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Abstract The dynamics of river bed evolution are known

to be notoriously complex affected by near-bed turbulence,

the collective motion of clusters of particles of different

sizes, and the formation of bedforms and other large-scale

features. In this paper, we present the results of a study

aiming to quantify the inherent nonlinearity and com-

plexity in gravel bed dynamics. The data analyzed are bed

elevation fluctuations collected via submersible sonar

transducers at 0.1 Hz frequency in two different settings of

low and high discharge in a controlled laboratory experi-

ment. We employed surrogate series analysis and the

transportation distance metric in the phase-space to test for

nonlinearity and the finite size Lyapunov exponent (FSLE)

methodology to test for complexity. Our analysis docu-

ments linearity and underlying dynamics similar to that of

deterministic diffusion for bed elevations at low discharge

conditions. These dynamics transit to a pronounced non-

linearity and more complexity for high discharge, akin to

that of a multiplicative cascading process used to charac-

terize fully developed turbulence. Knowing the degree of

nonlinearity and complexity in the temporal dynamics of

bed elevation fluctuations can provide insight into model

formulation and also into the feedbacks between near-bed

turbulence, sediment transport and bedform development.

Keywords Nonlinearity � Complexity � Bedforms �
Finite size Lyapunov exponent (FSLE) � Diffusion

1 Introduction

The evolution of alluvial river beds is the result of a number

of often strongly nonlinear processes which give rise to the

extraordinary large variety of patterns observed in nature. In

gravel bed rivers, where the dominant form of sediment

transport is bedload, both field observations (Drake et al.

1988) and laboratory experiments (Kirkbride 1993; Nelson

et al. 1995) suggest that most of the transport occurs by the

collective motion of clusters of particles mobilized by tur-

bulent sweep events and outward interactions, while a

relatively smaller contribution is associated with bursts (see

also review of Best 1993). Clearly, the bed evolution is

likely to be strongly affected by the intermittent process

whereby coherent turbulent structures are randomly gen-

erated, grow and decay in the near-wall region.

Coherent structure dynamics, in turn, depend on the

range of scales characterizing a given bed topography, and

the flow variability at a given point contains both locally

derived flow structures and structures inherited from

upstream (Hardy et al. 2007). The bed evolution is further

complicated by the formation of either free bedforms (e.g.,

Gomez et al. 1989), arising as a result of the instability of a

cohesionless bed subject to a turbulent flow, or bedforms

forced by geometrical constraints (e.g., channel curvature)

(Seminara 1998). Finally, the heterogeneous character of

the sediment leads to patterns associated with a spatial and
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temporal rearrangement of the grain size distribution of the

sediments (Parker 1991) which are strongly related to the

different mobility of particles having different diameter

(Wilcock and McArdell 1993, 1997).

It then clearly appears that river bed evolution, even in

the simplest case of a flat bed configuration, is an extre-

mely complex phenomenon whose understanding needs the

use of refined theoretical, experimental and data analysis

techniques.

Several contributions have been so far devoted to the

study of the spatial properties of water-worked gravel bed

surfaces measured both in the laboratory and in the field

(e.g., see Nikora and Walsh 2004, and references therein).

In addition to conventional statistical parameters (i.e.,

standard deviation, skewness and kurtosis) of the bed ele-

vation spatial distribution, second-order and higher-order

structure functions have been proved particularly helpful

for exploring the statistical properties and potential multi-

scaling behavior of bed elevations fields (Aberle and

Nikora 2006). In a recent study, the multiscale statistical

structure of the temporal evolution of bed elevation fluc-

tuations at several locations on the evolving gravel bed

under steady-state conditions has also been analyzed and

the presence of a multiscaling behavior has been reported

(Singh et al. 2008).

In the present contribution, a different type of analysis

of temporal elevation series is performed aiming at

quantifying the nonlinearity and complexity in gravel bed

dynamics. It is noted that these dynamics are internally

generated by the system itself rather than by an external

stochastic forcing, since the discharge is kept constant and

the system is under steady state conditions. To the best of

our knowledge, the only other study that attempted a

similar analysis is that of Gomez and Phillips (1999) who

analyzed sediment transport rates (interestingly collected

from a controlled laboratory experiment conducted in the

same flume almost 20 years ago; see Hubbell et al. 1987).

The overall goal of that study was to identify determin-

istic sources of uncertainty, or unexplained variation, in

the time series of bedload transport rates by computing

how much of the observed variability (quantified in terms

of Kolmogorov entropy) was not explained by bedform

migration effects. The assumption was made that the

variability (entropy) due to bed migration would be fully

captured by a Hamamori probability distribution. It is

noted that the Hamamori distribution is derived from

sediment movement over a purely geometrical self-similar

bed morphology (Hamamori 1962) and does not account

for the natural variability in bedform shapes and sizes. It

is also restricted to sediment transport rates that are at

most four times the mean rate—not the case in most

observed series including the series analyzed in Gomez

and Phillips (1999).

The purpose of the present study is to revisit the problem

of quantifying the deterministic complexity in gravel bed

dynamics with an assumption-free methodology and using

more powerful techniques recently developed in the study

of nonlinear systems (e.g., Aurell et al. 1997). The adopted

methodologies have been proven to give a deep insight

in other complex geophysical processes such as fluid

turbulence (Aurell et al. 1996a; Boffetta et al. 2002),

atmospheric boundary layer dynamics (Basu et al. 2002)

and dispersive mixing in porous media (Kleinfelter et al.

