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[1] Landscapes share important similarities with turbulence: both systems exhibit scale
invariance (self-similarity) over a wide range of scales, and their behavior can be described
using comparable dynamic equations. In particular, modified versions of the Kardar-
Parisi-Zhang (KPZ) equation (a low-dimensional analog to the Navier-Stokes equations)
have been shown to capture important features of landscape evolution. This suggests that
modeling techniques developed for turbulence may also be adapted to landscape
simulations. Using a ‘‘toy’’ landscape evolution model based on a modified 2-D KPZ
equation, we find that the simulated landscape evolution shows a clear dependence on
grid resolution. In particular, mean longitudinal profiles of elevation at steady state and
bulk erosion rates both have an undesirable dependence on grid resolution because the
erosion rate increases with resolution as increasingly small channels are resolved. We
propose a new subgrid-scale parameterization to account for the scale dependence of the
sediment fluxes. Our approach is inspired by the dynamic procedure used in large-eddy
simulation of turbulent flows. The erosion coefficient, assumed exactly known at the finest
resolution, is multiplied by a scale dependence coefficient, which is computed
dynamically at different time steps on the basis of the dynamics of the resolved scales.
This is achieved by taking advantage of the self-similarity that characterizes landscapes
over a wide range of scales. The simulated landscapes obtained with the new model show
very little dependence on grid resolution.
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1. Introduction

[2] The fascinating self organized spatial patterns of
natural landscapes have long attracted the attention of
researchers. The most obvious and widespread of these
patterns are the tributary channel networks generally char-
acteristic of erosional landscapes. Building on earlier land-
scape models such as those of Culling [1960, 1963], which
used a diffusion model of slope erosion, the 1990s saw a
renaissance of landscape modeling [e.g., Willgoose et al.,
1991a, 1991b; Chase, 1992; Rinaldo et al., 1992; Howard,
1994; Rodriguez-Iturbe et al., 1994; Rodriguez-Iturbe and
Rinaldo, 1997; Smith et al., 1997a, 1997b; Tucker et al.,
2001]. In general, these models have focused on reproduc-
ing ‘‘whole-system’’ properties of the landscape such as
fractal dimensions, network topology, and spatial statistics
(e.g., slope distributions, slope-area relations). Landscape
evolution models have also been coupled to tectonic models

to simulate the evolution of mountain belts on long time-
scales [Kooi and Beaumont, 1994; Tucker and Slingerland,
1994; Koons, 1995]. Comprehensive reviews on landscape
evolution modeling approaches are given on Dietrich et al.
[2003], Peckham [2003], and Willgoose [2005].
[3] A fundamental problem arises in numerical modeling

of systems whose dynamics spans a wide range of scales:
selection of a computational grid (usually dictated by the
size of the domain over which a solution is sought and the
smallest grid that can be afforded computationally) leaves
out scales whose dynamics are not explicitly resolved. Yet,
it is known that even if the interest is not in resolving the
smallest scales, their effect on the dynamics of the larger
scales (due to nonlinearities) is considerable. Thus ignoring
the subgrid scales compromises the accuracy of the solution
at the resolved scales and also makes the numerical simu-
lation resolution-dependent. This problem presents itself in
numerical modeling of many natural processes which ex-
hibit multiscale variability, including flow and transport in
porous media, atmospheric modeling from cloud resolving
models to mesoscale to global circulation models, land-
atmosphere interactions, atmospheric turbulence and, fore-
most, modeling of turbulent flows. Several methodologies
have been proposed to address this problem and these
include derivation of ‘‘effective’’ parameters in coarse
grained equations [e.g., Bear, 1988; Bou-Zeid et al.,
2004], statistical downscaling [e.g., Harris and Foufoula-
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Georgiou, 2001], and analytical derivation of closure terms
[e.g., Meneveau and Katz, 2000; Sagaut, 2002], among
others.
[4] The field in which subgrid-scale parameterizations

