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Abstract 

 

Scale recursive estimation (SRE) is a Kalman filter-based methodology, which can be 

used to produce optimal (in terms of bias and minimum variance) estimates of a field at 

any desired scale given uncertain and sparse observations at different scales. SRE 

requires the specification of the state equation, which describes the variability of the 

precipitation process across scales, and the observation equation, which relates the 

observations to the state. Typical models for describing the multiscale rainfall variability 

are the multiplicative cascade models.  However, in order to convert them into the 

additive form needed by SRE, one needs to work in the log space, creating thus a 

problem in handling zero-intermittency in a satisfactory way.  In this paper, we propose 

an alternative approach, based on a data-driven identification methodology, which 

operates directly on the data and does not require a pre-specified multiscale model 

structure.  Rather, system identification and estimation is performed simultaneously via a 

likelihood-based Expectation-Maximization (EM) procedure.  The merits of the proposed 

approach versus approaches based on multiplicative cascade models are explored via 

several examples of synthetic and real precipitation fields.  For practical application, the 

proposed approach will need to be extended to include the temporal evolution of storms.  

This extension presents theoretical challenges and until these are addressed, a simple 

alternative is explored of coupling the EM-SRE approach with a spatial downscaling 

methodology to merge precipitation observations available at different spatial and 

temporal scales.  An example application is presented motivated by its relevance to the 

Global Precipitation Measuring (GPM) mission.   
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1. Introduction 

Precipitation is one of the most inhomogeneous and fast evolving hydrometeorological 

processes in space and time. The multiscale variability observed in precipitation is due to 

the nesting of small, transient storm elements within larger long-lived elements. In order 

to increase the accuracy of atmospheric and hydrologic predictions, accurate precipitation 

estimates are required for model initialization, data assimilation, and also model 

verification. A variety of sensors, for example, raingauges, radars, and satellites are used 

to obtain precipitation related measurements. Each measurement technique has some 

advantages and limitations. Raingauges and radars, for example, provide relatively the 

most accurate precipitation measurements but with limited coverage. On the other hand, 

infrared sensors on geostationary satellites provide a broad and continuous coverage but 

with limited accuracy, and microwave sensors on polar orbiting satellites stand 

somewhere in between. In order to produce accurate precipitation estimates, an obvious 

solution is to merge these disparate sources of measurements and exploit the advantages 

that each measurement technique has to offer.  

Scale Recursive Estimation (SRE) [see Chou et. al., 1994a, b for original 

references] has recently been proposed as a methodology for merging multi-sensor, 

multi-scale precipitation measurements in order to obtain estimates of precipitation and 

their error statistics at desired spatial scales, for the purpose of model verification 

[Tustison et al., 2003] or data assimilation [Kumar, 1999; Primus et al., 2001].  The SRE 

methodology, which has its roots in Kalman filtering, explicitly takes into account the 

disparate (in scale) measurement sources and their sensor-dependent uncertainty.  This 

methodology requires a multiscale stochastic model to describe the scale-to-scale 

variability of spatial precipitation.  Several such models have been explored in the past 
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[e.g., see Gupta and Waymire, 1993; Lovejoy and Schertzer, 1991; Kumar and Foufoula-

Georgiou, 1993a, b; Harris et al., 1997; among others] but a class of models that 

naturally fits into the SRE framework (because they can be brought into the recursive 

additive form required by SRE) is that of multiplicative cascade models [e. g., Gupta and 

Waymire, 1993; Over and Gupta, 1994].   These models have been used for rainfall 

applications within the SRE framework by Primus et al. [2001] and [2003]. 

There are two (interrelated) problems that arise in using multiplicative cascade 

models for spatial rainfall within the SRE methodology.  First, in order to bring these 

models into the additive state-scale recursive equation required by SRE, one has to work 

in the logarithmic space.  Since spatial rainfall fields contain zero values (due to 

intermittency) a small threshold is usually used to replace the zeros with nonzero values 

during the SRE procedure.  Sensitivity of the fitted model parameters and SRE estimates 

to the chosen threshold value was reported in Tustison et al. [2003] although this issue 

was not pursued further.  Second, by construction, multiplicative cascade models produce 

fields, which are non-zero everywhere within the modeling domain.  If an imposed small 

threshold value were to be used to define “zeros” (as values below the chosen threshold) 

the statistics of these zeros would be completely predetermined by the cascade model 

parameters and would follow a power law distribution (i.e., zero areas of all sizes would 

be expected to be present).  This might be a restriction, if the statistics of the zero areas 

do not follow power law distributions.  Thus, both of the above issues pose limitations in 

considering multiplicative cascade models for rainfall within the SRE framework.   

Motivated by these limitations, this paper proposes an alternative approach to 

scale recursive estimation based on a data-driven system identification methodology, 

which operates directly on the data (and not their logs) and does not require a 
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prespecified multiscale model structure (in that sense, the proposed approach is referred 

to as “nonparametric”).  This is accomplished by a likelihood-based Expectation 

Maximization (EM) on scale-recursive dynamics on trees [e.g., Kannan et al., 2000] 

which identifies and estimates the model recursively (and dynamically) from the 

available multiscale/ multisensor observations with no fixed structure of the process 

dynamics.  As such, it provides a valuable alternative in many practical situations.  The 

merits of the proposed nonparametric EM-SRE approach compared to parametric 

approaches are documented based on a suite of numerical experiments. 

In practical applications, merging of multiscale observations has to be performed 

continuously over time giving rise to the need to have the temporal structure of 

precipitation also taken into account.  Extending the SRE methodology to dynamic 

(spatio-temporally varying) fields is not a simple task.  The challenge of multiscale 

estimation of dynamic systems lies in the prediction step, which requires untangling the 

spatial mixing due to temporal dynamics. This step can be involved even in simple 

dynamics such as diffusion processes.  Research on SRE of dynamic fields includes that 

of Ho et al. [1996].  The idea behind their approach is that the multiscale models for the 

updated and predicted estimation errors are propagated through time in the same way that 

Kalman filter propagates the error covariances, but in a more computationally efficient 

manner, i.e., without computing or storing the full error covariance matrix.  They 

introduced a reduced-order spatially interpolated multiscale model and its efficiency was 

demonstrated in several applications.    Before these methodologies are explored towards 

the problem of merging multiscale spatio-temporal precipitation observations, it is worth 

considering simpler methodologies, which can provide insight into the problem.  Such a 

simple methodology which relies on combining the EM-SRE methodology with a 
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downscaling (spatial or spatio-temporal) scheme to produce space-time merged 

precipitation products is explored in this paper via an example motivated by the sampling 

specifications of the Global Precipitation Measuring (GPM) mission.   

