Suppose now that we fix the scale of the region of interest to
L2 and that instead of zooming to different scales, we follow
the distribution of changes in this region as the object evolves.
From (2) and (3) we obtain for the distribution of changes in
the region L2 3 L2

n~L2, l9 . l1, t1!SL1

L2
D D

5 n~L2, l9 . l2, t2! (6)

which is true provided (4) and (5) hold. The variable L2 is the
same in both sides of (6) and therefore can now be dropped.
Replacing L1/L2 by l1/l2 (because of relation (4)) yields

l1
Dn~l9 . l1, t1! 5 l2

Dn~l9 . l2, t2! (7)

Finally, we obtain the condition for the distribution of changes
in a system showing dynamic scaling: there exists a dynamic
exponent z such that if (5) is true, i.e., t/Lz 5 const (which
according to (4) also implies t/lz 5 const), then lDn(l9 . l, t)
5 const, or, in other words, the distribution of changes in such
systems can be expressed as

n~l9 . l , t! 5 l2DfS t
lzD (8)

where f( ) is some function.
To understand the form of that distribution, let us now

consider the asymptotic properties of the function f(t/lz). This
function has to level off at big values of the argument t/lz.
Indeed, for big enough time lags, such that the object decor-
relates completely between two snapshots, the difference be-
tween the two patterns of the object (and therefore the distri-
bution of changes n(l9 . l , t)) does not depend on time
anymore. This implies that f(t/lz) 5 const, and, consequently,
that n(l9 . l , t) 5 const 3 l2D, for big enough values of t/lz.
For time lag t 5 0, there are no changes in the object, which
implies that n(l9 . l , 0) 5 0 and, correspondingly, that
f(0) 5 0. If for small values of the argument the function f can
be approximated by a power law, with some exponent b, then
the condition (8) for dynamic scaling takes the form

n~l9 . l , t! , tbl2D2bz (9)

It is noted here that the theoretical framework for the de-
scription of dynamic scaling of stationary fractal objects as
developed above differs from the existing frameworks for dy-
namic scaling of nonstationary growing objects which has been
extensively investigated in the past. For example, dynamic scal-
ing of simulated growing interfaces has been studied by
Edwards and Wilkinson [1982], Family [1986], Meakin et al.
[1986], Kardar et al. [1986], and others [see also Family and
Vicsek, 1991; Vicsek, 1992]. Recently Czirok et al. [1993] dem-
onstrated experimentally dynamic scaling in a micromodel of
landscape evolution. In these studies the evolution of a fractal
surface is described by two exponents a and b corresponding to
the spatial and temporal scaling of the surface roughness. In
particular, the width or the standard deviation w(L, t) of a
surface of linear extent L scales as La for long times and as tb

at the early stages of the process. According to the correspond-
ing dynamic scaling theory, the width follows a double-scaling
equation w(L , t) ; Laf(t/La/b) where f( ) is some func-
tion. (The fractal dimension of the rough surface D relates to
a as D 5 d 2 a , where d is the embedding dimension.)

As one can see, the theoretical framework for dynamic scal-
ing of nonstationary growing objects is based on the analysis of
the systematic change of a “macroscopic” parameter (width of
the surface in the case described above) which essentially de-
scribes, in a statistical sense, the nonstationarity of such ob-
jects. Obviously, such an approach is not applicable to station-
ary objects where macroscopic parameters do not change
systematically (although they can fluctuate around some aver-
age value). Therefore, in the theoretical framework of dynamic
scaling of stationary fractal objects developed here we intro-
duced the concept of changes in an evolving stationary object
and expressed its dynamic scaling in terms of space-time scale
invariance of the probability distribution of these changes. It is
believed that the developed framework will be useful for the
study of dynamic scaling in natural objects that could not be
studied so far under the existing frameworks.
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3. Experimental Study of Braided Rivers
One of the reasons that field workers have primarily focused