have been the most advanced is that of turbulence, where
direct numerical simulation (DNS), i.e., numerical solution
of the Navier-Stokes equations using a resolution as small
as the dissipation (Kolmogorov) scale, is only feasible for
relatively low Reynolds number flows. A technique that has
become popular to simulate higher Reynolds number tur-
bulent flows is large-eddy simulation (LES), which consists
of solving the spatially filtered Navier-Stokes equations,
using a spatial filter of size equal to or slightly larger than
the grid size. This filtering operation applied to the nonlin-
ear advection terms leads to the so-called subgrid-scale
fluxes, which represent the effect of the subgrid scales on
the evolution of the resolved scales and need to be param-
eterized. As a result, LES explicitly resolves all scales of
motion (eddies) larger than the grid scale, while the subgrid-
scale fluxes are parameterized using a subgrid-scale model.
Comprehensive reviews on LES and subgrid-scale model-
ing are given by Meneveau and Katz [2000], Pope [2000,
2004], and Geurts [2004]. A particularly interesting devel-
opment in subgrid-scale modeling of turbulent flows is the
so-called dynamic modeling approach [Germano et al.,
1991; Moin et al., 1991; Porté-Agel et al., 2000; Porté-
Agel, 2004]. It takes advantage of the scale similarity of
turbulence to optimize the value of the subgrid model
coefficient(s) based on the dynamics of the resolved scales,
thus not requiring any parameter tuning.
[5] In the case of landscape evolution, it is well known

that landscapes present multiscale self-similar properties
through a wide range of scales, from the system scale
(typically 102–104 km) down to the spacing of the smallest
channels, which is typically on the order of 10–100 m and
below which diffusion processes dominate. As in high
Reynolds number turbulence, numerical solution of the
entire range of scales is usually impractical. Instead, land-
scape models are run at relatively coarse resolution, i.e., one
solves the so-called coarse-grained transport equations
(Figure 1). However, the accuracy of this methodology is
unknown since channels smaller than the grid size are not
taken into account. This suggests the possibility that the
calculated erosion rates and landscape evolution are likely
affected by the grid resolution. This was pointed out by
Stark and Stark [2001] who developed a subgrid-scale
parameterization based on a parameterization measure
called channelization. Rodriguez-Iturbe and Rinaldo
[1997] have shown the effect of ‘‘coarse graining’’ a
specific landscape on the scaling relationships of elevation.
[6] Landscapes share important similarities with turbu-

lence: both systems exhibit scale invariance (self-similarity)
over a wide range of scales and their behavior can be
described using comparable dynamic equations. This sim-
ilarity can be seen, for example, in the behavior of power
spectra: Turbulence velocity spectra exhibit a well-known
�5/3 slope in the inertial subrange [Kolmogorov, 1961],
representing the energy cascade from large scales to small
scales. In the case of landscapes, power spectra of linear
transects in topography also exhibit a log-log scaling range
with slope of �2. Another parallel between the two systems
is the existence of a lower limit on the size of the turbulent

structures (eddies): the Kolmogorov scale, the scale at
which viscous effects dominate and the effective Reynolds
number approaches unity. In landscapes, the analogous fine
scale would be the spacing of the smallest channels,
determined by the scale at which (diffusive) hillslope
processes dominate [e.g., Dietrich et al., 2003]. This anal-
ogy between the viscous length scale of turbulence and the
hillslope scale in landscapes has also been discussed by
others [e.g., Peckham, 1995]. Moreover, turbulence has
been used as a metaphor for other complex systems such
as earthquakes [Kagan, 1992] and stream braiding [Paola,
1996; Paola et al., 1999].
[7] The purpose of this paper is to explore concepts of

LES in the context of landscape evolution modeling. Using
a minimum complexity model, used previously by several
authors for landscape simulation [e.g., Sornette and Zhang,
1993; Somfai and Sander, 1997; Banavar et al., 2001], we
demonstrate its scale dependence and propose a dynamic
subgrid-scale model to take into account the effect of
subgrid-scale processes in a landscape evolution model.
[8] It is important to point out that the goal of this study is

not to strictly apply the LES technique, as developed for
turbulent flows, to landscape evolution simulations. There
are some limitations to the direct extension of the LES
technique to landscapes. Typical governing equations for
landscape evolution, even though often similar in form to
the Navier-Stokes equations (including nonlinear terms that
generate fluctuations as well as diffusion terms), are not as
well established for the description of the system at all
scales. For example, the nonlinear erosion flux term is
already a parameterization containing tuning coefficient(s).
This makes it challenging to formally define the subgrid-
scale erosion fluxes and to develop subgrid-scale models for
them. Instead, our approach here consists of developing a
tuning-free dynamic procedure, inspired from the dynamic
modeling approach used in LES, to ‘‘optimize’’ the value of
the erosion coefficient (in the nonlinear erosion flux term)
using the scale dependence of the coefficient quantified
from the smallest resolved scales in the simulations.

