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Abstract. Dynamic scaling in braided rivers is reexamined under an extended theoretical
framework, developed herein, which explicitly incorporates the self-affinity (scaling
anisotropy) in the spatial structure of braided rivers. It is shown that in structures
exhibiting anisotropic spatial scaling, dynamic scaling (if present) is necessarily anisotropic.
Through analysis of the behavior of an experimental braided river, the presence of
anisotropic dynamic scaling in braided rivers was revealed. This implies that there exists a
pair of dynamic exponents zx and zy enabling one to rescale space (differently in the
direction X of the slope and in the perpendicular direction Y) and time, such that the
evolution of a smaller part of a braided river looks statistically identical to that of a larger
one. The presence of such a space-time scale invariance provides an integrated framework
for describing simultaneously the spatial and temporal structure of braided rivers and may
be explored toward statistical prediction of large and rare changes from the statistics of
smaller and frequent ones.

1. Introduction

The morphology and dynamics of braided rivers have been
studied over the years using river-mechanics, experimental,
empirical, and computer-simulation approaches [e.g., see
Howard et al., 1970; Schumm and Khan, 1972; Ashmore, 1982,
1991; Kuhnle, 1981; Leddy et al., 1993; Barzini and Ball, 1993;
Murray and Paola, 1994; Smith et al., 1995, 1996]. In a recent
study, Sapozhnikov and Foufoula-Georgiou [1997] analyzed the
spatio-temporal structure of braided rivers and presented ev-
idence that they exhibit dynamic scaling. Dynamic scaling im-
plies that a small part of a braided river evolves identically (in
a statistical sense) to a larger one provided that time is renor-
malized by a factor depending only on the ratio of the spatial
scales of those parts. In those developments, Sapozhnikov and
Foufoula-Georgiou [1997] considered braided rivers as self-
similar objects characterized by one fractal dimension D . How-
ever, it is known [Sapozhnikov and Foufoula-Georgiou, 1996]
that braided rivers exhibit spatial scaling anisotropy, i.e., are
objects characterized by two scaling exponents nx and ny, or
equivalently two fractal dimensions DG and DL (see Sapozh-
nikov and Foufoula-Georgiou [1995] for relations between DG,
DL, and nx, ny). The reason that self-similarity was assumed in
the dynamic scaling developments of Sapozhnikov and Fou-
foula-Georgiou [1997] was that no theoretical framework ex-
isted yet to integrate the notions of dynamic scaling and self-
affinity.

The scope of this paper is to present such a framework, i.e.,
extend the theory of dynamic scaling to self-affine objects, and
report the results of reanalyzing braided rivers under this in-
tegrated and more consistent framework. To avoid repetition,
relies heavily on the paper of Sapozhnikov and Foufoula-
Georgiou [1997] for the basic ideas on dynamic scaling and the

details of the experimental setting. The reader is advised to
read the present paper in conjunction with the previous one for
a complete understanding of this work.

2. Dynamic Scaling in Self-Affine Objects
The idea of dynamic scaling in a self-affine object can be

qualitatively presented as follows. Suppose there is a self-affine
object characterized by fractal exponents nx and ny, which
evolves in time (such that its fractal characteristics are pre-
served at all times). The self-affinity (anisotropic spatial scal-
ing) of the object implies that if one takes a picture of a part of
the object of size X1 3 Y1, and a picture of a part of the same
object of size X2 3 Y2, such that

SX2

X1
D 1/nx

5 SY2

Y1
D 1/ny

, (1)

and projects these two parts onto two screens of the same size,
(this would require different stretching of each image in X and
Y directions) the images on the screens will be statistically
indistinguishable. Suppose now that one makes another step
and, instead of taking still pictures, videotapes the two regions
and observes the evolution of the images on the two screens. In
contrast to the still pictures, the movies will not be statistically
indistinguishable. The rate of evolution will be different (slow-
er for the larger scale). If, however, there exists a pair of
dynamic exponents zx and zy such that for every X1, Y1 and
X2, Y2 satisfying (1) it is possible to rescale the time as

t2

t1
5 SX2

X1
D zx

5 SY2

Y1
D zy

, (2)

or, in other words, to play the movies at different speeds, such
that the rate of the evolution is the same on both screens, then
we say that in addition to static (spatial) scaling the system also
shows dynamic scaling. Comparison of (1) and (2) bounds the
values of the fractal exponents nx, ny and the dynamic expo-
nents zx, zy by
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zx

zy
5

n y

nx
. (3)

Thus we see that dynamic scaling in self-affine objects is nec-
essarily anisotropic.