on the detailed study of flow and sediment flux in small areas
of braided rivers is the logistical difficulty of studying a com-
plex, continually evolving river system over a large area. The
fundamental problems in obtaining data sets characterizing the
statistical properties of braided rivers are the high degree of
variability in local quantities such as flow depth or sediment
flux and the rapidity with which these change with time if the
system is active. Thus field data from in situ measurement are
difficult to find. Field data can, however, be obtained relatively
easily (although tediously) on the static planform morphology
of natural braided rivers by determining the presence or ab-
sence of water from an air photo or satellite image. For exam-
ple, the data for the three braided rivers used in the study by
Sapozhnikov and Foufoula-Georgiou [1996a] were obtained by
the tracing of air photos and the digitization of the traced
images. Even then, however, care must be taken to insure that
data are taken from river sections in which downstream
changes in discharge, grain size, vegetation, etc., are minimal
so that each reach may be taken as statistically stationary. In
the near future it is hoped that improved satellite technology
will offer the means of obtaining accurate and frequent mon-
itoring of the spatially and temporally variable flow distribution
of natural braided river systems [e.g., see Smith et al., 1995,
1996]. To allow study of the detailed structure of braided
rivers, higher resolution satellite images than those available
today and wider coverage of areas of interest are needed.

Laboratory models of braided rivers can offer an excellent
means of advancing our understanding of the complex dynam-
ics of braided rivers. They offer an environment which permits
us to control the physical parameters governing the evolution
of the river and to obtain high-resolution images (e.g., see
Schumm et al. [1987] for an interesting discussion of the ad-
vantages of using laboratory experiments in addition to mon-
itoring natural rivers). Braiding is relatively easy to reproduce
in the laboratory, and previous studies [Ashmore, 1991; Kuhnle,
1981; Leddy et al., 1993; Schumm and Khan, 1972] have shown
that laboratory-scale streams exhibit qualitative features and
behavior similar to natural rivers. Quantitative similarity can
also be attained but only for gravel bed prototypes [Ashmore,
1982, 1985]. Given our emphasis on global statistical properties
of braided rivers, both at one instant and as a function of time,
experiments provide a useful way of obtaining additional data
that can help us to understand the dynamics of braided rivers.
The Saint Anthony Falls Laboratory at the University of Min-
nesota offers an ideal setting for such experiments. In fact, it
houses the recently established Experimental Facility for the
Study of Large Scale River Morphology and Landscape Evo-
lution funded by NSF’s Academic Research Infrastructure
Program.

The size of our experimental basin is 5 m 3 0.75 m. Sedi-
ment and water were supplied continuously at a precisely con-
trolled rate using a constant rate AccuRate auger feeder and a
constant height water tank. The sediment and the water were
combined together in a mixing funnel before injection into the
basin. The grain size of the supplied sediment was 0.12 6 0.03
mm. The water discharge was 20 g s21, and sediment supply
was 0.6 g s21. The river was left to evolve until its slope
(calculated from the bed elevations measured by point gauge)
stabilized at the value of 0.15, which happened 8 days after the
initiation of the experiment. The same sediment was used

