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Scaling in river corridor widths depicts organization
in valley morphology
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Abstract

Landscapes have been shown to exhibit numerous scaling laws from Horton's laws to more sophisticated scaling in topography
heights, river network topology and power laws in several geomorphic attributes. In this paper, we propose a different way of examining
landscape organization by introducing the “river corridor width” (lateral distance from the centerline of the river to the left and right
valley walls at a fixed height above the water surface) as one moves downstream. We establish that the river corridor width series,
extracted from 1 m LIDAR topography of a mountainous river, exhibit a rich multiscale statistical structure (anomalous scaling) which
varies distinctly across physical boundaries, e.g., bedrock versus alluvial valleys.We postulate that such an analysis, in conjunction with
field observations and physical modeling, has the potential to quantitatively relate mechanistic laws of valley formation to the statistical
signature that underlying processes leave on the landscape. Such relations can be useful in guiding field work (by identifying physically
distinct regimes from statistically distinct regimes) and advancing process understanding and hypothesis testing.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

“Why are scaling laws of such distinguished impor-
tance? The answer is that scaling laws never appear by
accident. They always manifest a property of the
phenomenon of basic importance …This behavior
should be discovered, if it exists, and its absence
should also be recognized.” — Barenblatt (2003).

A piece of landscape can be analyzed in several ways.
One way is to analyze the statistical properties of the
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topography heights z(x,y) and related attributes, such as,
local gradients and curvatures. Another way is to extract
the channelized paths of the topography and study the
topological structure of the ordered river network. The
former method examines the vertical structure of the
topography, while the latter studies the planar dissection
of the topography. Here, we introduce a different
approach for examining landscapes focusing on the
“river corridor width” (RCW) as one moves along the
river. The river corridor width is extracted by “flooding”
the river at a certain heightD0 above the water surface and
recording the left and right distance to the valley walls
measured from the centerline of the river and orthogonal
to this centerline (see Fig. 1). We denote this function by
VL(x; D0) and VR(x; D0), where L and R stand for the left
and right side, respectively, looking downstream, x is the
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Fig. 1. River corridor width at depth D0 above the water surface to the left and right of the river centerline, VL(x; D0) and VR(x; D0), respectively,
where x is the distance measured along the river from the basin outlet x=0.
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distance measured along the river from the basin outlet
x=0, and D0 is the depth above the water level.

This particular definition of “river corridor width” is
different from the definition of “valley width” used in
other studies. For example, Montgomery (2002) defined
valley width as the total ridgetop-to-ridgetop width of
valley-spanning cross-sections orthogonal to the valley
centerline. Montgomery's study aimed to understand how
valley morphometry scales with drainage area in glaciated
versus unglaciated valleys for the purpose of arriving at a
process-based classification of valley morphology. Thus,
valley widths were extracted in his study from several
cross-sections throughout the basin and were selected to
avoid the influence of tributary valleys. In our study, we
follow the valley as we move downstream the mainstream
and record the river corridor width to the left and right side
of the river centerline as we “flood” the valley to different
heightsD0 (see Fig. 1). The scope of our analysis is not to
extract regional scaling characteristics but instead to quan-
tify the detailed statistical structure of the valley morpho-
logy as one follows the river downstreamwith the eventual
goal of relating this statistical structure to the processes
responsible for valley formation. The river corridor width
series is extracted from high resolution airborne altimetry
(LIDAR) topography data at cross-sections 1 m apart as
we move downstream along the river and, thus, depicts
landscape organization down to the meter scale.

The small-scale fluctuations of the river corridor width
series are interpreted to have resulted from the complex,
and often interacting, processes forming valleys, including
hillslope transport, mass wasting, terraces, debris flows,
landsliding and the interactions with the streams. The
question we pose is whether the river corridor width series
exhibit any distinct statistical scaling properties, and in
particular any form or statistical organization across a range
of scales, i.e., scale invariance or self-similarity. The me-
thodology of analysis heavily borrows from current state-
of-the-art methodologies for analyzing turbulent velocity
fluctuations. We demonstrate how spectral analysis pro-
vides a limited, or partial, characterization of the multiscale
structure of the river corridor width series. The use of a
rigorous multifractal analysis unravels a rich scaling struc-
ture and, in particular, a deviation from scale invariance and
presence of strong intermittency, the so-called anomalous
scaling. These findings are revealing and call for further
analysis of the statistical signature that valley forming
processes leave on the landscapes in diverse geomorphic
environments and also along tributaries of nested sub-
basins. It is postulated that distinct statistical signatures
identified from high resolution topography can be further
explored towards (a) discriminating among different valley
morphologies, (b) suggesting the nature of the underlying
mechanisms responsible for valley formation, and (c) guide
field work and data collection efforts for the purpose of
advancing modeling and hypothesis testing.