Following the developments of Sapozhnikov and Foufoula-
Georgiou [1997], let us characterize the evolution of a fractal
stationary object by “changes” in its pattern, where changes are
defined as parts of the space which were not occupied by the
object at a certain moment of time but became occupied after
some time lag t . Although changes in a river are three-
dimensional, as is the river itself, we only considered in our
previous work and here their horizontal projections. Thus
changes in a braided river reflect parts of the river where water
depth changed (including dry areas which became covered with
water and water-covered areas which became exposed). Let
n(X , Y , x , y , t) denote the number of changes exceeding size
x in the X direction and size y in the Y direction after some
time lag t in a region of size X 3 Y . Because the object is
stationary and fractal, with constant fractal exponents nx and
ny, the number of changes scales with the size of the observed
region (see Appendix in Sapozhnikov and Foufoula-Georgiou
[1997]) as

n~X2, Y2, x1, y1, t1! 5 n~X1, Y1, x1, y1, t1!SX2

X1
D 1/nx

5 n~X1, Y1, x1, y1, t1!SY2

Y1
D 1/ny

(4)

provided that (1) holds.
The presence of dynamic scaling, implying the same rate of

evolution after rescaling space and time according to (2),
means that if (2) and (1) hold, the number of changes exceed-
ing the same relative size x 3 y such that

x1

x2
5

X1

X2
,

y1

y2
5

Y1

Y2
(5)

is the same on both screens, i.e.,

n~X1, Y1, x1, y1, t1! 5 n~X2, Y2, x2, y2, t2! (6)

Suppose now that we fix the scale of the region of interest to
X2 3 Y2 and instead of zooming to different scales we follow
the distribution of changes in this region as the object evolves.
From (6) and (4) we obtain for the distribution of changes in
the region X2 3 Y2

n~X2, Y2, x2, y2, t2! 5 n~X2, Y2, x1, y1, t1!SX1

X2
D 1/nx

5 n~X2, Y2, x1, y1, t1!SY1

Y2
D 1/ny

(7)

provided that (1) and (2) hold. The variables X2 and Y2 are the
same in both sides of (7) and therefore can now be dropped.
Replacing X1/X2 by x1/x2 and Y1/Y2 by y1/y2 from (5) yields

x1
1/nxn~ x1, y1, t1! 5 x2

1/nxn~ x2, y2, t2! (8)

y1
1/nyn~ x1, y1, t1! 5 y2

1/nyn~ x2, y2, t2! . (9)

Finally, we obtain the condition for the distribution of changes
in a system showing dynamic scaling: there exists a pair of
dynamic exponents zx and zy (bound by (3)) such that if (2) is
true, i.e., t/Xzx 5 const and t/Yzy 5 const (which according to

(5) also implies t/xzx 5 const and t/yzy 5 const), then x1/nxn( x ,
y , t) 5 const and y1/nyn( x , y , t) 5 const, or in other words the
distribution of changes in such systems can be expressed as

n~ x , y , t! 5 x21/nxgxS t
xzx ,

t
yzyD 5 y21/nxg yS t

xzx ,
t

yzyD , (10)

where gx( z ) and gy( z ) are some functions.
The two conditions: t/xzx 5 const and t/yzy 5 const, can be

presented as t/xzx 5 const and xzx/yzy 5 const. With (3) the
second condition can be rewritten as x1/nx/y1/ny 5 const and
(10) can be rewritten as

n~ x , y , t! 5 x21/nxhxS t
xzx ,

y1/ny

x1/nxD 5 y21/nyhyS t
yzy ,

x1/nx

y1/nyD . (11)

Note that (10) and (11) are equivalent to each other.
Since n( x , y , t) is a joint probability of exceedance, the

distribution n( x , t) for all possible values of y , is n( x , t) [
n( x , 0, t). Therefore from (11) we obtain

n~ x9 . x , t! ; n~ x , t! 5 x21/nxhxS t
xzx , 0D 5 x21/nxf xS t

xzxD . (12)

Similarly,

n~ y9 . y , t! ; n~ y , t! 5 y21/nyf yS t
yzyD . (13)

Note that n( x9 . x , t) is the number of changes of size greater
than x in the X direction (and having any size in the Y direc-
tion) and n( y9 . y , t) has similar meaning for the Y direction.
Equations (12) and (13) are the equations of dynamic scaling
of a self-affine object. They imply that if a self-affine object of
scaling exponents nx and ny exhibits dynamic scaling, then
there exist exponents zx and zy such that n( x9 . x , t) x1/nx

versus t/xzx and n( y9 . y , t) y1/ny versus t/yzy collapse to the
same curves fx and fy, respectively, for all x , y , t .