This paper is structured as follows. In the next section, a brief overview of the 

SRE framework is presented while leaving the mathematical details for the appendix.  

Section 3 focuses on log-normal and bounded log-normal multiplicative cascades and 

numerical experiments are carried out to determine their merits and limitations for 

precipitation representation within SRE.  In section 4, the non-parametric EM-SRE 

methodology is presented.  Section 5 demonstrates, through numerical experiments, some 

advantages of the non-parametric over the multiplicative cascade parametric models.  

Section 6 presents a case study that is of potential relevance to the GPM mission.  

Namely, the EM-SRE framework is combined with spatial downscaling to accommodate 

the merging of observations available at different scales and different times.  Finally, 

conclusions and open problems for future research are presented in section 7. 

 

2. Scale Recursive Estimation Framework 

A multiscale process can be represented on an inverted tree, as shown in Figure 1.  The 

tree can essentially be seen as a way of connecting the information about the process at 

different scales.  Each node on the tree corresponds to a unique combination of scale and 

spatial location and is given the location index λ, and the spatial scale index m(λ), which 

is assumed in our case to be the same for all nodes at the same spatial scale.  The 

multiscale stochastic models of interest are specified in terms of scale recursive dynamic 

equations defined on the tree.  Specifically, if )(λX denotes the value of the process state 
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at node λ, the evolution of the multiscale process from coarse (γλ) to fine (λ) scale is of 

the form: 

 )()()()()( λλγλλλ WBXAX +=  (1) 

where )(λX is the zero-mean state of the system, )(λA and )(λB are parameters that 

control the scale-to-scale variability of the process, and )1,0(~)( NW λ  is a noise 

component, which is independent of the state. The term )()( γλλ XA  represents a coarse-

to-fine scale prediction or interpolation, )()( λλ WB  represents the higher resolution detail 

added in going from one scale to the next finer scale.  It is noted that the state )(λX can 

be a multi-dimensional vector with different variables but in this work, the state (spatial 

precipitation) is considered to be a scalar.  It is also worthwhile to note that although the 

system parameters, such as )(λA , )(λB  and )(λW , can vary with both scale and location, 

in this work, a special case is assumed in which the parameters are constant at each scale, 

i.e., the parameters are independent of location.  Along with the estimate of the state, 

computing the error statistics or uncertainty of the estimates is also of interest.  Defining 

the variance of the state as )]([)( 2 λλ XEPx = , using eqn. (1) and the fact that the state 

and the noise terms are independent, propagation of the variance )(λxP can be shown to 

evolve from coarse to fine scale according to a Lyapunov equation as:  

 )()()()( 22 λγλλλ BPAP xx +=  (2) 

This equation shows how the variance of the state at one location relates to that of its 

parent. The coarse-to-fine scale model of eqn. (1) can be inverted to give a model 

evolving from fine to coarse scale, which can be written in the form: 

  )()()()( * λλλγλ WXFX +=   (3) 
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where ))(,0(~)(* λλ QNW , and )(λF  can be obtained from the parameters of the 

coarse-to-fine scale model, as the ratio of the variances of the states [see Chou et al., 

1994a]:  

 )(
)(
)(

)( λ
λ
γλ

λ A
P
P

F
x

x=  (4) 

Also, by taking )]([ 2 γλXE , the variance of the state can simply be shown to evolve from 

fine to coarse scale as:  

 )()()()( 2 λλλγλ QPFP xx +=  (5) 

In order to incorporate the measurements of the process at different scales, a 

measurement model, which relates the measurements to the state of the system at a given 

location, is necessary. This model takes the form: 

 )()()()( λλλλ VXCY +=  (6) 

where )(λY  represents the measured quantity, )(λC relates the state to the measurement, 

and ))(,0(~)( λλ RNV , is the measurement error.  In this work, )(λC is assumed to be 

equal to 1 since the measurement and the state represent the same quantity i.e. 

precipitation. This may not always be the case and, in general, )(λC can be a complex 

often non linear relationship between the measured quantity and the state of the system. 

The measurement model given by eqn. (6) takes into account the measurement 

uncertainty V(λ), which in all practical cases differs from one scale to another scale 

because typically different instruments or sensors are employed to observe the process at 

different scales.  

 In order to compute the estimates of the process and their error statistics at every 

scale, the fine-to-coarse and coarse-to-fine state evolution equations, and the 
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measurement model, are all integrated together to form a single estimation framework. 

The multiscale estimates are computed from an upward sweep (a filtering step) in which 

the information is passed from one scale to the next coarsest scale, and a downward 

sweep (a smoothing step), which proceeds from coarse to fine scales.  The upward and 

downward sweeps together represent a generalization of the Rauch-Tung-Striebel (RTS) 

smoothing algorithm [see Chou et al., 1994a].  The upward sweep is a filtering step, 

which computes ]|)([ λλ YXE  for all nodes where λY is all the data in the subtree below 

nodeλ .  This is done recursively from the nodes at the bottom of the tree (finest scale) to 

the node at the top of the tree (coarsest scale) using an extension of Kalman filter to trees.  

The upward sweep consists of an initialization step, which is followed by the 

measurement update, scale propagation, and merging step.  In the initialization step, the 

state is initialized to the global mean of the process, which is zero by definition, and the 

error variance at the smallest scale is initialized to the variance as predicted by the 

multiscale model.  In the measurement update step, the state and the error variance are 

updated via the Kalman filter if the measurements are available at the scale of analysis.  

The updated state and error variance are then propagated to the next coarser scale using 

the prescribed multiscale model. Finally, because of the discrepancy in the number of 

pixels or nodes between various scales, the predicted state and error variance from the 

last step are combined through a weighted average (this is called the merging step).  At 

this point, the upward sweep (which started at the finest scale, and went up to the coarsest 

scale) is complete, and the downward sweep begins.  The downward sweep can be seen 

as a smoothing step, which computes E[ YX |)(λ ] for all the nodes whereY is the data in 

the entire tree.  This step allows for information exchange between adjacent nodes, as 

those nodes have contributed to the same upward sweep estimates of the state and its 
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error variance.  This step runs recursively from the top of the tree to the bottom.  It uses 

the final solution of the previous filtering step as the initial point of the recursion. The 

mathematical details of this algorithm are given in Appendix A. The reader is also 

referred to Chou et. al. [1994a, b] (see also Kumar, 1999;  Primus et al., 2001 and 

Tustison et al., 2003), for further details on the algorithm. 