2. Study area and extraction of river corridor width
series

The South Fork Eel River basin is located in northern
California and has a drainage area of 351 km2 (see Fig. 2).
Its relief is approximately 500 m. The mainstream of the



Fig. 3. Longitudinal profile along the main channel of the South Fork Eel River basin. The main channel is divided into eight segments (see discussion
in text and Table 1) whose respective along-channel slopes (in degrees) and distances from the outlet (in km) are shown above.

Fig. 2. Location of the South Fork Eel River basin (351 km2) in California. The panel on the right shows the stream network superimposed on Landsat
GeoCover (Bands 7, 4, 2) image of the basin.
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Table 1
Segments along the mainstream of the Eel River (x=0 denotes the outlet of the basin, see Fig. 1) and the scaling properties of their right and left river
corridor width (RCW) series

Distance from
outlet (km)

Along stream
slope (°)

Side of the corridor
(Left/Right)

Spectral
slope

Scaling
range (m)

Scaling range
(octaves)

Holder
exponent bHN

(hmin, hmax) c1 c2

0bxb6 0.40 Right 1.27 5.0–36.8 2.5–5.2 0.45 (−0.1,1.18) 0.45 0.07
Left 1.36 9.2–64 3.0–6.0 0.47 (0.02, 1.02) 0.50 ?

0.0
6bxb14 0.47 Right 1.63 9.2–56 3.2–5.8 0.51 (0, 1.30) 0.51 ?

0.0
Left 1.45 8.6–56 3.1–5.8 0.49 (0.1, 1.22) 0.48 0.02

14bxb20 0.31 Right 1.18 8.0–56.0 3.0–5.8 0.29 (−0.1,1.20) 0.32 0.13
Left 1.19 9.8–36.8 3.3–5.2 0.39 (0.0, 1.07) 0.41 0.25

20bxb28 0.24 Right 1.21 8.0–64 3.0–6.0 0.58 (0.1, 1.10) 0.59 0.05
Left 1.28 16.0–128 4.0–7.0 0.22 (−0.1,0.60) 0.23 0.17

28bxb35 0.21 Right 1.41 8.0–128 3.0–7.0 0.81 (0.0, 2.00) 1.00 0.38
Left 1.43 8.0–128 3.0–7.0 0.76 (0.0, 1.60) 0.77 0.10

The reported Hölder exponent 〈H〉 is estimated from the CWTmultifractal analysis, the (hmin, hmax) from theWTMMmultifractal analysis, and c1, c2
from the cumulant analysis. Notice the pronounced multifractality (c2≠0) of the RCW series for some segments (e.g. both left and right sides of 14–
20 km and left side only of the 20–28 km segment.) Also note the different values of 〈H 〉 (and c1) suggesting a smoother RCW series for the 0–14 km
steep-sloped, bedrock stretch and a much rougher RCW series for the milder-sloped, alluvial 14–28 km stretch.
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basin has a length of approximately 56 km and fairly steep
along-the-channel slopes (see Fig. 3 and Table 1). We
have subdivided this channel reach into eight smaller sub-
reaches according to slope and other morphologic charac-
teristics, such as the presence of tributaries. These eight
segments were then analyzed separately. The idea was to
avoid mixing different physical regimes at the expense of
classifying the reaches in more detail than necessary. The
presence of similar statistical properties could then be
used to group reaches into fewer categories (and this was
indeed the case from our analysis). Following Montgom-
ery (2002), valleys have been classified as bedrock,
alluvial and colluvial (see Fig. 3). For vegetation and other
Fig. 4. River corridor widths for the mainstream of the South Fork Eel River
side and bottom (−Y ) is at the left side of the river as we travel downstream.
mainstream at the right and left sides respectively. (See text for more details
geomorphological characteristics of this region, the reader
is referred to Power (1992) and Seidl and Dietrich (1992).

For this watershed, 1 m topography data from airborne
altimetry (LIDAR) is available from which we extracted
the cross-sections of the ridgetop-to-ridgetop valleys per-
pendicular to the river centerline every 1 m along the
mainstream. Then, at specified depthsD0 above the water
level, the distances from the centerline of the river to the
left and right valley walls were recorded. The analysis was
performed at depth D0=5 m and D0=10 m for the whole
river. In this paper we report the analysis of the D0=5 m
river corridor widths for the very steep 35 km stretch from
the outlet to the divide. The 20 km stretch close to the
(56 km in length) extracted at a depth D0=5 m: top (+Y ) is at the right
Dots (●) and crosses (×) indicate the location of tributaries joining the
.)
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divide did not show a clear scaling signature and requires
further analysis.