throughout the experiment (i.e., while building up the slope
and afterward). The walls of the experimental basin were cov-
ered with rough rubber material to reduce the attraction of
channels to the walls. To minimize the boundary effects, the
data on the river evolution were collected in periods when the
river did not touch the walls. Video camera and still cameras
recorded the evolution of the system. To visualize the river and
monitor its depth, dye was supplied continuously during each
videotaping session. For that the sediment supply was switched
to another AccuRate auger feeder where the sediment was
mixed with the dye powder. This provided the same sediment
supply rate as the first feeder, within an accuracy of 5%. After
each videotaping session the dye was left to be flushed out of
the system and the basin was dye-free in a few hours. We
started collecting data 6 days after the slope stabilized, and
three videotapes, each covering approximately 40 min of the
river evolution in different days, were collected. The studied
region was 0.75 m 3 1.0 m, starting 3 m downstream from the
injection point. The recording time of an image was 1/60 s. The
video camera produced images of 240 lines with 1125 points in
each line. The recorded data were then digitized for treatment
and analysis. The digitized images had 480 3 640 pixels. There-
fore the resultant digitized images resolved 240 pixels across
the river and 640 pixels along the river. For the studied region
size (0.75 m 3 1.0 m) this implies a resolution of 3 mm across
the river and 1.5 mm along the river. The vertical distance
between the camera and the river was 3.1 m. A different angle
of observation of the central part and lateral parts of the basin
distorts the image (the image of an object in a lateral part of
the basin is smaller than the image of an object of the same size
in the central part). We measured this distortion and found
that it was approximately 2%. The experimental rivers showed
a high degree of braiding (e.g., see Figure 1) and active dy-
namics. Significant changes were recorded in periods of less
than 1 min. Here we present the results of analysis of the river
evolution recorded in one of the videotapes with the best
quality of the image. Similar results were obtained from the
analysis of the other two videotapes.

Extracting the river patterns for statistical analysis presented
significant difficulties because very soon the sediment was col-
ored with the same dye as the water. However, extracting
changes in the river patterns by subtracting images taken at
different moments of time proved feasible and quite robust.
These changes (depicted as differences in the darkness of the
images) are the result of water depth increase or decrease
which includes the cases of covering with water a previously dry
area or exposing a previously covered area. We used these
changes to characterize the evolution of the braided river fol-
lowing the approach developed in section 2. For short enough
time lags (such that the colored sediment patterns are almost
the same and get zeroed when subtracted) the differences in
the two images represent only true changes in the active chan-
nel patterns. However, the time lag cannot be made too short
(less then approximately 3 s) because in that case the differ-
ence between two pictures of the river is small and becomes
comparable to the noise introduced by the video camera. At
the same time we could not use long time lags (more than
approximately 1 min) because in these time lags the patterns of
the colored sediment change significantly and subtracting the
two images creates spurious (i.e., not caused by the river pat-
tern evolution) changes which erroneously contribute to the
probability distribution of changes.
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4. Dynamic Scaling in the Experimental
Braided River

To study scale relationships in the evolution of braided riv-
ers and test the presence of dynamic scaling, we monitored the
changes in our experimental braided river as it evolved and did
a statistical analysis of these changes. By monitoring the evo-
lution of the river, we collected 90 frames with a time step of
1 s. The collected patterns were digitized, and, by subtracting
these patterns from each other, changes in the braided river
were obtained for different time lags (3 s to 1 min). For ex-
ample, Figure 2a shows a picture of a part of the experimental
braided river, and Figure 2b shows the same region 15 s later.
Figure 2c displays parts of the basin that were covered with
water in Figure 2a but became shallower or exposed in Figure
2b 15 s later (‘‘old’’ changes). Figure 2d shows parts of the
basin that were shallower or not covered with water at all in
Figure 2a but became deeper or covered in Figure 2b (‘‘new’’
changes). Thus, although changes in a river are three-
dimensional structures, as is the river itself, in this study we
only consider their projections onto a horizontal plane (i.e.,
when we say “sizes of changes in the river” we imply sizes of
their projections). We then apply to the projections the theo-
retical framework developed in section 2 for two-dimensional
objects. In doing that, changes (i.e., parts of the space whose
occupancy status switched after some time) are treated equally
no matter whether they were located at the elevation of the
river bed (e.g., when water conquered dry areas) or higher
(e.g., when water level rose in some area). See also section 7
for further discussion of this issue.