2. Landscape Evolution Modeling and Effect of
Grid Resolution

2.1. KPZ Model

[9] As discussed above, a number of different models
have been proposed for landscape evolution. Here we use a
modified version of the Kardar-Parisi-Zhang (KPZ) equa-
tion, originally used in the context of growth of atomic
interfaces by ion deposition [Kardar et al., 1986]. The KPZ
equation as applied to modeling the evolution of land
surface elevation h reads [Sornette and Zhang, 1993; Somfai
and Sander, 1997; Banavar et al., 2001]:

@h ~x; tð Þ
@t

¼ Dr2hþ C rhj j2 þ h ~x; tð Þ ð1Þ

The right hand side of equation (1) includes, from left to
right, a diffusion term, where D is the diffusion coefficient,
a nonlinear term, where C is a constant and rh is the slope,
and a white noise term.
[10] It is important to note that, with a simple transfor-

mation of variables, the KPZ equation without noise
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becomes the Burgers equation, a low-dimensional analog to
the Navier-Stokes equations governing fluid flow and
turbulence.
[11] The initial application of the KPZ equation to

landscape evolution [Sornette and Zhang, 1993] shows
the importance of the nonlinear terms in the evolution
of surface topography and the associated drainage net-
work. At a coarse grained scale, the effect of diffusion
is often neglected [Somfai and Sander, 1997; Banavar
et al., 2001] since this mechanism is effective mainly at
the small (subgrid) scales. Neglecting also the noise
term, (1) has only the non linear term on the right hand
side. Furthermore, taking into account that the evolution
of the landscape is coupled with the water flux q acting
on the surface, the constant C in front of the nonlinear
term in (1) can be written as an erosion coefficient a
times the water flux q [Somfai and Sander, 1997;
Banavar et al., 2001]. The governing equation then
becomes:

@h

@t
¼ �a � q � rhj j2: ð2Þ

Under the assumption of uniform rainfall acting on the
surface, the water flux at a given point is proportional to the
area draining at that location. We have chosen a fairly
simple landscape evolution model, best suited for bedrock
landscape evolution modeling, which does not allow both
erosion and deposition to occur. This choice has been
motivated by the fact that a simple type of equation would
maximize clarity in deriving the subgrid model. This work
will be extended in the future to more comprehensive
landscape evolution models.
[12] Notice that (2) is a special case of the general

governing equation, widely used in landscape modeling
[e.g., Rodriguez-Iturbe and Rinaldo, 1997]:

@h

@t
¼ �a � Am � rhj jn; ð3Þ

with m
n
	 0:5.

[13] The nature of the steady state reached by the system
depends on the external conditions applied in the problem.
If the boundary condition at the output is a fixed elevation,
with constant rock uplift, the steady state is reached when
the erosion rate balances the rock uplift rate over the whole
system [Hack, 1960; Adams, 1980; Howard, 1994; Somfai
and Sander, 1997; Willett and Brandon, 2002]. If the uplift

Figure 1. Schematic of the separation between resolved
and subgrid scales in turbulence (Figure 1a) and landscapes
(Figures 1b and 1c). (a) Gray scale rendering of the vertical
velocity component measured in a turbulent boundary layer
at the St. Anthony Falls Laboratory wind tunnel. (b) Bare-
earth LIDAR shaded-relief image (1-m resolution) of a
portion of the Angelo Coast Range Reserve, northern
California, grid spacing of 500 m. (c) Fourier spectrum of the
topography shown in Figure 1b, showing a �2 power law
dependence of spectral power on wave number. Separation
between resolved and unresolved scales is 100 m. In both
turbulence and landscapes, only structures with length scales
larger than the grid size are explicitly resolved.
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rate is zero, the system reaches a steady state when there is
no remaining material to erode [Inaoka and Takayasu,
1993].
[14] The river networks obtained with the modified KPZ

equation have been shown to satisfy scaling laws charac-
teristic of natural landscapes: the slope-area law, the power
law of distribution of drainage area, and Horton’s laws for
branching ratio and length ratio [Somfai and Sander, 1997].
In addition to these laws, the simulations also yield realistic
profiles for the average elevation along the mainstream
direction [Banavar et al., 2001].