Fig. 4 displays the left and right river corridor width
(RCW) series for the whole 56 km mainstream and also
indicates the location of the tributary junctions. To provide
an indication of the “significance” of each tributary, we
have positioned the marks at a vertical distance propor-
tional to the drainage area of each tributary. Specifically,
the 89 tributaries have been grouped into 10 categories
based on the contributing drainage areas. These groups are
then scaled such that the smallest contributing area of
1 km2 corresponds to (is plotted at) a RCWof 5m, and the
Fig. 5. The 0–6 km bedrock stretch of the South Fork Eel River basin. Selected
topographic map.
largest area of 152 km2 corresponds to a RCW of 50 m
(See Fig. 4).

Fig. 5 shows a magnification of the river corridor
width series for the 0–6 km river stretch and the detailed
topography and location of this stretch within the whole
basin. It also associates selected values in the river
corridor width with the locations on the topographic
map. Finally, Fig. 6 shows the river corridor width series
for the 20–28 km alluvial stretch. As will be discussed
later, this stretch exhibits a rich multiscale structure in
its RCW series and a pronounced asymmetry between
the left and right sides. This asymmetry (not visually
values of river corridor width are associated with their locations on the



Fig. 6. The 20–28 km stretch of the South Fork Eel River basin main channel (top panel). The bottom panel shows the right (top series) and left
(bottom series) river corridor widths extracted from this 8 km stretch at depth D0=5 m. This stretch exhibits a high asymmetry in the statistical
scaling properties of its left and right valley geometries; although not apparent visually, the right side is much “smoother” than the left side (see
Table 1 and discussion in text). This suggests different valley forming processes in each side of the mainstream, with much more localized
processes in the left side.
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apparent from Fig. 6, but clearly depicted by the
multiscale analysis) can been seen as suggesting
different valley-forming processes for each side.

3. Fourier analysis of river corridor width series

A commonly used tool to explore the energy distri-
bution of a signal across frequencies (or scales) is the
power spectrum. The power spectra of the left and right
RCW series of the five segments analyzed are shown in
Fig. 7. First, we observe the presence of a log–log
linearity over a significant range of scales with an abrupt
break of scaling at a scale of approximately 10 m except
for the 0–6 km stretch which does not exhibit a
pronounced scaling break. For scales smaller than
approximately 10 m (wavenumber larger than 10−1

m−1) a significant increase of energy (variability) is
present. This is interpreted as the result of noise in the
LIDAR data that shows up as concentrated energy at
characteristic scales of the order of 5–10 m (the so-
called “acne” in the bare soil LIDAR extracted
topography.) This scale of 10 m, below which the
LIDAR data are not globally interpretable (although
locally they do depict smaller than 10 m variability),
represents the “effective resolution” of these topography
data and has also been documented from a break in the



Fig. 7. Power spectra of the river corridor widths (at 5 m above water level) for the five segments along the mainstream of the South Fork Eel River
basin. The dotted black lines give the power law fits, E(k)=k−β. The horizontal axis represents frequency k, in m−1.
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multiscale statistical properties of basin-wide curvature
pdfs at approximately the same scale (Lashermes and
Foufoula-Georgiou, 2007).
It is well known that the presence of large-scale
features with sharp edges in a process can be mis-
interpreted in the usual Fourier spectrum as energy
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coming from distinct small-scale features, because the
Fourier analysis cannot distinguish between the two.
Thus, we do not know from Fig. 7 whether the log–log
linearity in the spectrum within the scaling range is the
result of uniformly distributed high-energy fluctuations
over the whole support of the signal or a richer
preferential and localized energy distribution. The
former is the hallmark of scale-invariance, implying a
spatially homogeneous distribution of abruptly high
values within the support of the signal (arising from a
homogenous energy transferring mechanism), while the
latter is indicative of a break-down of scale invariance,
implying a localized intermittent distribution of abruptly
large values within the signal (probably arising from a
spatially inhomogeneous energy transferring mecha-
nism). In turbulence, the realization that the statistical
moments of turbulent velocity fluctuations grow faster
as the scale becomes smaller, prompted the replacement
of the global Fourier-based analysis of Kolmogorov
(K41 theory, Kolmogorov, 1941) with the local multi-
fractal formalism analysis of Parisi and Frisch (1985).