It should be noted that dye does not go away immediately
from the regions left by active channels, which complicates the

observation. Therefore, for quantitative analysis we chose
“new” changes (shown in Figure 2d) and not “old” changes
(Figure 2c). We made sure (by direct observation of chosen
areas) that when colored water conquered a dry area, the area
became darker even if its sediment was already colored so we
did not miss the new changes. We kept the periods of dye influx
short to prevent the sediment from becoming too dark. To
eliminate the noise introduced by the video camera, the pixels
where the difference between the two subtracted images was
very small (less than 24 out of 256 degrees of brightness) were
zeroed. Then the cumulative probability distributions of the
sizes of changes (characterized by the square root of their
areas) were estimated. The distribution of changes was fol-
lowed over time, and Figure 3 shows these distributions for
time lags of 3, 4, 5, 7, 9, and 15 s. Notice that the number of
changes of size greater than l in a time lag t, n(l9 . l, t), is
plotted instead of the probability. As can be seen from Figure
3, these distributions can be well approximated by power laws
for different time lags, and the slopes of the log-log plots of the
distributions found for different time lags are very close, so
they can be viewed as being related by a parallel shift in the
log-log scale. In other words, the distributions can be pre-
sented in the form

n~l9 . l , t! 5 g~t!l2k (10)

where n(l9 . l , t) is the number of new changes (Figure 2d)
of size greater than l for time lag t and g(t) is a function of
time lag t.

The log-log plot of n(l9 . l , t)lk against t shown in Figure
4 suggests that for small values of t, g(t) shows a power law
dependence

Figure 1. A braided river produced in our laboratory. Channels are indicated by dark areas.
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g~t! , tb (11)

Equations (10) and (11) can be combined in one equation
showing the temporal evolution of the distribution of changes

n~l9 . l , t! , tbl2k (12)

It is easy to see that this equation coincides with (9) expressing
dynamic scaling (for small values of t/lz) with the dynamic
exponent z given as

z 5 ~k 2 D!/b (13)

Figure 3. Number of solid areas in Figure 2d (new changes),
n(l9 . l, t)) of size greater than l for time lags t of 3, 4, 5, 7,
9, and 15 s (from bottom to top). The sizes of changes are
measured as the square root of their areas. The plot suggests
that the distributions have broad central regions that are well
approximated by power laws, and their slopes for different
time lags are very close.

Figure 4. Evolution of the distribution of changes shown by
the time dependence of the function n(l9 . l , t)lk. The plot
suggests that power law dependence applies well over a major
part of the range.

Figure 2. (a) Image of a part of the experimental braided river; (b) the same region 15 s later; (c) parts of
the basin that were covered with water in Figure 2a but became shallower or exposed in 15 s (old changes);
(d) parts of the basin that were shallower or not covered with water at all in Figure 2a but became deeper or
covered in Figure 2b (new changes).
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Equations (1) and (8), in general, and (1), (12), and (13), in
particular (the power law dependence (equation (12)) being
suggested by the braided river data for small values of t/lz),
integrate spatial and temporal scaling characteristics under the
unifying framework of dynamic scaling.

In principle, the parameter z (dynamic exponent) can be
estimated directly from (8). That is, by nonlinear optimization
the value of z that minimizes the spread of the points
n(l9 . l, t)lD versus t/lz (so that all curves collapse to a single
curve f ) can be found. However, we preferred to take advan-
tage of the power law dependence (equation (12)) suggested
by the data and to follow a stepwise estimation approach.
Namely, we use the power law distribution of changes (Figure
3 and equation (10)) to estimate k and the power law depen-
dence of g(t) (Figure 4 and equation (11)) to estimate b. Then
z is estimated from (13). Specifically, from the slopes of the
plots shown in Figures 3 and 4 the exponent k in (10) was
estimated as 2.8 and the exponent b in (11) was estimated as
2.0. The fractal dimension of the experimental braided river D
was estimated from one pattern of the river by the “mass-in-
a-box” method [e.g., see Mandelbrot, 1982] as 1.75 (see Figure
5). These estimates gave an estimate of the dynamic scaling
exponent from (13) as z . 0.5.