2.2. Numerical Implementation

[15] The initial field is a sloping surface with a small
noise, obtained using the following expression [Somfai and
Sander, 1997]:

h x; y; t ¼ 0ð Þ ¼ s0 � yþ dy � rand x; yð Þð Þ; ð4Þ

where h is the elevation, s0 represents the initial slope, y is
the north-south coordinate, dy is the grid constant and rand
is a uniform random number in the range [0,1]. This initial
configuration prevents the formation of lakes.
[16] We study the evolution of the system at three

different resolutions: the same field is divided into 256 

256 grid cells, 128 
 128 grid cells and 64 
 64 grid cells.
We focus initially on the simplest case (uniform rainfall, no
groundwater, uniform and structureless substrate, no rede-
position), applying the simplified erosion model discussed
earlier (equation (2)) with the addition of a constant uplift u:

@h

@t
¼ u� a � q � rhj j2; ð5Þ

Equation (5) represents an erosional model for an incisional
process where the erosion rate depends linearly on water
flux and nonlinearly on slope.
[17] Water is routed using the steepest descent rule. In

every site the elevation is compared with the one of the
eight surrounding neighbors and the water is assumed to
follow the steepest path. Recently, Pelletier [2004] has
shown that computing the slope using a multiple-
direction algorithm eliminates an undesirable consequence
of the steepest descent rule: evolution to a frozen steady
state of the river network in which erosion exactly
balances uplift at each point [Hasbargen and Paola,
2000, 2003]. Once the flow direction is computed in
every site, the slope and the water flux can be computed
and used to update the elevation via (5). Because of the
assumption of a uniform rainfall and no loss of water,
the water flux is given by the drainage area times the
unit rainfall.
[18] The boundary conditions are: an infinite wall at the

upstream end of the field (north boundary); an output
boundary at fixed height equal zero located at the down-
stream end of the field (south boundary); on the lateral sides
(east and west boundaries) the flow is forced to drain into
the system. This condition could be easily changed to
periodic boundary conditions [Somfai and Sander, 1997;
Banavar et al., 2001]. A sketch of the computational
domain with the applied boundary conditions is shown in
Figure 2.
[19] The simulations with the three resolutions are run

independently until the systems reach steady state. The
steady state is reached when the erosion rate is in equilib-
rium with the uplift. The simulated evolution of the land-
scape shows two different timescales: a freezing time, at
which the river network reaches its final configuration but
the elevation continues adjusting, and a relaxation time at
which the system reaches its equilibrium profile and the
surface stops evolving [Sinclair and Ball, 1996; Banavar
et al., 2001]. The time needed to freeze the system is
usually smaller than the time needed to reach the final
profile. It should be noted that a freezing time, and a
corresponding frozen configuration of the system, can be
defined as we have done only because the model allows
for an (unrealistic) static steady state. Revised definitions
would be needed for the more realistic dynamic-steady-
state condition.
[20] The freezing time of the system is obtained by

computing at every time step the number of unstable sites.
An unstable site is defined as a point in the system where
the flow direction changes in one time step [Inaoka and
Takayasu, 1993]. When the number of unstable sites
remains equal to zero for a sufficiently large number of
time steps, the river network is considered at its final
configuration. Before reaching the equilibrium profile, the
number of unstable sites remains zero, while the topography
continues adjusting. The relaxation time instead is given by
the time at which the topography also reaches a static steady
state.

2.3. Effect of Grid Resolution

[21] We analyze the results of the numerical simulations
using 256 
 256, 128 
 128 and 64 
 64 grid cells in terms
of several statistics. The systems obtained at steady state
with resolutions 256 
 256, 128 
 128 and 64 
 64 are

Figure 2. Boundary conditions and allowed flow direc-
tions. The output of the system is located at the downstream
end of the field where the elevation is kept fixed at zero. At
the upstream end the boundary condition is an infinite wall,
so that no flow exits upstream of the field. At the east and
west boundaries, the flow directions are likewise restricted
to those inside the field. Thus the only allowed output is at
the downstream end of the field.
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shown in Figure 3. The corresponding river networks were
extracted with River Tools (http://www.rivix.com/) and are
shown in Figure 4 (channels of Strahler order greater than 2
only). The modified KPZ model produces channel networks
with the expected loss of detail as the resolution is
decreased.
[22] The power spectral density (spectrum) provides an

estimate of the distribution of elevation variance across
scales. Figure 5 shows a comparison of spectra from trans-