The multifractal formalism aims to characterize the
very abrupt local fluctuations in the signal using the so-
called multifractal (MF) spectrum. The MF spectrum, or
spectrum of singularities D(h), describes the “richness”
of the local irregularities of a function, i.e., abrupt local
fluctuations, in terms of local singularities characterized
via the so-called Hölder exponent h (see Parisi and
Frisch, 1985). If singularities are of the same strength
throughout the support of the signal (i.e., homogeneously
distributed), D(h) receives the value of 1 at a single value
of h=H which coincides with the well-known Hurst
exponent. If the singularities of various strengths are non-
homogeneously spread in the signal (in what turns out to
be interwoven fractal sets), however, D(h) is a density
function which quantifies the range of the strength of
these singularities (hmin to hmax) and the degree of their
presence in the signal. In other words, the set of points that
exhibit singularity of order h1 forms a fractal set of di-
mension D(h1) and is interwoven with the set of points
that exhibit singularity of order h2, which forms a fractal
set of dimension D(h2), etc. In the next section, an
overview of the multifractal analysis methodologies is
presented followed by the results of analysis of the river
corridor width series.

4. Multifractal analysis: methodology overview

4.1. Preliminaries

A typical goal of multiscale analysis of a signal f(x) is
to characterize how the statistical properties (or the whole
pdf) of the signal changes with the “scale” at which the
signal is examined. For that, the statistical moments of the
fluctuations of the signal δ(x,a)= f(x+a)-f(x), at scale
(separation distance) a are computed, and the change with
scale a is examined. log–log linearity between the statis-
tical moments of order q and scale implies the presence of
scaling and the slopes of these lines τ(q) for different order
moments q characterize the nature of scaling. A linear
τ(q) vs. q relationship, i.e., τ(q)=q·H, where H is the
Hurst or scaling exponent, implies simple scaling whereas
a nonlinear relationship implies a deviation from simple
scaling, or multiscaling. In the first case, the single expo-
nent H can be used to obtain the whole pdf at one scale
from the pdf at any other scale, while in the second case
more than one scaling exponents are needed to renorma-
lize the pdfs across scales (i.e., the tails of the pdfs scale
differently than the body). Often, only the second order
statistical moment (q=2) is checked (second-order
structure function or variogram) in which case the single
estimated exponentH can be used to renormalize the pdfs
only up to second order statistics.

It is instructive to place the above statistical
interpretation of mono-or multi-scaling (i.e., looking at
how the pdfs renormalize across scales) in the context of
an equivalent geometrical interpretation (i.e., what does
the scaling really mean about the nature and frequency of
very extreme fluctuations in the signal). The multifractal
formalism of Parisi and Frisch (1985) connects the
statistical and geometrical interpretations intuitively and
mathematically, as will be discussed in the next section.
Specifically, abrupt fluctuations in the signal (geomet-
rically characterized by the local regularity of the
function or the so-called Hölder exponent defined
later) occur uniformly or homogeneously throughout
the signal in the case of a mono-fractal, while they occur
heterogeneously or intermittently in the case of a
multifractal. The two imply different mechanisms for
how the energy is distributed across scales, i.e., a uni-
form cascading of energy across scales in the first case,
versus a spatially heterogeneous energy cascading in the
second case deriving from the presence of intermingled
very active and dormant regions of energy transfer.

The processes creating the valley geometry are
multiple in nature including hillslope sediment trans-
port, landsliding, mass wasting, tributary influences,
etc. and one expects that this can lead to a complex
statistical structure of the RCW series. Whether the
RCW series exhibit any statistical organization (mono-
or multi-scaling) and how this organization is to be
statistically and geometrically interpreted, is the scope
of this paper. Emphasis is placed on higher order
moments which can characterize the local behavior of
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abrupt fluctuations as this is considered significant for
interpreting the nature of the underlying valley for-
ming processes.

In the rest of this section the mathematical details of
the multiscale analysis methodologies we employ are
presented. The reader is referred to Venugopal et al.
(2006a,b) and the references therein for a more detailed
exposition.

4.2. Multifractal formalism

The local singularity of a function f (x) at a point x0 is
characterized by the so-called Hölder exponent h(x0),
defined as the largest exponent such that

j f xð Þ � f x0ð Þj eCjx� x0jh x0ð Þ ð1Þ
in the neighborhood of x0, i.e. for |x−x0|≤ɛ. A small
(large) value of h(x0) signifies a rough (smooth) behavior
of the function f(x) at x0. The above definition holds for
0≤ h≤1 but extension to singularities hN1 (i.e.,
singularities in the higher-order derivatives of the
function) can easily be achieved by filtering out a
polynomial of degree higher than one, which is equivalent
to working with higher-order increments of the signal. As
will be seen later, this filtering can be formally achieved
via a wavelet-based formalism (e.g. seeMuzy et al., 1991,
1993; or Venugopal et al., 2006a,b).