3. Analysis of an Experimental Braided River
Recognizing the lack of data for studying the evolution of

natural braided rivers, Sapozhnikov and Foufoula-Georgiou
[1997] proposed as a starting point to analyze the evolution of
experimental braided rivers so that theories can be developed
and tested until more accurate and frequent remote sensing
data are available for application of these theories to natural
systems. Thus, a small experimental basin of 5 m 3 0.75 m was
established at the St. Anthony Falls Laboratory and experi-
mental braided rivers were successfully produced and moni-
tored over time. The details of the experimental and monitor-
ing procedures were extensively discussed by Sapozhnikov and
Foufoula-Georgiou [1997] and are not repeated here. The same
data of “changes” as in our previous paper are used here but
subject to analysis under the extended theory of anisotropic
dynamic scaling as developed in the previous section. For
example, from the monitored changes over time the probabil-
ities of exceedance n( x9 . x , t) and n( y9 . y , t) as needed
in (12) and (13) were estimated now instead of the probability
n(l9 . l , t), l 5 =area used in the self-similar dynamic
scaling analysis. The X direction is the direction of the slope
and Y is the perpendicular direction.

It is noted that in principle, if the self-affine exponents nx

and ny could be estimated directly from the river pattern using
for example, the Logarithmic Correlation Integral (LCI)
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method developed by the authors earlier [Sapozhnikov and
Foufoula-Georgiou, 1995], then the dynamic exponents zx and
zy could be estimated from (12) and (13) directly. That is, by
nonlinear optimization the value of zx that minimizes the
spread of the points n( x9 . x , t) x1/nx versus t/xzx (so that all
curves collapse to a single curve fx) can be found. The zy

exponent could be found in the same way. However, as in the
self-similar analysis we preferred to take advantage of a step-
wise estimation approach suggested by the data. An additional
reason for taking such an approach in the self-affine case is
that nx and ny presented difficulty in their direct estimation
from the experimental rivers because it was hard to separate
the river from the colored sediment in the video images (dye
was introduced in the water to monitor the evolution of the
river). Therefore thus tracings of the river patterns could not
reveal small channels thus restricting the range of analyzed
scales. Note that determining the changes in the river pattern
was not a problem because the colored sediment was zeroed by
subtraction (see Sapozhnikov and Foufoula-Georgiou [1997] for
details).

Changes in the experimental braided rivers, e.g., see Figure
2 of Sapozhnikov and Foufoula-Georgiou [1997], were followed
over time and the sizes x and y of each change in the direction
X of the slope and in the perpendicular direction Y were
estimated as the root-mean square of the deviation of pixels
( xi, yi) constituting the change, from the center of mass of
the change ( xc, yc): x 5 [1/N ¥ i51

N ( xc 2 xi)
2]1/ 2 and y 5

[1/N ¥ i51
N ( yc 2 yi)

2]1/ 2, correspondingly, where N is the
number of the pixels in the change. Then cumulative proba-
bility distributions of the sizes x and y of changes were esti-
mated. The distribution of changes was followed over time and
Figure 1 shows these distributions for time lags of 3, 4, 5, 7, 9
and 15 s. Notice that the number of changes of size greater
than x or y in a time lag t , n( x9 . x , t) and n( y9 . y , t),
respectively, are plotted instead of the probability. As can be
seen from Figure 1, these distributions can be well approxi-
mated by power laws for different time lags and the slopes of
the log-log plots of the distributions found for different time
lags are very close. Thus the distributions can be presented in
the form

n~ x9 . x , t! 5 cx~t! x2kx, (14)

n~ y9 . y , t! 5 c y~t! y2ky, (15)

where cx(t) and cy(t) are functions of time lag t . The log-log
plots of n( x9 . x , t) xx

k and n( y9 . y , t) yy
k against t shown in

Figure 2 suggest that for small values of t , cx(t) and cy(t)
show power law dependencies

cx~t! , tbx (16)

c y~t! , tby. (17)

Combining (14) and (16), and (15) and (17) we see that

n~ x9 . x , t! , tbxx2kx (18)

n~ y9 . y , t! , tbyy2ky. (19)

For small values of t , such that the power law relationships
(16) and (17) hold, the functions fx and fy can be approximated
by power laws. Thus, comparing the conditions of dynamic
scaling (12) and (13) with (18) and (19), results in

zx 5 ~kx 2 1/nx!/bx (20)

zy 5 ~ky 2 1/n y!/b y. (21)

We estimated the values of kx and ky from the power-law
distributions of changes (Figure 1 and (14) and (15)) as kx 5
2.17 and ky 5 2.47 (kx and ky represent the average of the
slopes of the corresponding five lines in Figure 1). The values
of bx and by were estimated from the power law dependence
of cx(t) and cy(t) (Figure 2 and (16) and (17)) as bx 5 1.68
and by 5 1.95.