It is important to note that although for small time lags
Figure 3 shows reasonably good temporal scaling, it deviates
from the power law behavior for bigger time lags. It should be
stressed, however, that this does not indicate the loss of dy-
namic scaling (expressed by the general equation for dynamic
scaling (8)). Indeed, as discussed in section 2, even if the
function f, from (8), follows a power law at small values of the
argument, it has to level off at big values of the argument which
necessarily leads to the loss of power law dependence in rela-
tion (11) but not to the loss of dynamic scaling. In fact, to
confirm that the distributions corresponding to different time
lags satisfy the general equation for dynamic scaling (8), we
plotted for z 5 0.5 the values of n(l9 . l, t)lD versus t/lz for

different time lags up to 1 min in Figure 6. As one can see, all
curves satisfactorily collapse to a single curve (the f(t/lz) func-
tion). This further corroborates the presence of dynamic scal-
ing and the adequacy of the estimated dynamic exponent z .
0.5 in the experimental braided river. Notice that this last
confirmation of dynamic scaling, i.e., that the general equation
for dynamic scaling (equation (8)) holds, did not directly use
the assumption of power law distribution of changes (equation
(10)) or power law dependence of g(t) for small values of t
(equation (11)). These two special forms of dependencies (sug-
gested directly from the experimental data in Figures 3 and 4)
were conveniently used only to estimate z in a stepwise manner
via (13). After the value of z was estimated, plotting
n(l9 . l , t)lD versus t/lz and seeing that all curves collapse to
a single curve provides additional and independent evidence of
dynamic scaling.

We would like to point out that on the basis of the study of
Sapozhnikov and Foufoula-Georgiou [1996a], the experimental
braided river is expected to be a self-affine object (character-
ized by two scaling exponents nx and ny) and not a self-similar
object (characterized by a single fractal dimension D). Despite
this, the above developments of dynamic scaling were pre-
sented in terms of a single fractal dimension D. This is be-
cause, as discussed also later in section 7, extension of the
dynamic scaling theory to self-affine objects has not yet been
achieved and should form the focus of further research. More-
over, it is noted that even if that theory were available at
present, our experimental data did not even permit an estima-
tion of nx and ny for two main reasons: (1) the river segment
was too short to get an accurate estimate via the LCI method,
and (2) it was hard to separate the river from the colored
sediment in the video images in order to produce reliable
tracings of the river pattern. Note that this was not a problem
for changes in the river pattern because the colored sediment
was zeroed by subtraction. Despite the above limitations, we
note that the presented dynamic scaling developments are still
valid for a self-affine object, and D can be seen as a surrogate
parameter for DG (global fractal dimension) of the braided
river which relates to nx and ny via the expression given by
Sapozhnikov and Foufoula-Georgiou [1995]: DG 5 (ny 2 nx 1
1)/ny. Of course, further refinement of the developed frame-
work to self-affine objects characterized by nx and ny is desir-
able, but this is an issue for further study.

Figure 6. Plot showing that the rescaled distributions of
changes collapse into a single curve (equation (8)). Time lags
from 3 to 60 s (bottom left to top right) are shown. This further
corroborates the presence of dynamic scaling and the adequacy
of the estimated value of the dynamic exponent as z . 0.5 for
the experimental braided river.

Figure 5. Spatial scaling in the experimental braided river
indicated by straight line log-log dependence of its mass M (the
number of pixels covered with water) within a square box
versus the size of box R. The estimated value of D is 1.75.
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5. Physical Interpretation of Dynamic Scaling
In any natural phenomenon, large-scale statistical symme-