The singularity spectrum D(h) is defined as

D hð Þ ¼ dh x0 : h x0ð Þ ¼ hf g ð2Þ
that is, D(h) is the Hausdorff dimension dh of the set of
points x0 which have Hölder exponent h(x0) = h.
Estimating D(h) is the goal of multifractal analysis and
the so-called multifractal formalism (e.g. Parisi and
Frisch, 1985) allows estimation of D(h) from the
statistics of local fluctuations of the signal at different
scales a and different locations x0, denoted by δ(x0,a).
One way of determining these fluctuations is via stan-
dard first order differences, i.e.,

d x0; að Þuf x0 þ að Þ � f x0ð Þ: ð3Þ

Let us denote the structure functions S(q,a) of the
signal as the qth statistical moments of the fluctuations
of the signal:

S q; að Þ ¼ bjd x0; að ÞjqN ð4Þ
where b·N stands for expectation (via spatial averaging).
For a multifractal signal

S q; að Þ as qð Þ ð5Þ
e
which defines the τ(q) curve, or spectrum of scaling
exponents, indexed by moment order q. The multifractal
formalism states that τ(q) relates to D(h) through a
Legendre transform:

D hð Þ ¼ min
q

qh� s qð Þ þ 1½ �: ð6Þ

If the signal under analysis is monofractal, then τ(q) is
linear with respect to the moment order, i.e., τ(q)=q·H
andD(h) receives a single value equal to 1 at the specific
value of h=H. In contrast, if the singularity spectrum
takes on finite values in an interval [hmin, hmax], the
scaling exponents τ(q) define a nonlinear function of q
(multifractal signal). The nonlinearity of τ(q) implies a
scale dependence of the dimensionless moments. For
example, for a monofractal process it can easily be
shown from (5) that the coefficient of variation, CV=
(M2(a) /M1

2(a)−1)1/2, of the process is independent of
scale a, while this is not the case for a multifractal
process. The same applies to other dimensionless
structure functions such as the coefficients of skewness
and kurtosis, M3(a)/M1(a)

3/2 and M4(a)/M2(a)
2 respec-

tively, where Mq(a) is used to denote S(q,a) (see Mahrt,
1989).

It is understood that an increase of the dimensionless
structure functions with decreasing scale is an indication
of strong intermittency, i.e., occasional large gradients
which enhance the higher order moments at small scales
(break-down of scale invariance). This empirical
observation, documented from long series of wind-
tunnel turbulence data, is what lead to the development
of the multifractal formalism in turbulence (e.g. Parisi
and Frisch, 1985) and shed new light into how energy is
cascaded in a turbulent field, typically very intensely in
localized regions and less so in other (dormant) regions.
As it will be seen in the next section, the river corridor
widths are also found to exhibit such a multifractal
behavior (break of scale-invariance), suggesting a rich
local structure of energy dissipation in the valley-
forming processes.

4.3. Wavelet-based MF formalism

While one could confine themselves to using
structure functions in (4) as computed from the standard
first order differences of the signal as defined in (3), it is
often advantageous to use “generalized differences”
defined via wavelet filtering. One advantage is that
wavelets allow the analysis of non-stationary signals.
By choosing an appropriate wavelet (i.e., wavelets with
a high number of vanishing moments), polynomial
trends of increasing order can be filtered out from the



207C. Gangodagamage et al. / Geomorphology 91 (2007) 198–215
signal and accurately characterize the local behavior of a
function without danger of having this behavior masked
by the large-scale trends (e.g. Jaffard, 1989; Mallat and
Hwang, 1992). Another advantage of wavelets is their
natural ability to depict sharp edges or discontinuities
from a signal (e.g. Muzy et al., 1994; Mallat, 1998) and,
thus, better characterize the statistical nature of
singularities. In addition, as we explain below, a
wavelet-based multifractal formalism allows one to
work with the maxima of the wavelet coefficients (the
so-called wavelet transform modula maxima; WTMM)
and, thus, extend the structure function analysis to
negative moments q (which are necessary for compu-
tation of the right limb of the D(h) spectrum.) Such an
extension also allows access to the whole spectrum of
singularities, including hN1 which is not possible by
using the standard definition of fluctuations (3).