 

3.  Multiplicative Cascades within Scale Recursive Estimation  

The scale-recursive estimation framework requires the specification of a model which 

describes the multiscale variability of the process under study.  A class of popular 

multiscale precipitation models is that of multiplicative cascade models (e.g., Gupta and 

Waymire, 1993; Over and Gupta, 1994 and Lovejoy and Schertzer, 1995).  A 

multiplicative cascade begins with the mean value at the root scale and operates in a 

(usually dyadic) tree to distribute the “mass” via successive application of a distributive 

operation at many scales. To evolve from one scale to the next finest scale on the tree, the 

process values are determined by multiplication of the values at the parent scale with  

“weights” drawn from a distribution.  As such, the multiplicative cascade can be put into 

the recursive form given by: 

 )()()( λωγλχλχ cc =  (7) 

where χc(λ) is the value of the process at scale λ, χc(γλ) is the value of the process at the 

parent node, γλ and ω(λ) are the multiplicative cascade weights.  In order to incorporate 

this cascade model into the SRE framework, it is necessary to express it in an additive 

form, which can be achieved by taking the logs of eqn. (7):  

 )(ln)(ln)(ln λωγλχλχ ccc +=  (8) 
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Details of two commonly used multiplicative cascade models (the lognormal cascade 

(LN) and bounded lognormal cascade (BLN)) and how these can be incorporated into the 

SRE framework can be found in Tustison et al. [2003] (see also Appendix B for a brief 

account).  Spatial precipitation exhibits zero intermittency, and thus working with the 

logs of the data is problematic because log(0) is undefined.  A simple way to handle the 

zero values is by replacing them with a small positive value (e.g., sensor detection 

threshold) at all scales or by replacing them at each scale differently based on the 

minimum value at that scale.  For example, as suggested by Tustison et. al. [2003], zeros 

can be replaced by:  

 ln(0) ln(min Y( )) cλ≡ −  (9) 

where c is a chosen parameter, and min Y( )λ is the minimum observation at scale λ. 

To quantify the sensitivity of the threshold value chosen to replace the zeros in the 

precipitation field on the estimated cascade parameters, a set of numerical experiments 

was performed.  The log-normal and bounded log-normal cascades (see Appendix B) 

were fitted to two precipitation storms: a summer convective storm over Kansas City, 

Missouri (July 4th, 1995) as observed by the KEAX radar, and a tropical storm over 

Darwin, Australia (January 27th, 1998).  The spatial resolution of both precipitation fields 

was 2x2 km2.  A weighted least squares fitting was done by minimizing the difference 

between the theoretical variance (see Eqns. (B3) and (B7)) and the empirical variance 

(computed from the logarithms of the observed data at all available scales) [see also 

Tustison et al., 2003 for further details].   It is worth mentioning here that we have plotted 

the variance of the log of the fields versus scale because it is this variance that is 

propagated from small to large scales and vice-versa in the SRE methodology.    



 13

Figures 2 and 3 show the theoretical (for the fitted LN and BLN cascades) and the 

empirical multiscale variance curves for the KEAX and Darwin fields, respectively, and 

for several thresholds, used to define the zeros:  10-4 mm/h, 10-3 mm/h, and a scale-

dependent threshold as in eqn. (9) with parameter c set to 1 [see Tustison et al., 2003 for 

this selection, which corresponds to approximately 10-3 mm/h at the smallest scale].  

These figures also show the values of the estimated parameters for the LN and BLN 

cascades.  Several observations can be made from these figures.  First, it is noted that 

depending on the chosen threshold, the empirical variance (i.e., variance of the log of the 

observed field) changes significantly.  This, naturally, affects the parameters of the fitted 

multiplicative cascade models (see Figures 2 and 3).  As the cascade model parameters 

are directly related to the parameters of the multiscale state-space equation given by (1), 

and the propagation of variance given by (2), poorly estimated model parameters will 

affect the merging and the SRE estimates at any scale of interest [see also Tustison et al., 

2003].    

In the absence of parametric multiscale models which can explicitly handle the 

zero-intermittency of rainfall, it is worth exploring non-parametric models, which can be 

incorporated into the SRE framework for merging multisensor observations.  The 

simplest such model is based on utilizing a data-defined variance reduction curve (VRC), 

i.e., how the variance of the process changes with scale, via a look-up table or graph, and 

without approximating it with an apriori model, such as a multiplicative cascade.  This 

approach bypasses the problem of zeros, but requires that such a curve can be reliably 

computed from available observations at multiple scales.  Notice that if only a few scales 

of observation are available, some form of interpolation would have to be performed such 

that a VRC is defined over all scales of interest.  Besides trivial linear interpolation, 
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another form of interpolation could be achieved through the process of aggregation of the 

high resolution observations, if available, and computation of the variance of the 

aggregated fields at the scales of interest.  As shown in Tustison [2001], when an accurate 

VRC is available, the VRC-SRE approach works well.  However, the estimation of an 

accurate VRC might not always be feasible owing to sparsity of data.  It makes sense in 

these cases then, to follow an approach by which the multiscale structure is not explicitly 

prescribed  (neither in form such as in multiplicative cascades, nor in how the variance 

changes with scale such as in the VRC) but it is left to be recursively estimated from all 

the available observations at all available scales.  In the next section, such an approach 

for the simultaneous system identification and scale recursive estimation is proposed.   