ects across the upstream part of the domain for the three
resolutions. Except at the largest scales, there is a wide
range of scales for which the spectra obtained at all
resolutions show a slope of approximately �2, which is
in good agreement with observations from linear transects
in topography [Vening Meinesz, 1951; Mandelbrot, 1975;
Sayles and Thomas, 1978; Newman and Turcotte, 1990].
However, the total variance in elevation observed at the
three resolutions does depend on scale.
[23] Mean longitudinal profiles obtained at steady state

with the three resolutions are shown in Figure 6a. The
results indicate that the basin topography required to pro-
duce a balance between erosion and rock uplift in the
simulation is strongly scale dependent. In particular, both
slope and curvature increase with decreasing resolution,
which is not realistic. This behavior can be attributed to
the fact that erosion due to subgrid-scale channel networks
(occurring at scales smaller than the grid scale) is not
accounted for in the simulations. Since the subgrid-scale
erosion flux is expected to be relatively larger in the case of
coarser resolutions, landscapes simulated at those resolu-
tions experience less efficient erosion than the ones obtained
at higher resolutions.
[24] Strong scale dependence is also shown by the

volume of material eroded per time step. As Figure 6b
shows, the higher the resolution, the higher the volume of
eroded material per time step. This is consistent with the
observed behavior of the mean longitudinal profiles. The
area under the curves, which gives the total amount of
material eroded until steady state is reached, increases with
resolution. The rate of erosion gives also an idea of the
timescale dependence of the erosion process at the three
resolutions: the higher the resolution, the higher the rate of
erosion and the faster the process. The lowest resolution
needs more time to reach the steady state.

3. A Dynamic Subgrid-Scale Model

3.1. Derivation of the Dynamic Subgrid-Scale Model

[25] The resolution dependence of the results obtained in
the previous section using (5) highlights the need to account
for the fact that erosion rates depend on the grid size used in
the simulations. In this section, we develop a procedure to
account for the scale dependence of the erosion coefficient
a in (5). The methodology is based in part on the so-called
dynamic modeling approach used in LES of turbulent flows
[Germano et al., 1991; Moin et al., 1991; Meneveau et al.,
1996]. In the context of landscapes, we parameterize the
effect of the subgrid-scale erosion rates by calculating a
modified erosion coefficient a using information contained
in the resolved elevation field and assuming scaling in the
elevation statistics.
[26] For the purpose of developing the technique, one

needs to know the exact value of the erosion coefficient at
some reference scale. For simplicity, without loss of gener-
ality, here we consider the highest resolution simulated
(256 
 256) as the exact solution, and the value of the
erosion coefficient at this scale is assumed to be exactly
known. However, the same approach can be extended to
other reference scales for which erosion coefficients could
be determined. The grid size corresponding to resolution
256 
 256 is taken as D/2.

Figure 3. Elevation fields obtained for three grid resolu-
tions at steady state using equation (5): (a) 256 
 256,
(b) 128 
 128, and (c) 64 
 64.
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[27] At coarser resolutions the model is now written in a
filtered form, as it is done in LES. At resolution 128x128
(resolution D), (5) becomes

@~h

@t
¼ u� aD � ~q � r~h

�� ��2; ð6Þ

where the tilde indicates quantities spatially filtered (with
an implicit filter imposed by the grid size) at scale D.
At resolution 64 
 64 (resolution 2D) equation (5)
becomes

@~h

@t
¼ u� a2D � ~q � r~h

��� ���2; ð7Þ

where the overbar denotes spatial filtering at scale 2D.
[28] Modeling erosion without explicitly accounting for

scale effects on the erosion coefficient, as we did in the
previous section, implicitly amounts to assuming that

a2D ¼ aD ¼ aD=2 ¼ a0; ð8Þ

where a0 is the erosion coefficient, which we assume is
known and independent on resolution. The simulation
results from section 2 indicate instead that a depends on the
scale D. Our goal, then, is to account for this, dynamically
computing a at each time step as the simulation progresses.
To do that, one has to make some assumptions about the
dependence of a on D. As a first approximation, we assume
that the ratio between the erosion coefficients at scales D
and D/2 is the same as the ratio between scales 2D and D,
i.e., we assume a constant value for the scale dependence
ratio b, defined as

b ¼ aD

aD=2
	 a2D

aD

	 a4D

a2D

: ð9Þ

Note that this is a much weaker assumption than the
original one that the erosion coefficient a does not depend
on scale. The erosion coefficients at scales D (resolution

Figure 4. River network extracted from elevation fields
for three grid resolutions at steady state. Only channels of
Strahler order greater than 2 are shown: (a) 256 
 256,
(b) 128 
 128, and (c) 64 
 64.