A wavelet-based multifractal formalism uses as fluc-
tuations

d x0; að Þ ¼ c x0; að Þ ¼
Z
R
wxa;a xð Þf xð Þdx ð7Þ

where ψxa,a (x) is a scale-dilated and shifted version of
the mother wavelet ψ0(x), i.e.,

wxa;a xð Þ ¼ 1
jajw0

x� x0
a

� �
: ð8Þ

The so-defined S(q,a) in (4) is called the partition func-
tion or generalized structure function. The use of a wavelet
with N vanishing moments, i.e.,

R
xKwx xð Þdx ¼ 0, for

(0≤K≤N−1) and
R
xNw0 xð Þdx≠0, allows for the removal

of a degree–N polynomial trend (see Mallat, 1998). This is
important if first order differences do not completely
remove trends in the data, for then the standard multifractal
analysis will fail.

A standard wavelet, and the one used in this analysis,
is the first and second order derivative of a Gaussian
function, i.e.,

g Nð Þ xð Þ ¼ d Nð Þ

dx Nð Þ e
�x2
2

� �
ð9Þ

which has been extensively used as a smooth general-
ization of N-th order increments to study the behavior of
fractal functions (e.g. Muzy et al., 1994; Arneodo et al.,
1995).

From the Legendre transform (6), in the case of a
continuously differentiable τ(q), it follows that

q ¼ dD hð Þ
dh

: ð10Þ
Thus, the right limb of D(h), where (dD(h)/dhb0),
can only be estimated from the negative moments (qb0)
of the fluctuations. Computing negative moments of
pdfs that have mass concentrated at zero (such as the
pdfs of fluctuations), however, leads to divergence. To
be able to take negative moments and estimate the
complete singularity spectrum, Muzy et al. (1991, 1994)
proposed to use the wavelet transform modulus maxima
(WTMM) method, i.e., concentrate on the lines formed
by following the maxima of the wavelet coefficients
across scales and, thus, following the same singularity
from the lowest scale to higher and higher scales. For
details on this estimation, the reader is referred to the
original publications (Muzy et al., 1991, 1993; Arneodo
et al., 1998; and also Venugopal et al., 2006a,b).

4.4. Cumulant analysis

Cumulant analysis presents an efficient method of
estimating the multifractal nature of a process and
quantifying it in terms of a small number of parameters
(e.g. Arneodo et al., 1998; and Delour et al., 2001). This
method relies on a Taylor series expansion of τ(q), leading to

s qð Þ ¼
X
pz1

�1ð Þp�1cp
p!

qp; qY0: ð11Þ

From the above equation one observes that a non-
zero value of c2 (also called the intermittency coeffi-
cient) implies deviation from monofractality and
explicitly characterizes the richness of the spatial
inhomogeneity of very high fluctuations. In fact, the
value of c2 formally relates to the change of the variance
of the Hölder exponents (strength of singularities) with
scale, (e.g. see Venugopal et al., 2006a,b, Appendix B
and references therein) and, thus, characterizes the
second order statistics of the singularities. Indeed, a
quadratic approximation of τ(q)

s qð Þic1q� c2
q2

2
; qY0 ð12Þ

which corresponds to a quadratic approximation of D(h)

D hð Þi1� h� c1ð Þ2
2c2

; hYc1 ð13Þ

is a commonly used model of multifractality (the so-
called log–normal model in turbulence).

The coefficients cp can be estimated from the
statistical cumulants C( p,a) of order p of the logarithms
of the absolute value of the wavelet coefficients |c(x0,a)|
at a given scale, a, (Eq. (7)), or from the logs of the
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WTMM coefficients. For details see Delour et al. (2001)
and Venugopal et al. (2006a,b). For instance, for p=1,2

C 1; að Þ ¼ a
n að Þ

X
x0

lnjc x0; að Þjia1 þ c1ln að Þ ð14Þ

C 2; að Þ ¼ a
n að Þ

X
x0

lnjc x0; að Þj � C 1; að Þ½ �2ia2

� c2ln að Þ: ð15Þ

Thus, linear regression of C(p,a) versus In (a) allows
for an easy estimation of cp and only two linear
regressions (giving estimates of c1 and c2) characterize
the multifractality up to a quadratic approximation of the
τ(q) function.
Fig. 8. Coefficient of variation of the river corridor widths as a function of sca
of the South Fork Eel River. The dependence on scale implies deviation fro
In the next section, the continuous wavelet-based
multifractal analysis, the WTMM analysis, and the
cumulant analysis are applied to the RCW series for a
detailed characterization of the series' multifractal
structure. It is emphasized that one of the goals of this
study is to be able to depict the signature that mecha-
nistic processes leave on the valleys, and thus accuracy
and high discriminatory power of the multifractal
characterization methodologies is a necessity.