 

4.   Expectation-Maximization System Identification Approach 

An Expectation Maximization (EM) algorithm for estimation of the parameters of a 

multiscale stochastic process based on scale recursive dynamics on trees was introduced 

in Kannan et al. [2000] building on results of Chou et al. [1994a, b].  This approach was 

used to provide maximum likelihood (ML) estimates of the parameters for the general 

class of nonhomogeneous trees (i.e., nonuniform or irregular branching) with no fixed 

structure for the process dynamics.  This approach altogether eliminates the need to 

prescribe a priori the type of a multiscale model; rather it uses the measurements 

available at multiple scales and dynamically evolves the multiscale state-space equation 

given by (1).  Figure 4 shows a simple illustration of the EM algorithm.  In general, the 

parameter set of the multiscale recursive framework for which we intend to find 

maximum likelihood estimates is { )(λA , )(λB , )(λC , )(λR  | λ  ∈ Τ}, where Τ is the set 
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of all nodes in the tree.  Let this parameter set be collectively denoted by θ.  For our 

problem, we will fix the parameters )(λA and )(λC based on our understanding of the 

process and parameter )(λR based on the information on sensor uncertainties. So, the 

only parameter for which we intend to find the maximum likelihood estimate is )(λB .  

Hence the parameter set θ only contains )(λB . 

In Maximum Likelihood identification of the multiscale state-space model using 

the EM algorithm, the E-Step of the algorithm involves the computation of the expected 

log likelihood of the observed data and missing data (all states and missing observations). 

For a single run i.e. for a single sequence of observations, the expected log likelihood is  

}|),,({ YYXLE θθ  

where ),,( θYXL is the log-likelihood function that is defined as the joint log probability 

of the states and measurements, and is given by [Kannan et. al., 2000, Digalakis et al., 

1993] 

T T T 1

(T 0)

T 1

T

L(X,Y, ) {log | B( )B ( ) |  [X( ) A( )X( )] [B( )B ( )] [X( ) A( )X( )]}

{log | R( ) |  [Y( ) C( )X( )] R ( )[Y( ) C( )X( )]} constant
λ

λ

θ λ λ λ λ γλ λ λ λ λ γλ

λ λ λ λ λ λ λ λ

−

∈ −

−

∈

= + − −

− + − − +

−∑

∑
  (10) 

The Expectation or E-Step computes the conditional expectations of complete-data 

sufficient statistics whereas the maximization or M-Step uses these statistics to re-

estimate the model parameters. The computation of expected log likelihood depends on 

three expectations i.e. ]|)([ YXE λ , ]|)()([ YXXE T λλ , ]|)()([ YXXE T γλλ , where Y is 

the data on the entire tree.  The M-Step of the algorithm is described first before showing 

how the above expectations are computed in the E-Step. 
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The M-Step: 

The parameter set of the multiscale state space model for which we intend to find out 

maximum likelihood estimates is { )(λB | λ  ∈ Τ}. Maximizing the expected likelihood 

using multivariate regression to obtain new estimates of the parameters [Kannan et al., 

2000] gives: 

 2/1)}]()({)()}()({[)( λγλλλλλ TT XXEAXXEB
∧∧

−=  (11) 

The M-step of the EM algorithm can also be used to update other parameters of the 

multiscale state space model. The reader is referred to Appendix C for details. 

The E-Step: 

The E-Step of the algorithm computes the expected quantities required in the right hand 

side of the above equations. For a complete set of observations 0Y , these quantities can be 

written in terms of the observations and the smoothed estimates of the state and their 

associated error covariance [Kannan et al., 2000]:  

 0
ˆ{ ( ) | } ( )sE X Y Xλ λ=  (12) 

 )()()(}|)()({ 0 λλλλλ
T

sss
T XXPYXXE

∧∧

+=  (13) 

 )()(),(}|)()({ 0 γλλγλλγλλ
T

sss
T XXPYXXE

∧∧

+=  (14) 

where T
s s s 0P ( , ) E{[X( ) X ( )][X( ) X ( )] | Y }λ γλ λ λ γλ γλ

∧ ∧

≡ − − . The terms )(λsX
∧

and )(λsP  

are computed by the downward sweep of the Rauch-Tung-Striebel (RTS) algorithm 

discussed previously (i.e., the extension of the Kalman filter to dyadic trees). The 

remaining term required is ),( γλλsP , which can easily be shown to be computed using 

terms from the RTS downward sweep as explained in detail in Appendix C. 
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When observations at some node are missing, these missing observations and the 

unseen state information are jointly treated as missing data by the EM algorithm. So the 

expectations of the observation terms used in the M-Step are given by 

 
⎩
⎨
⎧
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missing if       }|)({)(
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}|)({

0
0 YXEC

Y
YYE
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λ  (15) 
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Thus the EM-based estimation method can also be used to estimate the parameters from 

sequences of incomplete observations, which is very convenient for practical 

applications. 

 

5.  Application of the EM-SRE Algorithm 

5.1.  Testing Convergence and Estimation Accuracy  

To investigate the convergence of the EM-SRE algorithm and the accuracy of the 

estimated parameters, numerical experiments were conducted using synthetic data of 

known multiscale structure. Spatial fields were generated using the state-space recursive 

equation, (eqn. (1)) and the measurement equation (eqn. (6)), with node- and scale-

invariant parameters, )(λA = A , )(λB = B , )(λC =C , )(λR = R .  As discussed before, 

for our application relating to precipitation, the parameters A  and C  are equal to 1.  

Several measurement uncertainty levels were investigated, but here we report results of 

almost perfect observations, with 001.0)( =λR .  The spatial fields were generated by 

varying the parameter )(λB , which controls the information that is added when one 
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moves from coarse to fine scale, and the square of its value gives the difference in the 

process  (in our case, log-rainfall) variance between those scales (since )(λA = 1 in eqn. 

(2)).  In this example, the parameter )(λB  for all scales was set to 4 mm/h.  Table 1 

shows how the value of )(λB changes with several iterations of the EM algorithm.  The 

results are reported in Table 1 for the case when the initial value of )(λB  was chosen to 

be 1.0, although different initial values were tried.  In every case the algorithm converged 

(after only a few iterations) to approximately the same value of )(λB .  The convergence 

criterion used was that the relative absolute difference between the values of the log-

likelihood function from successive iterations is less than 10-2.  A more stringent 

condition on the log-likelihood function convergence required more iterations but did not 

significantly improve the estimate of )(λB . 