tries or scale invariances, if found present, are believed and
hoped to be related to the physical mechanisms that created
the space-time structure of the process at hand, although es-
tablishing and understanding these relations very often turns
out to be a nontrivial task. So what does the value of the
dynamic exponent indicate for the physical mechanisms of a
braided river? First, on the basis of (1) the estimated value of
the dynamic exponent z . 0.5 implies that if one increases the
spatial scale by, say, 10 times, the evolution of the system slows
down by 100.5 . 3 times. In other words, for instance, it implies
that the lifetime of the channels in a braided river system scales
with channel size such that 10 times smaller channels disappear
approximately 3 times faster. Furthermore, the low value of the
dynamic exponent z . 0.5 ,, 2 indicates a relatively weak
dependence of the rate of evolution on the spatial scale. This
provides insight into the physical processes governing the evo-
lution of braided rivers. Indeed, this value of z is significantly
lower than the typical values of the dynamic exponent, which
are usually 2 or higher [e.g., see Ma, 1976]. For example, as a
simple case, if the lifetime of a channel were controlled by a
diffusion-type process, it would be proportional to the square
of the scale, which would imply that z 5 2. On the other hand,
if we hypothetically imagine as a limiting case that the small
channels do not evolve by themselves at all and only appear or
disappear because (and when) the bigger channels feeding
them appear or disappear, then the lifetime of smaller and
bigger channels would be the same, which would mean that no
temporal rescaling is required when going from one spatial
scale to another. This would imply that z 5 0. Thus the small
value of z obtained for braided rivers indicates strong correla-
tion between the evolution of large and small channels within
a braided river system. This leads to the conjecture that the
evolution of small channel patterns is to a great extent forced
by the evolution of larger channels. Notice that further support
for this conjecture is provided by the fact that the other way
around, i.e., changes in small channels forcing changes in large
channels, would require a spontaneous synchronization in evo-
lution of small channels which feed a larger one, and this does
not seem feasible. Indeed, for a larger channel to disappear as
a result of the disappearance of the smaller channels feeding it,
smaller channels would have to disappear at the same time. At
this point we do not see a mechanism for such a synchroniza-
tion.

6. Are Braided Rivers Self-Organized
Critical Systems?

The self-organized criticality (SOC) concept introduced by
Bak et al. [1987] states that many nonlinear systems with ex-
tended degrees of freedom self-organize into a critical state in
a natural way, i.e., without any tuning parameter (e.g., temper-
ature) which is needed to bring traditional equilibrium systems
to a critical state [see, e.g., Ma, 1976; Patashinskii and Pok-
rovskii, 1979]. The concept of SOC has been found useful in
many scientific and engineering applications, for example,
earthquake prediction, snow avalanche prediction, description
of solar flares, description of forest fires, etc. [see Bak and
Paczuski, 1993]. In the past few years the SOC concept has
been explored for drainage network landscape evolution [e.g.,
Takayasu and Inaoka, 1992; Rinaldo et al., 1993] and, recently,

has been claimed by Stølum [1996] for dynamics in the fluid
mechanical model of a meandering river developed by G.
Parker, A. E. Howard and coworkers [e.g., see Parker and
Andrews, 1986; Howard and Knutson, 1984].

In a recent publication, Sapozhnikov and Foufoula-Georgiou
[1996b] have questioned the applicability of the SOC concept
to models of erosional landscape evolution. They have argued
that none of the states of these modeled landscapes can be
considered critical and that the resulting landscapes show scal-
ing in space characterized by fractal geometry but not scaling
in time as they do not allow any changes under perturbations
let alone “catastrophic” changes possible for a system in a
critical state. However, we believe that braided rivers are sys-
tems where the SOC concept naturally applies. Braided rivers
(1) are nonlinear systems, (2) obviously have an enormous
number of degrees of freedom, (3) show collective behavior
which is a crucial feature of systems in a critical state, (4)
exhibit spatial scaling [see Sapozhnikov and Foufoula-Georgiou,
1996a], and (5) undergo significant changes over a wide range
of scales even when they are statistically in equilibrium. More-
over, evidence was presented in this study for the presence of
dynamic scaling as well, which is an important characteristic of
systems at the critical state. It should be noted that the exper-
imental braided river system brought itself to the state at which
it showed dynamic scaling by just being uniformly supplied with
water and sediment, i.e., without tuning any physical parameter
of the experimental model. It happened in the same way as in
the sandpile model [Bak, 1987], where the system builds up
itself without any tuning and shows spatial and temporal scal-
ing. For all of the above reasons we conjecture that braided
rivers may be self-organized critical systems.

