
Stochastic Hydrology and Hydraulics 8, 173-183 © Springer-Verlag 1994 

A probability-weighted moment test to assess simple 
scaling 

Praveen Kumar 
Universit ies Space Research,  Association/Hydrological Sciences Branch, NASA-Goddard  Space 

Flight Center,  Greenbelt,  MD 20771, USA 

Peter Guttarp 
Depar tment  o f  Statistics, University o f  Washington, Seattle, WA 98105, U S A  

Eft Foufoula-Georgiou 
St. Anthony Falls  Hydraulic Lab, Department o f  Civil Engineering, University o f  Minnesota,  
Minneapolis ,  M N  55414, U S A  

Abstract: We present a statistically robust approach based on probability weighted moments to assess 
the presence of simple scaling in geophysical processes. The proposed approach is different from current 
approaches which rely on estimation of high order moments. High order moments of simple scaling processes 
(distributions) may not have theoretically defined values and consequently, their empirical estimates are 
highly variable and do not converge with increasing sample size. They are, therefore, not an appropriate 
tool for inference. On the ether hand we show that the probability weighted moments of such processes 
(distributions) do exist and, hence, their empirical estimates are more robust. These moments, therefore, 
provide an appropriate tool for inferring the presence of scaling. We illustrate this using simulated Levy- 
stable processes and then draw inference on the nature of scaling in fluctuations of a spatial rainfall process. 
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1 I n t r o d u c t i o n  

The range of spatial and temporal scales for which geophysical models are developed and used is 
quite broad. Lately" much interest has focused on questions of sealing properties of geophysicM 
processes (see for example, Meakin, 1991). From a statistical and physical staaadpoint, the most 
important  aspect of the notion of scaling is that the probability distribution of the phenomenon 
is invariant with respect to a function cA, where A is a scale parameter. If X(s) denotes a simple 
scaling process, where s is a temporal or spatial index, then [Lamperti, 1962] for any A > 0 there 
is a constant cA such that  

caX(~s) d= X(s) (1) 

where d stands for equality in distribution. By repeated application of equation (1) we see that  
c~A~ = c ~ c ~ ,  hence c~ = A -H. Tile quantity H is called the scaling exponent or characteristic 
exponent, which can be positive or negative. Since (t)  is valid both for magnification (A <: 1) 
and contraction (A > 1), inference about a simple scaling process can be made from a large scale, 
where it may be easily observable, to very small scales, for which observations may be difficult or 
impossible to 0btain~ or vice versa. 

Often, the analysis of scaling hydrological processes towards assessing their scaling properties has 
been done using empirical moments (see for example Gupta  and Waymire, 1990). Define the rescaled 
process X~ by 

X~(s) = X(~s) .  (2) 



174 

If a scaling process has moments of order k, then for any s 

E[X~(s)] = ~ [ X ~ ( s ) ] .  (3) 

tlence, a log-tog plot of empirical moments against scale should show a straight line (if the moments 
are negative, one can use the real part of the logarithm). However, a large class of processes that  are 
simple scaling have a marginal distribution of the stable type (Zolotarev [1986] has an exhaustive 
treatment of these distributions). The stable distributions, with the exception of the normal, do not 
possess moments of order above 2 (in fact, they possess only moments of order less than c~, where c~ 
is the order of the stable distribution). The stable processes (with fractional Brownian motion as a 
special case) are the most commonly encountered simple scaling processes. 

Studies such as those in Gupta  and Waymire [1990] use estimation of high order moments from 
the data to look for scaling. From a statistical point of view, there are two problems with this. First, 
high order empirical moments  are dominated by large observations, and are therefore highly variable. 
In fact, it is possible that  their results on the scaling properties of rainfall may be driven entirely by a 
few large observations. In statistical terms, the empirical moments about zero are highly non-robust 
against outliers. Second, high order sample moments from a non-normal stable distribution, which, 
in essence, a t tempt  to estimate infinite parameters, have infinite mean and variance. Thus, they are 
inherently very unreliable and do not converge with increasing sample size (see Mandelbrot, 1963). 