5.2. Example Performance of the EM-SRE Algorithm 

Having tested the accuracy and convergence of the EM algorithm, we proceed 

with test applications on real precipitation fields.  The radar-observed hourly precipitation 

field at a spatial resolution of 2x2 km2 over Darwin, Australia (January 27, 1998), which 

was discussed in section 3 was used for this analysis.  The field contained 33% of zero 

values as computed from the available highest resolution (2x2 km2) field over the region 

of interest (see Figure 5).  As has been seen in Figure 3, depending on how the zero 

values were treated, different parameters of the LN and BLN cascade models were 

obtained.   These parameters are expected to result in different SRE-merged estimates, 

along with their uncertainty.  For example, using a lognormal cascade as the underlying 

multiscale model with the threshold-dependent parameters shown in Figure 3, the 

statistics of the estimated field at 4x4 km2 were found to exhibit significant dependence 
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on the threshold used, e.g., the standard deviation of the estimated field changed from 

7.22 to 5.56 to 3.93 mm/h for the three thresholds of 10-4, 10-3, and scale-dependent 

threshold, respectively.  Given this sensitivity of the cascade models to zero 

intermittency, the EM-SRE algorithm, which does not require any apriori model 

specification, appears to be a suitable alternative.   

It is noted that the Kalman filtering recursive estimation has optimal performance 

for Gaussian distributions.  In practical applications, approximate Gaussianity is typically 

achieved by applying transformations to the original data and working in the transformed 

space.  When multiplicative cascade models are used within the SRE framework, they 

require working in the log space in order to transform the multiplicative structure of the 

models to the additive form required by the state-space equation.  Although this log-

transformation introduces difficulty in handling the zeros, it achieves an approximate 

Gaussianity of the PDF of rainfall apart from the possible mass at (or close to) 0 coming 

from the spatial intermittency (or from the replacement of zeros with arbitrarily small 

values).  The proposed EM-SRE approach works in the real space and thus avoids the 

shortcoming of having to handle the zeros in the log-space.  Approximate Gaussianity 

(apart again from the possible mass at zero) is achieved by applying a power 

transformation to the data.   For the Darwin observations (33% zeros at a scale of 2x2 

km2), a power of 0.17 was found to achieve the closest approximation to a Gaussian 

distribution of the non-zero values at all scales.  It is noted that although the proposed 

SRE-EM approach is preferable to multiplicative cascades for not having to deal with 

zeros in the log-space, it does not truly overcome the intermittency problem, when it 

comes to achieving approximate Gaussianity.  A large mass at zero will always prevent a 

good approximation to Gaussianity.  This issue is further discussed in the conclusions.For 
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the Darwin rainfall example, the field at 2x2 km2 and 16x16 km2 were considered known 

(with zero observational uncertainty) and the EM-SRE algorithm was used to estimate the 

field at two intermediate scales: 4x4 km2 and 8x8 km2.  The “true” fields at any scale 

were obtained by aggregation of the highest resolution 2x2 km2 fields.  The results of this 

application are summarized in Table 2, and also displayed in Figure 5 for the 4x4 km2 

estimated field.  Similar results were obtained when observational uncertainty was 

introduced.  It is noticed from Table 2 that, for the estimated field at 4x4 km2, the EM-

SRE scheme is able to reproduce about 93% of the variability of the precipitation field 

while no bias is observed in the estimated field. Similarly, for the estimated field at 8x8 

km2, the percentage reproduction of variability is about 97% again with no bias in the 

estimated field.  Table 2 also reports the mean uncertainty values for the estimated fields 

at both estimation scales, as well as the values of the root mean square error (RMSE).  It 

is noted that in comparing the estimated (merged) and true precipitation fields, the simple 

measures of performance reported in Table 2 are adequate and there is no need to use 

more sophisticated measures (e.g., multiscale or combined amplitude-distance measures 

presented in Zepeda-Arće et al., [2000] and Venugopal et al., [2005] for forecast 

verification applications).  This is because in multiscale merging applications, it is 

unlikely that the observed field at one scale (by one sensor) will exhibit drastically 

different features, e.g., significantly misplaced high rainfall areas, than the observed field 

at another scale (by another sensor) and thus magnitude-based measures would mostly be 

adequate to capture the differences in the compared fields.  If this is not deemed to be the 

case in some applications, the above mentioned more sophisticated comparison measures 

might be used in addition to simple measures.  
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5.3.  Effect of Missing Values on EM-SRE 

In practice, there might be many missing values in the observed precipitation fields 

especially at the finer resolution due to errors in the recording instrument or due to the 

fact that a finer resolution sensor might not completely cover a large area over all times 

of interest.  For that reason, various numerical experiments were conducted to study the 

effect of missing values in the precipitation field on the merged product produced by the 

proposed EM-SRE approach.  

The January 27, 1998 hourly precipitation field at 2x2 km2 resolution over 

Darwin, Australia was used again as the base field, and two cases were analyzed:  in the 

first case, it was assumed that there were no missing values in any of the input fields (2x2 

km2 and 32x32 km2 field) while in the second case, approximately 54% values (randomly 

sampled) in the fine scale precipitation field were considered missing, but the coarse 

resolution field at 32x32 km2 was assumed to be complete.   Notice that in this case, 

identifying and fitting a multiplicative cascade model to the fine resolution field would be 

problematic; in fact, even the computation of the Variance Reduction Curve (VRC) at 

fine resolution would present a problem, making the proposed EM-SRE approach an 

attractive alternative.  

Table 3 summarizes the results of this experiment.  It is seen that for the case of 

no missing values, the EM-SRE scheme is able to reproduce about 93% of the variability 

of the precipitation field while no bias is observed in the estimated field. On the other 

hand, when there are missing values in the fine scale field (54% missing values), the 

proposed approach slightly over-estimates the mean and the standard deviation, although 

overall the statistics of the estimated 8x8 km2 field compare well to the case of no 

missing values.  The importance of large scale information can also be inferred from the 
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results of this experiment.   Specifically, as there are no missing values in the 32x32 km2 

field, the information available at the large scale is utilized to fill the missing gaps in the 

estimated field at 8x8 km2 during the smoothing step.  It can be seen from Table 3 that 

the mean uncertainty of the estimated field increases for the case of missing values.  For 

the first case of no missing values, all the estimated 8x8 km2 pixel values have the same 

uncertainty.  In the second case, however, pixels that have missing values (or are in the 

vicinity of missing values) have higher uncertainty.  This is because the SRE scheme in 

the downward sweep propagates the uncertainty in a way that considers the neighborhood 

dependence of the spatially close nodes (pixels). This is clearly demonstrated in Figure 6 

which displays a histogram of estimation uncertainty (error) in the 8x8 km2 field for the 

case of no missing (Figure 6 top) and 54% missing data (Figure 6 bottom), respectively. 