As mentioned before, our experimental data did not permit
a direct estimation of nx and ny via the LCI method. However,
we were able to estimate the fractal dimension of the experi-
mental braided river D from one pattern of the river by the
“mass-in-a-box” method (which is much less data demanding)
as 1.7 (see Figure 5 of Sapozhnikov and Foufoula-Georgiou
[1997]). This value of D relates to nx and ny by the expression
[see Sapozhnikov and Foufoula-Georgiou, 1995]

DG ; D 5 ~n y 2 nx 1 1!/n y. (22)

Combining the above equation with (3), (20), and (21) results
in

Figure 1. Number of changes of size greater than x , n( x9 .
x , t), and greater than y , n( y9 . y , t), in the direction of
slope X and the perpendicular direction Y , respectively. The
numbers of changes are plotted for time lags t of 3, 4, 5, 7, 9,
and 15 s (from bottom to top), and the solid lines represent the
best least squares fit lines for each time lag t . Note that the
numbers of changes are fractional numbers, some less than
one, since they represent average values over multiple realiza-
tions, each realization corresponding to a particular time lag
but to different time instances. The plots suggest that the
distributions have broad central regions that are well approx-
imated by power laws, and their slopes for different time lags
are very close to each other for each of the two directions.
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nx 5
kybx 1 ~b y 2 bx!~D 2 1!

kxb y~D 2 1! 1 kybx
(23)

nx 5
bx 2 b y 1 kxb y

kxb y~D 2 1! 1 kybx
. (24)

The above equations enabled us to estimate indirectly the
fractal exponents of the experimental river as nx 5 0.61 and
ny 5 0.55. Finally, from (20) and (21) we found the dynamic
exponents of the braided river as zx 5 0.32 and zy 5 0.35.
Thus it was concluded that the experimental river exhibits
anisotropic dynamic scaling with anisotropy ratio zy/zx 5 nx/ny

5 1.1.
It is important to note that although for small time lags

Figure 2 shows reasonably good temporal scaling, it deviates
from the power law behavior for bigger time lags (i.e., for time
lags t . 15 s not shown in Figure 2). It should be stressed
however, that this does not indicate the loss of dynamic scaling
expressed by the general equations for dynamic scaling (12)
and (13). In fact, even though the functions fx and fy, from (12)
and (13), follow power laws at small values of the argument,
they have to level off at big values of the argument. Indeed, for
big enough time lags such that the object decorrelates com-
pletely between the snapshots, the difference between the two
patterns of the object (and therefore the distribution of
changes n( x9 . x , t) and n( y9 . y , t)) does not depend on

time anymore. This necessarily leads to the loss of power law
dependencies in relations (16) and (17) but not loss of dynamic
scaling. In fact, to confirm that the distributions corresponding
to different time lags satisfy the general equations for dynamic
scaling (12) and (13), we plotted for the estimated values of nx,
ny, zx, and zy, the values of n( x9 . x , t) x21/nx versus t/xzx,
and n( y9 . y , t) y21/ny versus t/yzy, for different time lags up
to 1 min, in Figure 3. As one can see, in both cases all curves
satisfactorily collapse to a single curve (the fx( t /xzx) and
fy(t/yzy) curve, respectively).

This further corroborates the presence of dynamic scaling
and the adequacy of the estimated dynamic exponents zx 5
0.32 and zy 5 0.35 in the experimental braided river. Notice
that this last confirmation of dynamic scaling, i.e., that the
general equations for dynamic scaling (12) and (13) hold, did
not directly use the assumption of power-law distribution of
changes (equations (14) and (15)) or power law dependence of
cx(t) and cy(t) for small values of t (equations (16) and (17)).
These two special forms of dependencies (suggested directly
from the experimental data in Figures 1 and 2) were conve-
niently used only to estimate zx and zy in a stepwise manner via
equations (20) and (21). After the values of zx and zy were
estimated, plotting n( x9 . x , t) x21/n x versus t /xzx and
n( y9 . y , t) y21/ny versus t/yzy, and seeing that in each case all
curves collapse to one, the fx or fy curve respectively, provides
an additional and independent evidence for anisotropic dy-
namic scaling.