In order to obtain a statistically more satisfying test for assessing the presence of scaling in 
geophysical process, we employ the probability weighted moments (PWMs) of Greenwood et al. 
[1979] and tIosking [1986]. We show that  these moments are welt defined for most of the stable 
distributions, and their estimators are more robust against outliers than are standard empirical 
moments. Moreover, probability weighted moments are more amenable to estimation of standard 
errors and, therefore, provide an objective method of judging the performance of the estimates and 
inferences about scaling. Taking into account the uncertainties in estimated quantities (e.g., fractal 
dimension or scaling exponent) and translating that  into a standard error is a very important aspect 
of the assessment of scaling properties of a physical process. Unfortunately, most of the literature 
ignores the consequences of inexact measurements and assumes that the properties of the studied 
field can be measured exactly. Only recently there is some work in the statistical literature where 
box counting estimates of fractal dimension are assessed assuming a stochastic underlying random 
field [Hall and Wood, 1993; Ogata and Katsura, 1991]. 

The objective of this paper is to develop a technique using probability weighted moments for the 
identification of simple scaling. In section 2 of the paper we derive the behavior of PWMs under 
simple scaling, and discuss the estimation of PWMs and their standard errors of estimates. Section 
3 contains results from applying these methods to simulated scaling Levy-stable processes, and to 
rainfall intensities and their fluctuations as derived in Kumar and Foufoula-Georgiou [1993a,b]. The 
rainfall field is used only to illustrate the applicability of PWMs to assess scaling in geophysical 
fields. The complete characterization of the scaling behavior in rainfall can be found in Kumar and 
Foufoula-Georgiou [1993a,b]. Finally in section 4 we discuss possible extensions of the methodology. 

2 Sca l ing  a n d  p r o b a b i l i t y  w e i g h t e d  m o m e n t s  

For a random variable X with cumulative distribution function Fx having E[tXI] < oo, Greenwood 
et al. [1979] defined probability weighted moment of X as 

PWM(i, j ,  k) = E[Xi{Fx(z)} j {1 - Fx(z')} k] 

= J z i { F x ( z ) } J { 1  - Fx(x)} k dFx(z)  . (4) 

This can alternatively be written as 

1 

PWM(i , j ,k )  = /{z(Fx)} iFJx(1  - Fx)kdFx (5) 

0 

where x(Fx) is the quantile thnetion. PWM(i,0,O) are the conventional non-central moments. We 
will work with PWM(1j ,k)  into which X enters linearly, and in particular with quantities ak and 
flk as defined below: 
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oo 

ak(X) ---- PWM(1,0 ,  k) = / x { 1 - F x ( x ) } k d F x ( x ) .  

- o o  

(6a) 

7 
~k(X) ~-- PWM(1,k,O)  = / x ( F x ( x ) } k d F x ( x )  . 

- c o  

The parameters  ~k and ~k are functions of each other (for E[IXI] < oc): 

r=0 \ r /  

(6b) 

(7a) 

( )Or /Tb/ 
r = 0  

Hence, characterization of a distribution (with finite mean) by ak or fik is interchangeable. 
The moments  in equations (6a) and (6b) are well defined whenever EIX I is finite, therefore in 

particular it is so for all stable distributions with index 1 < a < 2. Furthermore, for p o s i t i v e  
r a n d o m  v a r i a b l e s  it is easy to see tha t  ak is well defined when the tail of the distr ibution satisfies 
a growth condition such as 1 - Fx(x) = O(z -(2/k+C)) as x --~ oo for some e "> 0. In particular, 
for stable distributions with index 0 < a < 1 and skewness parameter fl = 1 (these are the only 
positive stable distributions) we have (Zolotarev [1986, pg. 8]) tha t  1 - Fx(z) = z-~g(x), where g0  
is a slowly varying function. Hence the tail condition is satisfied whenever k > ~. 

From the definition of a simple scaling process (equation 1) it follows that :  

Fx(s)(z) = P(A-HX(,~s) < x) = rx(~s)(~Hx) (8) 

Using equations (6a) and (8) we can determine the scaling behavior of the k th PWM of X(s), namely 

O / k ( X ( s ) )  = . /X{1  - Fx(~s) ()~Hx)}k dFx(~s)(),H x) 

= A-H~k(X(As)) . (9) 

Now consider positive processes X(s), so tha t  ~k > O. Let ek(s) ---- log(~k(X(s))). Then equation 
(9) with s = 1 yields 

e k ( ~ )  = H | O g ~  -~- Ok(l) (10) 

This relation holds for all k under the assumption of simple scaling, and allows us to use empirical 
estimates of ek(~) to determine H by linear regression of the estimates of ek(A) on the corresponding 
values of log ,~. Furthermore, determination of H for different values of k should yield (within 
sampling error) the same result. 