5. Multifractal analysis: results

The river corridor widths of the five different segments
from 0 to 35 km (see Fig. 3) have been analyzed using the
multifractal formalism. It was found that the coefficient of
variation (which characterizes the first twomoments only)
for these series shows a dependence on scale (see Fig. 8)
le for the two segments (0–6 km and 20–28 km) along the mainstream
m monoscaling. Similar plots were found for all other segments.
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and, as expected, an increase as the scale decreases. This is
an indication of deviation from monofractality and
prompts analysis of higher order moments via the
proposed wavelet-based multifractal formalism.

The top panels of Fig. 9 show the partition functions
for q=0 to 3 (computed in intervals of q=0.1, but
displayed in intervals of 0.5) for the right and left side
river corridor widths of the first (x=0–6 km) segment of
the South Fork Eel River. The analysis was performed
Fig. 9. River reach of 0–6 km, partition functions of order q=0.0 to 3.0 u
spectrum (bottom) for the left and right river corridor width series at depth D0

right corridor (2.5 to 5.2 octaves) is indicated by the dashed vertical lines (s
using the continuous wavelet transform (CWT) with
wavelet g(2) and g(3) i.e., the second and third order
derivative of the Gaussian, (Eq. (9)). As can be seen,
log–log linearity can be assumed between a range of
scales as marked in Fig. 9. This range of scales
corresponds to approximately 5 m to 40 m for the
right side valley and 9 m to 64 m for the left side valley
(see Table 1). Fitting straight lines to all moments and
computing the slopes results in the τ(q) curves (middle
sing CWT (top), scaling exponent spectrum (middle) and singularity
=5 m. The scaling range of the left corridor (3.2 to 6.0 octaves) and the
ee Table 1 for the scaling range in meters).
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panels of Fig. 9), and via the Legendre transform results
in the D(h) curves (bottom panels of Fig. 9). The
nonlinearity of the τ(q) curves is noted, as was expected
from the coefficient of variation dependence on scale,
signifying again a deviation from monofractality and,
thus, the presence of singularities of various strengths,
as quantified in the D(h) spectra. Similar analysis has
been performed for all other series. For example, see
Fig. 10 for the segment of 20–28 km. A summary of the
Fig. 10. Same as Fig. 9 but for the 20–28 km r
scaling ranges for each river reach and the estimates of
the most prevailing Hölder exponent bHN (the value of
h corresponding to the max value of D(h)) is given in
Table 1.

As was discussed in the previous section, using
continuous wavelet transforms does not allow charac-
terization of the right part of the spectrum of singular-
ities. To estimate the full D(h) curve, the WTMM-based
multifractal analysis was also applied to these series
iver reach. See Table 1 for scaling range.
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which allows estimation of the statistical moments for
negative order q. Fig. 11 shows the analysis for the 0–
6 km river stretch. The top panels display the partition
function for q=−3 to +3 (in increments of 0.5) and the
fitted log–log linear lines within the scaling range
previously reported. The middle panel shows the τ(q)
curves and the bottom panels the complete D(h) curve.
On the same figures, we have superimposed the esti-
mated τ(q) and D(h) curves from the CWT analysis.
Fig. 11. River reach of 0–6 km, partition functions of order q=−3.0 to 3.
singularity spectrum D(h) (bottom) for the left and right river corridor width
Some small differences in the estimation of the left part
ofD(h) curve between the CWTandWTMMmethods is
noted, but also the ability of WTMM to provide an
estimate of the right part of D(h) is appreciated. The
WTMM analysis was repeated for all series and the
values of hmin and hmax (depicting the width of the
spectrum of singularities) are summarized in Table 1. It is
noted that for several sites, hmax was found to be greater
than one. This emphasizes the need to adopt a wavelet-
0 using WTMM (top), scaling exponent spectrum τ(q) (middle) and
series at depth D0=5 m using CWT (+) and WTMM (○).



212 C. Gangodagamage et al. / Geomorphology 91 (2007) 198–215
based multifractal analysis, as the standard structure
function analysis based on first order increments cannot
resolve singularities of order greater than one.

Having established the presence of multifractality,
the next step in the analysis is to explicitly estimate the
c1 and c2 coefficients using the cumulant analysis
method. It is expected that c1 will be very close to the
value of 〈H〉 estimated from the CWT partition function
method, but the particular interest is to estimate c2
which concisely characterizes the intermittency of each
series.