Figure 3. Plot showing that the rescaled distributions of
changes collapse into a single curve, fx and fy, for each direc-
tion X and Y , respectively. Time lags from 3 to 60 s (bottom
left to top right) are shown in each plot. This further corrob-
orates the presence of anisotropic dynamic scaling and the
adequacy of the estimated values of zx and zy.

Figure 2. Evolution of the distribution of changes shown by
the time dependence of the functions n( x9 . x , t) xkx and
n( y9 . y , t) yky for the X and Y directions, respectively. For
every time lag, each point on the plots shows the (rescaled by
xkx or yky) number of changes exceeding size x or y , respec-
tively. The plots suggest that power law dependence applies in
both directions well over a major part of the range.
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4. Discussion and Conclusions
In a previous study by Sapozhnikov and Foufoula-Georgiou

[1997], evidence was presented that braided rivers exhibit dy-
namic scaling with scaling exponent z . 0.5. In that study,
braided rivers were analyzed as self-similar objects despite the
existing evidence that they exhibit spatial scaling anisotropy,
i.e., that they are self-affine objects [Sapozhnikov and Fou-
foula-Georgiou, 1996]. The reason for exploring dynamic scal-
ing in braided rivers within the self-similarity framework first,
was that developing the corresponding theory was easier con-
ceptually in that case and its extension to self-affinity was not
trivial. The results were interpreted considering D (the fractal
dimension of a self-similar object) as a surrogate parameter for
DG (the global fractal dimension of a self-affine object) which
relates to nx and ny via (22).

In this paper, the theoretical framework for describing dy-
namic scaling was extended to self-affine objects and was ap-
plied to the same experimental braided river data as in Sapozh-
nikov and Foufoula-Georgiou [1997]. The results indicated the
presence of anisotropic dynamic scaling in braided rivers and
gave us estimates of the dynamic exponents zx 5 0.32 and
zy 5 0.35. The approach presented in this paper is more
general than the one by Sapozhnikov and Foufoula-Georgiou
[1997] as it is capable of taking into account the self-affinity of
the analyzed object. At the same time, it can also be used for
the analysis of self-similar objects as a special case. We con-
sider this approach more consistent for the analysis of braided
rivers and believe that it is the values of zx and zy (rather than
the single value of z) that really characterize the dynamic
scaling in braided rivers.

The physical interpretation of the dynamic exponent z was
extensively discussed by Sapozhnikov and Foufoula-Georgiou
[1997] and was interpreted as an indication that evolution of
small channel patterns is to a large extent forced by the evo-
lution of larger channels. The exact same interpretation ap-
plies here for the zx and zy values, each one associated with the
evolution of channels along the slope and in perpendicular
direction, respectively.

It should be noted that in the experimental river, the esti-
mated scaling anisotropy parameter nx/ny 5 1.1 is consider-
ably lower than the value of 1.4 to 1.5 estimated for natural
rivers using the LCI method. It remains to be determined
whether this discrepancy reflects differences in the spatial
structure of natural versus laboratory produced rivers or is due
to the differences in the estimation methods (one based on the
static images only versus the other based on system dynamics).
It is emphasized that in this work the fractal exponents nx and
ny were not explicitly estimated from the braided river pattern
as was done for natural rivers. Rather they were estimated
implicitly from the analysis of changes. Thus the developed
approach enables one to estimate the values of the fractal
exponents of the spatial structure of a braided river from the
dynamics of the river. As such, it takes advantage of the data
collected during some time interval, rather than relying on the
analysis of one snapshot only using, for example the LCI
method. The two estimation methods should be compared to
each other so that the properties of their estimates of nx and ny

can be better understood. Such a comparison was not possible
with the experimental data used in this study since, as was
discussed, the dye procedure did not allow for many scales to

be resolved in the static patterns, as needed for the LCI
method. Different techniques giving higher-resolution experi-
mental data or remote sensing images of natural braided rivers
might permit such a comparison in the near future.

As a closing remark, it is noted that the presence of spatial
and dynamic scaling was interpreted by Sapozhnikov and Fou-
foula-Georgiou [1997] as indication of self-organized criticality
(SOC) in braided rivers. In view of the results of this article
where anisotropic dynamic scaling was established, braided
rivers are further interpreted as SOC systems showing spatio-
temporal anisotropy in the critical state. To our knowledge,
this type of behavior has never been found in classical systems
i.e., systems brought to a critical state not by self-organization,
but by tuning of a critical parameter (e.g., temperature). Thus
a general problem that remains open to investigation is the
development of theoretical frameworks for the description of
the critical state of self-affine objects.
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