A nonparametr ic  maximum likelihood estimate of ak based on ordered observations ~0) -< ~(~) 
.-- <_ ~(n) is given by 

&k = 7 x(1 -- Fn(x) )kdF, (x)  

i)k 
= -  ~0) 1 -  (11) 

n i=l 

where F~(x) -- ~{i:~(,)_<~} 1/n  is the empirical distribution function. Hosking [1986, section 4] calls 
this a plot t ing position estimator.  As est imator of ek we take log(&k), which is also a nonparametr ie  
maximum likelihood estimator.  

Hosking (pg. 28) derives the asymptotic eovariance 
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ajk = AsCov(&k,&j) 

_- _In i J(I-F(x))k(I-F(Y))JF(x)(I-F(y))dx dy 
x<y 

Ijk/n (12) 

We estimate ajk by replacing the cdf F(z) by the empirical distribution function Fn(r). Using 
standard Taylor series arguments the asymptotic variance for Ck is given by Ikk/(na~). 

In order to estimate H from Ck(),), we need to take into account the fact that  the estimates Ck 
have different variance for different values of ,1. Using (8) and (12) we can derive the formula 

Ijk(~ ) = tjk(1)/.~ -2H , (13) 

so the asymptotic variance of tk  (A) is Ikk (1)/(nacre(I)) where n~ is the sample size at scale A. Hence, 
we estimate tI (for a given value of k) by a weighted regression, using weights inversely proportional to 
the asymptotic variance, or, equivalently , proportional to the sample size. We estimate the standard 
error of H from the regression in the usual fashion. This estimate is likely to be too small, since 
there is positive dependence between the tk(A) for different values of A. An improved regression 
would take these.covarianees into account, but it is difficult to derive expressions for them. 

For symmetric distributions ~k tends to be negative and /3 k positive, and it is there[ore more 
convenient to use /3k for analysis. It is noted that  for positive stable random variables, only C~k 
exists provided k is large enough, but not ilk, and vice-versa. Estimates of flk and their asymptotic 
properties are derived in the same fashion as those for C~k above. For example, a nonparametric 
maximum likelihood estimate of ilk based on ordered observations ~(1) _< ~(~) _< ... _< ~(n) is given 
by 

flk = f x (F , (x ) )kdF, (x)  

(g = - ~(i) (14) 
n i : l  

The asymptotic covarianee is 

1 
AsCov(~k, ]~ j )=  

x<y 

A scaling relationship analogous to equation (9) also holds, viz, 

/3k(X(s)) = ~ -nZk(X(~s) ) .  (16) 

3 A p p l i c a t i o n s  

In this section we apply the developed methodology to two different cases: fluctuations of a simulated 
Levy stable process (including Brownian motion obtained as a special case for a = 2), and rain rates 
and their fluctuations for a severe squall line storm in Oklahoma. 

3.1 Levy stable process 

A Levy stable process is defined as a process that  has self-similar, stationary, independent increments 
having a stable distribution. For such processes the scaling exponent is given as H = 1/a .  The ease 
of a- = 2 gives the usual Brownian motion process. 

Let s be a time parameter, and X(s) fluctuations of a Levy stable process. Levy stable process was 
simulated over 2048 points. Averages of two adjacent non-overlapping values provided the Levy sta- 
ble process at the next coarser scale (1024 points) and differences of adjacent non-overlapping values 
provided the fluctuation process at that  same scale. This procedure of averaging and differencing 
was repeated at coarser and coarser scales resulting in the Levy stable process and its fluctuation 
process at several scales. 
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Figures la-e and 2a-e show the log-log plots of ~k(,~) versus ,~ for k = 1, ..., 5 for fluctuations of Levy 
stable process for a = 3/2 and a = 2 (Brownian motion), respectively. The plots are, as expected, 
close to linear. The confidence lines in Figures la-e and 2a-e are two individual standard errors 
above and below the estimate. For each value of k we estimated H(k) by weighted linear regression, 
as outlined in the previous section. Figures If  and 2f show I:I(k) plotted against moment  order k, 
together with bars that  reach two estimated standard errors above and below I:I(k). The scaling 
behavior of the Levy stable process is clearly captured. The estimated value of H (approximately 
0.57) for c~ = 3/2 is slightly( different from the theoretical value of 0.67. For the Brownian motion 
case the estimated value is very close to the true value (0.48 versus 0.5). It should be noted that  the 
estimates of H for c~ = 3/2 appear statistically different from their true values. This is due to the 
conservative estimates of their standard error which ignores cross correlation of PW, Ms of different 
orders. If cross correlation was accounted for in the estimation of standard errors (something that  
seems difficult to accomplish analytically), it is conjectured that  the estimates of H would not be 
statistically different from their true values, i.e., would be within 2 standard errors of estimate. Until 
this is shown however, we offer the PWM method not as a robust method for estimation of H but 
rather as a robust, method of inferring simple scaling. Several simulations for different values of c~ 
showed slight errors in estimates of H but never failed to capture the scMing behavior. That  is, 
log-log linearity of PWMs with respect to scale and invariance of slope of these plots with respect 
to order of moments was always observed. The usual moment analysis failed to even show log-log 
linearity of moment with respect to scale establishing clearly that  the PWM method is more robust 
for the identification of simple scaling behavior. 