Figure 5. Elevation power spectra at the three resolutions
averaged during the simulations. The spectral slope is not
affected by the grid resolution and is near �2, consistent
with observed spectra from natural topography.

6 of 11

W06D11 PASSALACQUA ET AL.: APPLICATION OF DYNAMIC SUBGRID-SCALE CONCEPTS W06D11



128 
 128) and 2D (resolution 64 
 64) can be expressed
as a function of the erosion coefficient at the finest scale
(D/2) as follows:

aD ¼ b � aD=2

a2D ¼ b � aD ¼ b2 � aD=2
ð10Þ

Note that we assume the coefficient at the smallest scale
equal to the known value, i.e., aD/2 = a0.
[29] On the basis of the expression for the scale depen-

dence coefficient given by (9), b must be computed at
scale D based only on information at the available scale D
and larger, since during the simulation the behavior at finer
scales is not known. Thus in our case, to compute b
dynamically, we use information at scales D and 2D,
together with the assumption that b is constant.
The variables corresponding to scale 2D can easily be
computed by spatially filtering the simulated field
(implicitly filtered at scale D) using a two-dimensional
filter of size 2D. As mentioned above, that operation is
denoted by an overbar.

[30] On the basis of these ideas, we derive the new model
with subgrid-scale parameterization in detail for simulations
at resolution D. Applying the model at scales D and 2D
leads to (6) and (7), given above. Spatially filtering (6)
using a filter of size 2D (operation denoted by an overbar)
and then averaging equations (6) and (7) over the entire
field (operation denoted byh i) yields

@~h

@t

* +
¼ u� aD � ~q � r~h

�� ��2� �
ð11Þ

@~h

@t

* +
¼ u� a2D � ~q � r~h

��� ���2� �
ð12Þ

[31] Combining (11) and (12) leads to an expression for
the ratio between the effective erosion coefficients at
scales 2D and D:

a2D

aD

¼
~q � r~h

�� ��2D E
~q � r~h

��� ���2� � ð13Þ

The right hand side of (13) can be explicitly calculated
using information contained in the simulated elevation field.
[32] Taking advantage of the scale similarity assumption

in (9), (13) can be used to define the scale dependence
coefficient b:

b ¼ aD

aD=2
	 a2D

aD

¼
~q � r~h

�� ��2D E
~q � r~h

��� ���2� � ð14Þ

Following the above procedure and using (14), we compute
b dynamically at every time step, thus not requiring any a
priori calibration or tuning. It is important to point out that
the averaging operation (h i) is needed to avoid unrealistic
local fluctuations of b that would be obtained without
averaging.
[33] The same approach can be followed to compute the

coefficient b to be used in the simulations at other
resolutions. For example, in the case of a grid of size
2D, the information at scale 4D would be used, and the
expression for the scale dependence coefficient b would
become

b ¼ a2D

aD

	 a4D

a2D

¼
d�q � r�h
�� ��2D E

�̂q � r�̂h
��� ���2� � ; ð15Þ

where the hat denotes a filtering operation using a two-
dimensional filter of size 4D over the simulated
variables, obtained at a grid resolution of 2D. Just as
for scale D, b is computed dynamically at every time step
following (15), and again does not require calibration or
tuning.
[34] The new value of b is used to define the erosion

coefficient aD at the corresponding grid scale D in terms of

Figure 6. Dependence on grid resolution of model results
using equation (5). (a) Mean longitudinal profiles obtained
at steady state. (b) Volumes of eroded material per time step
during the simulations. Both steady state profile and eroded
volumes show strong scale dependence.
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the erosion coefficient at scale D/2, which we assume is
exactly known, according to (10). Thus the model at scale D
is now given by

@~h

@t
¼ u� b � aD=2 � ~q � r~h

�� ��2 ð16Þ

Furthermore, the model at scale 2D can be written as

@~h

@t
¼ u� b2 � aD=2 � �~q � r~h

��� ���2 ð17Þ

[35] To test the efficacy of the proposed dynamic subgrid-
scale scheme, we redo the simulations at the three resolu-
tions, using (5) at resolution 256 
 256, (16) at resolution
128 
 128 and (17) at resolution 64 
 64. Initial and
boundary conditions are the same as used in the previous
section. At every time step, the slope and the water flux are

computed at each location from the simulated field. Then
the field is filtered at a resolution double the grid size and
slope and water flux are computed from the filtered field at
each location. With these quantities the scale dependence
coefficient b is computed from equation (14) (or (15) at
64 
 64) and the field is then updated using equation (16)
(or (17) at 64 
 64).