    

6. Merging Infrequent High-resolution and Frequent Low-resolution 

Observations:  A Case Study of Relevance to GPM 

The SRE merging methodology has been applied so far to static spatial precipitation 

fields, i.e., at one instant of time or accumulations over a period of time.  As discussed in 

the introduction, most applications would require merging observations sampled at 

different spatial and temporal scales, and thus would require an extended SRE 

methodology that can explicitly incorporate the temporal evolution of the precipitation 

field.  Development of such a methodology is a research issue in itself, and is beyond the 

scope of the present paper.  In this section, we explore an alternative simple methodology 

which couples the EM-SRE scheme with a spatial downscaling scheme to merge rainfall 

observations at different spatio-temporal scales, as for example those anticipated to result 
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from GPM (Smith et al., 2002). Specifically we demonstrate via a numerical example that 

one can take advantage of the more frequent low-resolution observations and spatial 

downscaling to complement the less frequent high-resolution observations for a 

consistent, in both space and time, merged product.   

The numerical experiment consists of 2 cases (see Figure 7).  Case 1 is the ideal 

(best) case where observations are available at all times (only 3 hours are considered here 

for demonstration purposes; t = 1, 2, and 3 hours) at the coarse (16 km) and fine (2 km) 

resolutions.  Case 2 is a scenario in which the high resolution observations (2 km) are 

available only at t = 1hr, but the coarse resolution (16 km) observations are available at 

all times (t = 1, 2, and 3 hrs).  In Case 2, the merging is done by two methods:  a simple 

method (called Case 2a) in which the 2 km spatial structure at t=1 hr is assumed to hold 

true for t = 2 and 3 hrs also (i.e., no temporal evolution of the field over 3 hours), and 

only a simple renormalization of the total water depth is performed to preserve the 

observed 16km fields at t = 2 and 3 hrs; and a more sophisticated case (called Case 2b) at 

which the 16 km fields at t = 2 and 3 hrs are spatially downscaled [using the statistical 

downscaling parameters estimated from the 2 km field at t = 1 hr and the method of 

Perica and Foufoula-Georgiou, 1996a, b]  and then SRE merging is performed on the 

original 16 km and the downscaled 2 km fields.  For comparison purposes, the 3-hour 

aggregated fields are computed and are shown in Figure 8 for Cases 1, 2a and 2b.  As 

expected, Case 1 gives a merged product which is the closest to the “true” field as for this 

case complete fine and coarse scale observations were available at all times.  In Case 2b, 

it is observed that spatial downscaling (which considered the dynamic evolution of the 

field at the large scale to infer via downscaling its dynamic evolution at small scale) 
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significantly improved the merged product as compared to Case 2a where the fine-scale 

field was assumed static over a period of 3 hours.    

 It is noted that when coarser-scale observations are not available frequently over 

time, the spatial downscaling scheme used here would not be adequate to capture the 

small scale dynamics and one would need to implement the dynamic (spatio-temporal) 

downscaling model of Venugopal et al. [1999] where the fine-scale precipitation field 

could be propagated over a period of time preserving both the spatial multiscale structure 

of rainfall, and its temporal persistence.  That of course, requires some model parameters 

(specifically the spatial scaling parameter H and the dynamic scaling exponent z) to be 

known a-priori for this type of storm.  Although evidence exists that the spatial 

downscaling parameter H can be related to the Convective Available Potential Energy 

(CAPE) in the pre-storm environment [e.g., see Perica and Foufoula-Georgiou, 1996a] 

and thus it can be dynamically updated based on observable meteorological quantities, it 

is still not clear how the dynamic scaling parameter z could be related to physical 

observables of the storm.      

 

7.  Conclusions 

The work presented in this paper proposes a framework for merging multi-scale 

multisensor precipitation observations via an Expectation-Maximization Scale Recursive 

Estimation (EM-SRE) algorithm.  The framework explicitly takes into account the 

measurement disparity (in scale) and the measurement noise, and it can easily handle 

missing observations at any scale.  The EM algorithm is used in conjunction with SRE to 

iteratively perform, in parallel, system identification and estimation of the multiscale 

state-space model.  The proposed approach is a data-driven approach and does not 
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assume any model a priori, such as multiplicative cascades; rather it identifies and 

estimates the model recursively based on the available measurements at multiple scales.  

The proposed EM-SRE approach appears to be a promising technique to merge 

precipitation estimates available at different scales especially when lack of high 

resolution observations and/or presence of high zero-intermittency preclude the 

identification and reliable estimation of parametric multiscale models.  The presence of 

zero-intermittency in spatial rainfall is partially treated by the proposed approach by not 

having to work in the log space, as required when using the multiplicative cascades.  

However, the presence of zeros (both in the multiplicative cascades and in the proposed 

approach) precludes close approximation to Gaussianity required for optimality of the 

Kalman filter methodology.  In the example cases considered here, the % of zeros was of 

the order of 30% at the highest resolution, and the results were satisfactory.  For higher % 

of zeros, it is recommended that a preprocessing of the observations be performed to 

identify the zeros that come from the “inside” of the storm versus the ones that are 

“outside” of the storm (these will show up as zeros at all scales – even the larger ones).  

In that way, one can define the area over which merging is to be done and exclude the 

background non-rainy areas.  Practical applications will not only have to deal with zero 

intermittency, but also with the time evolution of the storm.  Theoretical extension of the 

EM-SRE framework to include time was not considered in this paper.  However, 

motivated by practical applications related to the upcoming Global Precipitation 

Measuring (GPM) mission, a simple alternative methodology which couples the spatial 

EM-SRE approach with a spatial downscaling scheme was explored and was found 

promising based on a limited number of case studies.  Future research should undertake a 
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more extensive testing and also address the extension of the proposed framework to 

space-time nonparametric multiscale estimation and merging.  
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Appendix A. Details of the SRE framework 

Before giving details of the SRE algorithm, it is necessary to define some terms:  

• λY = { Y (s) | s = λ or s is a descendant of λ} is the set of measurements at all 

nodes below λ including the measurement at node λ. 

• +
λY = { Y (s) | s is a descendant of λ} is the set of measurements at all nodes 

below λ excluding the measurement at node λ. 