It is interesting to note that  if the variability of PWM estimates at different scales had been 
ignored, and simple, instead of weighted, least squares had been used, the estimates of H would 
have been much more variable with respect to moment order k (although still with high correlation 
coefficients in the log-log regression of PWM versus scale). 

3.2 Rainfall fluctuations in a squall line storm 

Rainfall fields are always positive with an atom at zero, i.e., they have a non-zero probability of 
being zero. Kedem and Chin [1987] argued that the positivity of rain intensities and atom at zero, 
together, preclude the possibility of simple scaling on theoretical grounds. This, however, is not the 
case for rainfall fluctuations where the condition of positivity does not hold. The initial argument for 
this was provided by Lovejoy and Sehertzer [1989]. Later, Kumar and Foufoula~Georgiou [1993a,b] 
discussed why rainfall fluctuations are natural components to be tested for scaling. They used wavelet 
transforms to decompose rainfall intensities into large and small scale components representing the 
mean behavior of the process and fluctuations, respectively. This decomposition can be represented 
a s  

X(s)  = ~ ( s )  + X'(s)  s = ( s l , s~ )  c a ~ (17)  

where the mean process X(s) and fluctuation process X'(s) were approximated using scale functions 
and wavelets, respectively. The two components, i.e., mean and fluctuations, are uncorrelated as the 
decomposition is obtained using filters having non-overlapping frequency bands. This has also been 
verified through cross-correlation between X(s) and X'(s). Using separable orthogonat wavelets, the 
fluctuation process X'(s) was further decomposed into three components as X'(s) -- X~(S) + X~(s) 
+ X~(s) which themselves are uncorrelated. X(s) represents the large scale behavior governing the 
morphological organization of the storm, and X~ (s)," X~(s) and X~(s) capture the horizontal, vertical 
and diagonal high correlations of the fluctuation process (these three components are henceforth 
referred to as D1, D2 and D3 components, respectively). The framework within which scaling was 
studied was in the sense of the followixlg equation: 

(X~(As)} d (AHIX~(s)} i e [1,3] (18) 

where the equality is in distribution. It was found that each component Xi showed scaling behavior 
up to a certain scale £max- 

Using the above decomposition (with Haar wavelets), here we investigate the scaling properties 
of the raw intensities and small-scale fluctuation components {Xi}i=l ,2,  3 using the technique of 
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F i g u r e  1. Probability weighted moment analysis of fluctuations of a simulated Levy stable process (a  = 
3/2). (a-e) Log-log plot of ilk()0 versus ), for k = 1 ..... 5. Solid lines represent the estimated PWMs. Center 
broken lines are the fitted weighted least squares lines and upper and lower brokdn lines are two standard 
errors above and below the estimated PWMs. The estimated values of H and the regression coefficients R 
are given at  the top of each plot. (f) Variation of ~](k) versus moment order k. The error bars indicate a 
deviation of two standard errors above and below the estimates. 

p robab i l i t y  weighted  moments .  The  d a t a  set  s tud ied  is a squa l l  l ine s torm,  t i m e  averaged over 10 
m i n u t e  in tervals ,  which occurred over Norman ,  O k l a h o m a  on May  27, 1987 ( K u m a r  and  Foufoula- 
Georgiou,  1993a, sect ion 5.2, describe the  da t a se t  in more  detai l ) .  