3.2. Results and Discussion

[36] The elevation fields and the extracted river net-
works are qualitatively similar to the ones obtained in the
previous section using equation (5) at all resolutions.
However, the erosion rate is clearly affected by the new
formulation of the model at the lower resolutions. The
mean longitudinal profiles obtained at steady state for the
simulations with dynamic subgrid-scale modeling are
shown in Figure 7a. The profiles at resolution 128 

128 and 64 
 64 obtained with the new model are close to
the profile at 256 
 256, indicating that the dynamic
subgrid-scale method accounts for most of the scale
dependence. The same behavior is found in the volume
of eroded material per time step, shown in Figure 7b: the
new model with dynamic subgrid-scale parameterization
yields much more consistent erosion rates across the
different grid resolutions than the simulations using a
constant erosion coefficient.
[37] We stress that in this first stage of our investigation,

we have used the simplest plausible scheme for dynamic
subgrid-scale modeling. Despite this, the method seems
able to eliminate much of the dependence of erosional
landscape dynamics on grid resolution. The dynamic
procedure is now modified to allow for scale dependence
of the coefficient b. A similar dynamic, tuning-free ap-
proach has recently been developed in the context of
subgrid-scale models for LES of turbulent flows [Porté-
Agel et al., 2000; Porté-Agel, 2004; Stoll and Porté-Agel,
2006.].

4. A Scale-Dependent Dynamic Subgrid-Scale
Model

4.1. Derivation of the Scale-Dependent Dynamic
Subgrid-Scale Model

[38] The dynamic procedure is now modified to allow for
scale dependence of the coefficient b. This requires the use
of an additional test filtering operation (e.g., at scale four
times the grid scale), from which the scale dependence of b
can be determined dynamically. The scale dependence
coefficient b is now allowed to change with scale, and
therefore

bD 6¼ b2D 6¼ b4D: ð18Þ

[39] At this point, an assumption has to be made about the
functional form of the scale dependence of b. Assuming a
simple power law dependence of b with scale [Porté-Agel et
al., 2000], we can write

bD
b2D

	 b2D
b4D

	 b4D
b8D

: ð19Þ

Note that this is a much weaker assumption than the previous
one of b constant across scales. Using equation (19), the

Figure 7. Comparison of results from the original model
(equation (5)) and the dynamic subgrid model (equations (16)
and (17)). (a) Mean longitudinal profiles obtained at
steady state. The results obtained with the subgrid-scale
parameterization show a relatively weak dependence on
grid resolution. (b) Volumes of eroded material per time step
obtained at steady state. The results obtained with the
subgrid-scale parameterization again show a relatively weak
dependence on grid resolution.
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scale dependence coefficient at scale D, bD, can be expressed
as

bD 	 b2D � b2D
b4D

¼ b22D
b4D

; ð20Þ

where b2D and b4D, recalling (14) and (15), can be computed
dynamically from the resolved elevation field as

b2D ¼ a2D

aD

¼
~q � r~h

�� ��2� �
�~q � r�~h

��� ���2� �

b4D ¼ a4D

a2D

¼
d�q � r�h
�� ��2D E

�̂q � r�̂h
��� ���2� � ;

ð21Þ

The same procedure can be applied at scale 2D to express the
unknown parameters bD and b2D as a function of b4D and b8D
as

b2D 	 b4D � b4D
b8D

;

bD 	 b2D � b2D
b4D

¼ b4D � b4D
b8D

	 
2

� 1

b4D
¼ b34D

b28D
; and

b2D � bD 	 b54D
b38D

ð22Þ

Note that b4D can be obtained from the resolved elevation
field using equation (21), and b8D can also be computed
dynamically using the identity

b8D ¼ a8D

a4D

¼
q̂ � rĥ

�� ��2_
* +

q̂
_

� r ĥ

_
���� ����2

* + ; ð23Þ

where the curved overbar denotes a filtering operation using
a two-dimensional filter of size 8D over the simulated
variables, obtained at a grid resolution of 2D.
[40] With the new definitions of bD and b2D, aD and a2D