• X( | )λ λ  is used in place of X( | Y )λλ , which is the best estimate of )(λX  given 

measurements at λ and all the nodes below λ. 

•  X( | )λ λ+  is used in place of X( | Y )λλ + , which is the best estimate of )(λX  

given measurements at all nodes below λ. 

• Similar notations are used for P. 

 

A.1 Initialization at the Finest Scale 

For each node λ at the finest scale, the following prior values are assigned: 

 max)(               ,0)|( mmX =∋∀=+ λλλλ  (A.1) 

 max)(               ),()|( mmPP x =∋∀=+ λλλλλ  (A.2) 

A.2 Upward Sweep 

The upward sweep computes the best estimates of the state )(λX at node λ given 

measurements at or below node λ. It consists of three steps at each scale: 

A.2.1 Measurement Update Step: 

 )]|()()()[()|()|( +−++= λλλλλλλλλ XCYKXX  (A.3) 

 )]()(1)[|()|( λλλλλλ CKPP −+=  (A.4) 
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where K(λ) is the Kalman gain, a weight which is optimally chosen such that it minimizes 

the expected error variance of the state. The Kalman gain is given by 

 
)()()|(

)()|()( 2 λλλλ
λλλλ

RCP
CPK
++

+
=  (A.5) 

A.2.2 Scale Propagation Step: 

 )|()()|( iiii XFX λλλλγλ =  (A.6) 

 )()|()()|( 2 λλλλλγλ QPFP iiii +=  (A.7) 

where Q(λ) is given by 
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A.2.3 Merging Step: 
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A.3 Downward Sweep 

The filtered estimates at the root node are the smoothed estimates and are used as the 

starting point in the downward sweep. The smoothed estimates at the remaining nodes are 

found by distributing the information back down the tree.  

 )]|()()[()|()( λγλγλλλλλ XXJXX ss −+=  (A.11) 

 )]|()()[()|()( 2 λγλγλλλλλ PPJPP ss −+=  (A.12) 

where, )(λJ is a weighting coefficient, which is given by 

 
)|(
)|()()(
λγλ
λλλλ

P
PFJ =  (A.13) 
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Appendix B:  Multiplicative cascades 

Log-normal Cascades 

For the log-normal cascade, the cascade weights at all scales come from the same 

lognormal distribution: 

 
2( Z / 2)( ) e σ σω λ −=  (B.1) 

where Z ~ N(0,1), and σ is the model parameter which relates to the variability of the 

process.  It can be shown [e.g., Tustison et al., 2003] that the log-normal cascade model 

parameter σ can be related to the parameter of the SRE state equation (eqn. (1)) in the 

following way: 

 σλ =)(B  (B.2) 

Also, the variance of the log-process can be shown to be:  

PX(λ) = PX(λ0) + m(λ)σ 2    (B.3) 

where λ0 is the root-scale, and m(λ) is the index of scale, as shown in Figure 1. 

Bounded Log-Normal Cascades 

For the bounded log-normal cascade, the cascade weights have the same form as those of 

the lognormal cascade, except that now σ is a function of scale and thus is given by 

)(λσ . Using the subscript “bc” to refer to the bounded log-normal cascade, these 

weights may be written as [e.g., Menabde, 1998; Menabde and Sivapalan, 2000]: 

 )2/)()(( 2

)( λσλσλω bcbc Z
bc e −=  (B.4) 

The model parameter )(λσ bc  is chosen so that the cascade weights follow a specified 

change with scale: 

 Hm
bc

)1)((
1 2)( −−= λσλσ  (B.5) 
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where m(λ) is the scale index that has a value of zero for the coarsest scale. This 

formulation requires )(λσ bc to be initialized at scale 1)( =λm  with the value 1)( σλσ =bc , 

which must be specified. The parameter H controls how fast the variance of the weights 

decays with the increasing scale index )(λm . It can be shown [e.g., see Tustison et al., 

2003] that the bounded log-normal cascade model parameter )(λσ bc  can be related to the 

parameter of the state equation given by (1) in the following way:  

 )()( λσλ bcB =    (B.6) 

The variance of the log-process can be shown to be: 

PX(λ) = PX(λ0) + 
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Appendix C: EM Algorithm 

Equations of the M-Step for updating all the parameters of the mutliscale state space 

model in order to maximize the expected log-likelihood function are given as follows: 

1)}]()({)}][()({[)( −
∧

= γλγλγλλλ TT XXEXXEA     (C.1) 

 2/1)}]()({)()}()({[)( λγλλλλλ TT XXEAXXEB
∧∧

−=  (C.2) 

 1)}]()({)}][()({[)( −
∧

= λλλλλ TT XXEXYEC  (C.3) 

 )}]()({)()}()({[)( λλλλλλ TT YXECYYER
∧∧

−=  (C.4) 

 

Computation of Ps(γ,γλ) (required for E-Step):  

),( γλλsP is computed directly in the downward sweep using the result that the smoothed 

error is a Gauss-Markov process. The smoothed error )(ˆ)()(~ λλλ ss xxx −=  has been 

shown to be modeled as a multiscale process [Luettgen and Willsky, 1995a, b;  Luettgen 

et al., 1993].  

 )(~)(~)()(~ λγλλλ wxJx ss +=  (C.5) 

where, )(~ λw  is white noise and has zero mean with covariance given by 

 )|()()|()()|()|( 1 λλλλγλλλλλλ PFPFPP T −−  (C.6)  

Thus,  T
s s s oP ( , ) E{x ( )x ( ) | Y }λ γλ λ γλ= % %  

                                        T
s s oE{[J( )x ( ) w( )]x ( ) | Y }λ γλ λ γλ= +% % %  

Or,  )()(),( γλλγλλ ss PJP =     (C.7) 
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Figure Captions:  

Figure 1:  Representation of a multiscale process on a grid and its associated 

quadtree. 

Figure 2:   Variance of the natural log of the observed field and the fitted lognormal 

and bounded log-normal cascade model variance versus scale for the  

hourly precipitation field over Kansas observed by the KEAX radar.  The 

fitting was done for various thresholds to show the sensitivity to zero-

intermittency. Thresholds were set to (a) 10-3 mm/h; (b) 10-4 mm/h; and (c) 

ln[min Y( )] cλ − , (where c = 1, and min Y( )λ  is the minimum observed 

value at scale λ).  

 Figure 3:  Same as Figure 2, but for the radar-observed precipitation field over 

Darwin, Australia. 