In F igure  3, the  log-log plots  of &k(A) versus A for raw rainfal l  in tens i t ies  are shown. The  l inear i ty  

of p lo ts  fix F igures  3a-e is very s imi la r  to  those of the Levy s tab le  process, bu t  I:i(k) is not  cons tan t  for 

different k i nd ica t ing  lack of s imple  scal ing.  The  nega t ive  values of I:t ind ica te  decreasing var iab i l i ty  
in ra infa l l  in tens i t ies  wi th  increasing scale. Similar  resul t  was also ob t a ined  us ing G A T E  phase  1 
rainfal l  d a t a  (see Arkel  and Hudlow, 1977, tbr descr ip t ion  of G A T E  data) .  The  conclusion drawn 
from th i s  behav io r  is s imi la r  to those ob ta ined  by G u p t a  and Waymi re  [1990], i.e., ra in  in tens i t i es  
show depa r tu re  f rom s imple  scal ing.  However, a t  th is  po in t  we cannot  conclude (as done by G u p t a  
and Waymire ,  1990), us ing P W M s ,  t h a t  ra in  in tens i t ies  show mul t i sca l ing  as the theore t ica l  no t ion  of 
mu l t i s ea l ing  in t e r m s  of P W M s  needs fur ther  deve lopment  (see sect ion 4). On the o ther  hand ,  for the 
smal l -sca le  f luc tua t ions  of the squal l  l ine s torm,  there  are clear ind ica t ions  of scal ing behavior ,  w i th  
l inear  log-log plots  of the PWMs/~k  (A) aga ins t  ),, and t l (k)  cons tan t  for al l  k (wi th in  s a m p l i n g  error; 

see Figures  4, 5 and  6 ). The  e s t ima tes  of I~t are pos i t ive  in this  case ind ica t ing  increas ing var iab i l i ty  
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Figure 2. Same as Figure 1 but for fluctuations of Brownian motion process (a = 2). 

in fluctuations with increasing scale. These results are consistent with the results in Kumar and 
Foufoula-Georgiou [1993b] obtained by another method, i.e, by studying the distribution function 
of the fluctuations. 

4 Conc lus ions  

The statistical technique proposed here for assessing scaling properties of processes, such as rain 
intensity fluctuations, has several appealing properties. First, the theoretical probability weighted 
moments we are trying to estimate exist in contradistinction to the corresponding usual moments 
about zero. Second, the estimation procedure takes account of the differing variability of moment 
estimates for different scales, which is important in assessing the linearity of plots of the logs of 
PWM estimates (¢k(A)) against log scale (A). Third, the PWM estimators are relatively robust 
against large observations, particularly in comparison with high order moments about the origin 
since these values enter linearly in the estimates of the probability weighted moments. 

The developed technique was applied to simulated Levy stable process, and rainfall intensities and 
fluctuations from a squall line storm. For the simulated processes that are known to be scaling, the 
PWM test clearly depicted this property. However, the method of moment test applied to the Levy 
stable process was not able to confirm the presence of simple scaling in the process. Although scaling 
in rainfall is an issue of continuous investigation by many researchers, our PWM results agree with 
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Figure 3. Probability weighted moment anMysis of raw intensities of frame 1 of squall line storm data. 
(a-e) Log-log plot of G~(A) versus A for k = 1, ..., 5, Solid lines represent the estimated PWMs. Center 
broken lines are the fitted weighted least squares lines and upper and lower broken lines axe two standard 
errors above and below the estimated PWMs. The estimated values of H and the regression coefficients R 
are given at the top of each plot. (f) Variation of ~t(k) versus moment order k. The error bars indicate a 
deviation of two standard errors above and below the estirnates. 

those of Gupta and Waymire [1990] regarding the lack of simple scaling in rainfall intensities and 
with the results of Kmnar and Foufoula-Georgiou [1993b] regarding the presence of simple scaling 
in rainfall fluctuations of a squall line storm. Results were presented for one frame of a severe squall 
line storm. However, the analysis has been performed for other frames of this storm and for a winter 
storm and the conclusions were the same, i.e., the rainfall fluctuations can be approximated by 
simple scaling process. 

The generalization of a PWM test to multiscaling, defined by 

C ; l X ( A s )  ~ -  X ( s ) ,  ( 1 9 )  

where C~, is a random variable, is not straightforward. There appears to be no simple general relation 
that connects PWMs for different scales. On the other hand, Gupta and ~¥aymire [1990, section 
4.2] represent multiscaling processes in terms of a process with stationary increments. For particular 
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F i g u r e  4 .  S a m e  a s  in  F i g u r e  1 b u t  f o r  f l u c t u a t i o n  c o m p o n e n t  D1 o f  F r a m e  1 o f  t h e  s q u a l l  l i n e  s , t o r m .  

such processes it may be possible to develop appropriate PWM relations. Much work remains to be 
done to develop such representations as well as sensitive data-analytic methods for assessing their 
validity. 
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Figure 5. Same as in Figure 1 but for fluctuation component 1)2 of Frame 1 of the squall line storm. 
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Figure 6. Same as in Figure 1 but for fluctuation component. D3 of Frame 1 of the squall line storm. 
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