Studying braided river dynamics under the SOC framework
offers the potential of using the apparatus of the theory of
critical state which provides a general framework for descrip-
tion and understanding of all critical phenomena and enables
one to apply results obtained for known systems (e.g., magnetic
fields and percolation clusters) to new systems less well known.
An example of this idea is presented by Tang and Bak [1988].
Strictly speaking, to firmly establish SOC, one would also need
to follow the behavior of the braided river as it approaches the
critical state (perhaps with the critical slope playing the role of
critical temperature here). Such experiments, however, are
very hard to perform (even in other more controlled physical
systems), and thus spatial and dynamic scaling of the type
presented here is usually considered adequate evidence for
SOC. Nevertheless, more data analysis of the braided river
before, as it approaches stationarity, and after its slope stabi-
lizes, is needed to firmly establish whether and under what
conditions braided rivers can be considered self-organized crit-
ical systems.

7. Conclusions and Open Problems
In a previous study, Sapozhnikov and Foufoula-Georgiou

[1996a] presented evidence that braided rivers exhibit spatial
(static) scaling in their morphology. In this study we presented
evidence that braided rivers exhibit dynamic scaling too, which
implies that it is possible to renormalize space and time such
that a smaller part of a braided river evolves identically (in a
statistical sense) to a larger part of the river. The presence of
dynamic scaling is not only interesting in its own right but also
promises to shed light upon the space-time dynamics of
braided rivers by unraveling statistical similarities between pat-
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terns at smaller space-time scales and those at larger space-
time scales. The dynamic scaling relationships established here
can also be used to statistically predict long-term changes of
the system at a larger spatial scale on the basis of monitored
short-term changes at a smaller spatial scale. The evidence for
dynamic scaling was further interpreted as an indication that
braided rivers may be in a critical state and behave as self-
organized critical systems. From experimental braided river
data produced in our laboratory the value of the dynamic
exponent z for the space-time rescaling in (1) was established
to be approximately equal to 0.5. This value of z was inter-
preted as an indication of a relatively weak dependence of the
rate of evolution on the spatial scale in braided rivers. In
particular, it lead us to conjecture that changes in small chan-
nel patterns are to a great extent forced by the changes in
larger channels.

Our analysis presents a first attempt to study the large-scale
dynamics of braided rivers and to seek spatiotemporal invari-
ances in those systems. Of course, more theoretical, empirical,
and experimental research is needed to fully study the space-
time evolution of these complex systems and their scale rela-
tions. Some open problems follow.

In our analysis the evolution of the braided river system has
been characterized by the horizontal sizes of changes. An in-
teresting direction for further research is the introduction of
the third dimension, i.e., consideration of the depth of changes
in addition to their horizontal sizes. This approach would en-
able one to explore braided rivers for “dynamic multiscaling.”

In our study we analyzed changes in the river by subtracting
two images of the river taken at different moments of time. In
doing that we did not distinguish between changes caused (1)
by the flooding of previously dry areas of the basin and (2) by
the increase of water depth in areas which were already cov-
ered with water. This separation was not feasible with our data
because sediment coloring did not allow us to determine with
certainty from the darkness of the image whether a particular
location was or was not covered with water. A more detailed
analysis which would include separation of these two cases may
be of interest, but this would require a different technology
than sediment coloring which would permit accurate determi-
nation of water depth (and not water depth change only) at
every point of the basin. Such data would permit study of the
space-time structure of water depth too and thus characteriza-
tion of the hydrology in addition to the morphology of braided
rivers.