become

aD ¼ bD � aD=2 ¼
b22D
b4D

� aD=2

a2D ¼ b2D � bD � aD=2 ¼
b54D
b38D

� aD=2

ð24Þ

and equations (16) and (17) become

@~h

@t
¼ u� b22D

b4D
� aD=2 � ~q � r~h

�� ��2 ð25Þ

@�~h

@t
¼ u� b54D

b38D
� aD=2 � �~q � r�~h

��� ���2 ð26Þ

To test the proposed scale-dependent dynamic subgrid-scale
scheme, we perform the same simulations using equation (5)
at resolution 256 
 256, and equations (25) and (26) at
resolutions 128 
 128 and 64 
 64, respectively.
[41] Initial and boundary conditions are the same used in

the previous sections. At every time step, the slope and the
water flux are computed at each location from the simulated
field. Then the field is filtered at a resolution two and four
times the grid size and slope and water flux are computed
from the filtered field at each location. The scale depen-
dence coefficients b corresponding to scales twice and four
times the grid scale are computed dynamically using equa-
tions (21) for the 128 
 128 resolution, or equations (21)
and (23) for the 64 
 64 resolution. These values are then
used in equations (25) and (26) to obtain the time evolution
of the simulated elevation field. The simulations are run
until steady state is reached.

4.2. Results and Discussion

[42] Similar to the case of the dynamic model presented
in Section 3, the elevation fields and river networks
obtained with the scale-dependent dynamic model are

Figure 8. Comparison of the results from the original
model (equation (5)) and the new scale-dependent dynamic
subgrid model (equations (25) and (26)). (a) Mean
longitudinal profiles obtained at steady state. The profiles
obtained with the subgrid-scale parameterization are almost
indistinguishable. (b) Volumes of eroded material per time
step obtained at steady state. The results obtained with the
subgrid-scale parameterization again show very little
dependence on grid resolution and time.
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quantitatively similar to the ones obtained without subgrid-
scale model. However, the mean longitudinal profile
obtained at steady state and the volume of eroded material
per time step show an additional improvement compared to
the scale-invariant dynamic model. As shown in Figures 8a
and 8b, the simulation results obtained with the three
resolutions are very similar, which highlights the ability of
the new model to systematically (and without parameter
tuning) account for the scale dependence of the erosion
coefficient. Moreover, the previously observed time depen-
dence of the results is substantially reduced (Figure 8b),
indicating that the new model is also able to minimize the
effects of resolution on the time evolution of the simulated
landscapes.
[43] Note that there are a number of ways in which the

scale-dependent dynamic approach could be improved. For
example, the coefficient b could be computed locally using
alternative averaging methods, such as the Lagrangian
dynamic procedure introduced by Meneveau et al. [1996].
High-resolution digital elevation data could also be used to
test some of the assumptions made in the dynamic models
(e.g., power law scaling of the coefficients) and provide
guidance for further improvements, as done in a priori
experimental studies of turbulent flows [e.g., Meneveau
and Katz, 2000].

5. Conclusions

[44] 1. Landscapes simulated using a modified 2-D KPZ
equation show a systematic dependence on grid resolution:
increasing resolution allows for increased channel density,
and thus erosion rates and mean longitudinal profiles of
elevation at steady state have an undesirable dependence on
grid resolution.
[45] 2. A new subgrid-scale parameterization, inspired by

the scale-dependent dynamic modeling approach used in
turbulence simulations, is able to correct most of this scale
dependence. The erosion coefficient, assumed exactly
known at the finest resolution, is multiplied by a scale
dependence coefficient, which is computed dynamically as
a function of time based on the landscape dynamics at the
resolved scales. The scheme takes advantage of the self-
similarity that characterizes landscapes over a wide range of
scales and produces landscapes that show very little depen-
dence on grid resolution.
[46] There is no reason the proposed approach could not

be applied to other landscape evolution models. The appli-
cability of the LES-inspired approach to modeling erosional
landscapes suggests that the technique may be generalizable
to other systems as well. The basic requirement is that the
system be self-similar over a sufficiently wide range of
length scales to justify the estimation of the effect of subgrid
processes by comparison of the model behavior over scales
coarser than the resolved scale. Possible candidates in
morphodynamics include braided rivers [Sapozhnikov and
Foufoula-Georgiou, 1996, 1997], distributary channel net-
works, and bed forms.
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