Figure 4:  A simple illustration of the EM algorithm. 

Figure 5:  Illustration of the results of merging the 2x2 km2 and 16x16 km2 

precipitation fields (over Darwin, Australia) via the EM-SRE 

methodology to produce a merged product at 4x4 km2.  Comparison of the 

spatial autocorrelation structure of the observed and estimated fields is 

also displayed. 

Figure 6:   Probability distribution of the uncertainty of the estimated field at 8x8 km2 

when (a) there are no missing values in the 2x2 km2 input field; and (b) 

when there are about 54% missing values in the 2x2 km2 input field. 

Figure 7:  Schematic of the two scenarios considered to explore the merging of more 

frequent low resolution observations with less frequent high resolution 

observations. 
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Figure 8:  Illustration of the utility of using a spatial downscaling scheme in 

conjunction with the EM-SRE methodology for the purpose of merging 

infrequent high-resolution observations with more frequent low-resolution 

observations. 
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Table Captions: 

Table 1: Estimation of parameter )(λB as a function of the number of the EM 

algorithm iterations. The convergence criterion is on the relative change of 

the log-likelihood function in successive iterations (see text). 

Table 2:  Statistics of the actual and the estimated field at a spatial resolution of 4x4 

km2 and 8x8 km2 for the Darwin storm. The estimated field (via the EM-

SRE algorithm) is compared to the actual field at two scales in terms of 

RMSE and Bias. The mean uncertainty of the estimated field is also 

reported.  

Table 3:  Statistics of the actual and the estimated field at 8x8 km2. The estimated 

field (via the EM-SRE algorithm) for both cases (no missing values and 

missing values in the input field) is compared to the actual field at 8x8 

km2 in terms of RMSE and Bias. The mean uncertainty of the estimated 

field is also reported for both the cases.  
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EM Iterations Parameter B(λ) 

Initial Value 

Iter. 1 

Iter. 2 

Iter. 3 

Iter. 4 

Iter. 5 

Iter. 6 

Actual Value 

1.00 

3.74 

3.90 

4.00 

4.12 

4.12 

4.12 

4.00 

  

Table 1: Estimation of parameter )(λB as a function of the 

number of the EM algorithm iterations.  The convergence 

criterion is on the relative change of the log-likelihood 

function in successive iterations (see text). 
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Statistical Parameter 
Observation 

Scale 
Estimation 

Scale 
Actual or 
Estimated Mean  

(mm/hr)

Std. 
Dev. 

(mm/hr)

RMSE 
(mm/hr)

Bias 
(mm/hr) 

Mean 
Uncertainty

(mm/hr) 

Actual 1.74 4.14 - - - 2x2 km2 
and  

16x16 km2 
4x4 km2 

Estimated 1.74 3.87 0.29 0.0 0.90 

Actual  1.74 3.69 - - - 2x2 km2 
and  

16x16 km2 
8x8 km2 

Estimated 1.74 3.59 0.10 0.0 0.35 

 

Table 2: Statistics of the actual and the estimated field at a spatial resolution of 4x4 km2 

and 8x8 km2 for the Darwin storm. The estimated field (via the EM-SRE algorithm) is 

compared to the actual field at two scales in terms of RMSE and Bias. The mean uncertainty 

of the estimated field is also reported.  
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Statistical Parameter 

Input Fields Est. 
Scale 

Actual or 
Estimated Mean  

(mm/hr)
Std. Dev.
(mm/hr)

RMSE 
(mm/hr)

Bias 
(mm/hr) 

Mean 
Uncertainty

(mm/hr) 

Actual 1.96 4.92 - - - 2x2 km2 (no 
missing values) 
and 32x32 km2 

8x8 km2 

Estimated 1.96 4.61 0.35 0.0 1.30 

Actual  1.96 4.92 - - - 2x2 km2 (54% 
missing values) 
and 32x32 km2 

8x8 km2 

Estimated 2.04 5.08 1.29 -0.08 1.54 

 

 
 

Table 3: Statistics of the actual and the estimated field at 8x8 km2. The estimated field 

(via the EM-SRE algorithm) for both cases (no missing values and missing values in the 

input field) is compared to the actual field at 8x8 km2 in terms of RMSE and Bias. The 

mean uncertainty of the estimated field is also reported for both the cases.  
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Figure 1: Representation of a multiscale process on a grid and its associated quadtree. 
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Figure 2:  Variance of the natural log of the observed field and the fitted lognormal and 

bounded log-normal cascade model variance versus scale for the hourly precipitation 

field over Kansas observed by the KEAX radar.  The fitting was done for various 

thresholds to show the sensitivity to zero-intermittency. Thresholds were set to (a) 10-3 

mm/h; (b) 10-4 mm/h; and (c) ln[min Y( )] cλ − , (where c = 1, and min Y( )λ  is the 

minimum observed value at scale λ).  

(a) (b) 

(c) 
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Figure 3:  Same as Figure 2, but for the radar-observed precipitation field over 

Darwin, Australia. 

(c) 

(b) (a) 
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Figure 4: A simple illustration of the EM algorithm. 

 

 

 

 

 

 

 

 

M-Step: 
Compute maximum likelihood, Lk+1 
estimate of new parameter set θk+1 

using estimated state 

Choose an initial parameter set θk  
K = 0 

E-Step: 
Estimate X(λ) using Y(λ) and 

parameter set θk 

K = K+1 
Check for convergence? 

(|Lk+1 – Lk| < ε) 
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Figure 5: Illustration of the results of merging the 2x2 km2 and 16x16 km2 precipitation 

fields (over Darwin, Australia) via the EM-SRE methodology to produce a merged 

product at 4x4 km2.  Comparison of the spatial autocorrelation structure of the observed 

and estimated fields is also displayed. 
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(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Probability distribution of the uncertainty of the estimated field at 8x8 km2 

when (a) there are no missing values in the 2x2 km2 input field; and (b) when there are 

about 54% missing values in the 2x2 km2 input field. 
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Figure 7:  Schematic of the two scenarios considered to explore the merging of more 

frequent low resolution observations with less frequent high resolution observations. 
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Figure 8:  Illustration of the utility of using a spatial downscaling scheme in conjunction 

with the EM-SRE methodology for the purpose of merging infrequent high-resolution 

observations with more frequent low-resolution observations. 