Also, an important issue for future study should be the
extension of the developed theoretical framework of dynamic
scaling to self-affine objects. That is, if the underlying object is
self-affine and is characterized by two fractal exponents nx and
ny, expressions of dynamic scaling should be developed in
terms of nx and ny (or in terms of the two fractal dimensions
DG and DL) (see Sapozhnikov and Foufoula-Georgiou [1995,
1996a] for the connection of nx and ny to DG and DL). An
associated open problem is the theoretical description of the
critical state of self-affine objects. Such a theory does not exist
to our knowledge, probably because there was no need for it in
traditional (not self-organized) critical systems. Another im-
portant issue to be explored is the connection of dynamic
scaling not only to the fractal geometry of braided rivers but
also to other scaling characteristics of natural and simulated
braided rivers, such as power law distributions in channel
widths and bar sizes [e.g., see Howard et al., 1970; Barzini and

Ball, 1993; Murray and Paola, 1994; Sapozhnikov and Foufoula-
Georgiou, 1996a].

It should be stressed that our analysis applies to the com-
parison of small and large parts of one river system and not of
one system with another. The latter would require inclusion of
other physical parameters which govern the evolution of rivers.
For example, slope plays a crucial role in the rate of the
evolution of rivers (the greater the slope, the faster the evolu-
tion). For example, the slope of Brahmaputra is 2000 times
lower than that of our experimental river, which significantly
affects their relative rates of evolution. Other important fac-
tors are total water and sediment flux in a river (the greater the
imposed flux, the faster the evolution) [Ashmore, 1985] and the
type of the sediment. Thus, to relate the rate of the evolution
of different systems, (1) has to be extended. Under a scaling
hypothesis one could conjecture that it would take the form

t2

t1
5 SL2

L1
D zS s2

s1
D g

· · · (14)

where s is the slope of a river and the dots imply that other
parameters could enter this equation in a power law multipli-
cative way. Toward establishing the precise form of (14), study
through laboratory experiments of the effect of the sedimen-
tological and hydrological characteristics (slope, input water
and sediment discharge, and grain size) on the evolution and
scaling exponents of braided rivers is needed, and this is an
important issue for future research. Such studies will permit
transferability of results from one system to another and from
laboratory to nature.

8. Appendix: Scaling of the Number of Changes
in a Fractal Object With the Size
of the Observed Region

Here we will illustrate by example that the number of
changes scales with the size of the observed region as written in
(2). Consider, for example, a 3 3 3 Sierpinsky carpet with one
square taken out (black area) such that every bigger square
contains eight smaller ones and is a replication of the smaller
squares at a larger scale (see Figure 7). The fractal dimension
of this Sierpinsky carpet is D 5 log 8/log 3. Let us allow
evolution of this carpet. The details of the evolution rules are
not important for our purpose as long as the fractal dimension
of the carpet is preserved. Similarly to what we did for braided
rivers, we define changes in the evolving Sierpinsky carpet as
parts of the space which were not occupied by the carpet at a
certain moment of time but became occupied after some time
lag. Since by definition the changes can only occur in the parts
of the space occupied by the object (i.e., in the eight white
squares), the cumulative number of changes in the 3 times
larger square is 8 times the number of changes in a smaller
square: n larger/nsmaller 5 (L larger/Lsmaller)

D 5 8. In other
words, the cumulative number of changes scales with the size
of the observed region, with the scaling exponent equal to the
fractal dimension of the generating fractal object. To avoid
confusion, it should be noted that fractality of the spatial pat-
tern of changes is not needed for the cumulative number of
changes to scale as written in (2). For example, in the Sierpin-
sky carpet the cumulative number of islands (black parts) of a
given size scales with the size of observation, with an exponent
D (it increases 3D 5 8 times when the scale is increased 3
times). However, the spatial pattern of the islands is not a
fractal object at all (it has a nonzero Lebesgue measure).
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Figure 7. (a) The generator of a 3 3 3 Sierpinsky carpet with
one square taken out (solid area) and (b) the Sierpinsky carpet.
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