Fig. 12 shows the first two cumulants for the right
and left river corridor width series of segment 0–6 km.
As expected, a log–log linear relationship in C(1,a) vs.
In (a) yields an estimate of c1 very close to the estimate
of 〈H〉 obtained from the partition function approach
(see Table 1). The C(2,a) vs. In (a) plots show a non-
zero slope for the right valley (consistent with the wide
spectrum of singularities displayed in the bottom right
panels of Figs. 9 and 11) and an almost zero slope for the
left valley (consistent with the more narrow spectrum of
singularities for this series) as seen in Figs. 9 and 11
Fig. 12. Cumulant analysis of the left and right river corridor width se
bottom left panels. Similar analysis was performed for
all other series and the estimates of c1 and c2 are
summarized in Table 1.

It is instructive to display in Fig. 13 the cumulant
analysis of the right and left river corridor width series
of the segment 20–28 km for which a significant left-to-
right asymmetry was noted from the Hölder exponent
〈H〉 (see Table 1). Specifically, the left side valley was
found to have much “rougher” fluctuations (smaller
〈H〉) that the right side valley (larger 〈H〉). It is pleasing
to see that the cumulant analysis is able to further
quantify this asymmetry (see values of c1 in Table 1)
and also depict an asymmetry in intermittency. Specif-
ically, the left side RCW series shows a much more
intermittent structure (larger c2 value) and indicates the
presence of more complex or interacting mechanisms
forming this side of the valley. From the 20–28 km river
segment, shown in Fig. 6, it is noted that from the RCW
series themselves, one cannot visually depict the
significant statistical differences we were able to
establish using the proposed methodologies, although
by close inspection of the high resolution topography,
ries of reach 0–6 m, to estimate parameters c1 and c2 in Table 1.



Fig. 13. Same as Fig. 12 for the river reach of 20–28 km.
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one can notice a higher degree of dissection in the left-
side valley. Also, it is noted that spectral analysis of the
left and right corridor widths for this segment (Fig. 7)
was not able to depict the subtle differences depicted by
MF analysis.

6. Discussion and conclusions

The goal of this work was to examine the multiscale
statistical properties of the river corridor width (RCW)
series along the mainstream of a 35 km mountainous
channel reach with the goal of assessing whether the
valley forming processes imprint on this series any
particular statistical organization.

Some clear results have emerged from this analysis.
First, river corridor width fluctuations exhibit a rich
multiscale statistical structure and a deviation from
scale-invariance or monoscaling. Second, as one goes
further away from the outlet of the basin to less steep,
alluvial valleys, the statistical “roughness” of the RCW
series increases (smaller c1 or 〈H〉 values) and also the
degree of multifractality, or intermittency, increases
(larger c2 values) (see Table 1). Third, for the particular
basin analyzed, a significant left-right asymmetry exists
in the statistical structure of valley geometry: the left
side is consistently rougher and more intermittent
implying that different physical mechanisms shaped
the valley at the left and right sides of the mainstream.
This difference does not seem to be directly related to
the number of tributaries joining the main river, as an
equal number of tributaries is present on both sides of
the river stretch (see Fig. 4). Rather, other mechanisms
of sediment transport, landsliding, etc., seem to be the
underlying cause. As we go further up to even steeper
along-river slopes, no scaling is present at all, at least not
in a significant range of scales, and further careful
analysis needs to be undertaken.

Our analysis objectively depicted two statistically
distinct regimes with transitions at around 14 km and also
28 to 35 km (see Fig. 14). An interesting question is
whether these statistically distinct regimes are the result of
physically distinct valley-forming processes. Another
interesting question is whether the documented statistical
structure of river corridor widths, which is seen as an
emergent property of the physical system, can be
faithfully reproduced by numerical models of landscape



Fig. 14. Hurst exponents for the right side (top) and left side (middle)RCW
series (at D0=5 m). Larger values of 〈H〉 indicate “smoother” signals.
Pointswith circles around them indicate reacheswith a significant deviation
from monoscaling (large c2 values (see Table 1). The bottom panel shows
the mean of the RCW series ±1 standard deviation for each of the five
segments. Note that the dramatic increase of the variance for the 28–35 km
segment comes from large-scale features (see Fig. 4) and not from very
abrupt high frequency (small scale) fluctuations, as this segment exhibits a
very smooth fractal structure (see the large 〈H〉 in top two panels).
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evolution at the hillslope scale (e.g., see Roering et al.,
1999). Both of these questions are the subject of future
investigations.
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