2005), among others.

The paper is organized as follows. In Sect. 2 we briefly

describe the bed elevation data collected in two laboratory

experiments under low and high discharge conditions.

Section 3 introduces the mathematical methodology used

first to identify the presence or absence of inherent non-

linearity in time series and second the finite size Lyapunov

exponent (FSLE) methodology to quantify the complexity

and predictability of processes exhibiting many scales of

motion. In Sect. 4, results of the analysis of the temporal

sequences of bed elevation data series are presented.

Finally, Sect. 5 presents concluding remarks and sugges-

tions for future research.

2 Experimental data

The data examined in the present contribution were col-

lected during a series of experiments conducted in the Main

Channel facility at the St. Anthony Falls Laboratory,

University of Minnesota. The channel is 2.74-m wide and

has a maximum depth of 1.8 m. It is a partial-recirculating

flume in that it has the ability to recirculate the sediment

while the water flows through the flume without recircu-

lation. Water for the channel was drawn directly from the

Mississippi River, with a maximum discharge capacity of

8,000 l/s. The channel has a 55-m long test section and, in

the experiments reported here, a poorly sorted gravel bed

extended over the last 20 m of this test section. The gravel

used in these experiments had a broad particle size distri-

bution characterized by d50 = 11.3 mm, d16 = 4.27 mm

and d84 = 23.07 mm. More details on this experimental

setting can be found in Singh et al. (2008).

Measurements of bed elevation and sediment transport

were taken at a range of discharges corresponding to dif-

ferent bed shear stresses. Here we focus our attention on

the series of bed elevations collected under two different

discharges: a low discharge case, with a discharge of

4,300 l/s, corresponding to a dimensionless bed stress of

about twice the critical value (Shields stress = 0.085 using

median diameter) and a high discharge, 5,500 l/s, corre-

sponding to a Shields stress about five times the critical

value (Shields stress = 0.196). For both bed stress
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conditions, the flume was allowed to run long enough prior

to data collection such that a dynamic equilibrium was

achieved in transport and slope adjustment of the water

surface and bed. Determination of the dynamic equilibrium

state was made by checking that the 60-min average sed-

iment flux was stabilized to an almost constant value

during the flume run. The bed elevation was then recorded

over a span of approximately 20 h for each experiment, by

using submersible sonar transducers, with a frequency of

0.1 Hz and a vertical precision of *1 mm. Figure 1 dis-

plays the time series of bed elevations measured at a

location aligned with the main channel axis for both the

low (Fig. 1a) and the high (Fig. 1c) discharge conditions

over a period of 10 h during which the bed-elevation and

sediment flux series were stationary. The low bed stress run

(Fig. 1a) produced a nearly plane channel bed, with only

limited topographic variations, i.e. without obvious large

scale structures in the bed elevation (the standard deviation

in the bed is 10.06 mm, compared to the initial d50 grain

size of 11.3 mm). On the contrary, the higher stress run

(Fig. 1c) generated substantial bed variability at large scale

in the form of dunes, with intermediate to particle-scale

fluctuations superimposed on these larger-scale features. In

this study we focus on comparing these two runs in terms

of the complexity of the underlying forming processes

imprinted in the time series of bed elevation fluctuations.

The analysis methodologies we employed are briefly

described below.

3 Analysis methodologies

3.1 Test for nonlinearity

Nonlinearity is a necessary condition for deterministic chaos

and thus methodologies for testing whether a time series has

been generated by a linear or inherently nonlinear process

have gained considerable attention in the literature. By

inherent nonlinear process it is meant a process whose non-

linearity is not external, i.e., the result of a static nonlinear

transformation applied on an otherwise linear underlying

process, but it is weaved into its dynamics such as for

example in a series arising as a result of a multiplicative

cascade generator, a popular phenomenological model for

turbulence (e.g., Frisch 1995). Detection of nonlinearity is

not a trivial task and several methods are available, as for

example based on ‘‘reversibility’’, information-theoretic

approaches, singular value decomposition, and the use of

‘‘surrogates’’ (e.g., see a review in Basu and Foufoula-

Georgiou 2002 and references therein). Here we adopt a

surrogate-based methodology. Surrogate series maintain the

probability density function (pdf) and correlation structure

(and thus spectrum) of the original series but destroy any

inherent nonlinearity since the process of generating the

surrogates randomizes the phases in the Fourier space.

The method we used for surrogate series generation is

the iterative amplitude adjusted Fourier transform (IAAFT)

method of Schreiber and Schmitz (1996). This method is an

improvement of the earlier amplitude adjusted Fourier

transform (AAFT) method of Theiler et al. (1992), and

iteratively adjusts both the pdf and linear correlation

structure to minimize their deviation from the original

series. The reader is referred to the original publications for

details to supplement the brief exposition presented below.

The surrogate series {sn} is assumed to be generated by

a process of the form

sn ¼ SðynÞ; yn ¼
XM

i¼1

aiyn�1 þ
XN

i¼1

bign�1; ð1Þ

where S could be any invertible nonlinear function, {yn} is

the underlying linear process, {an} and {bn} are constants,

and {gn} is Gaussian white noise. The steps involved in the

generation of surrogate series are as follows:

1. Randomly shuffle the data points of the original series

xo
n

� �
to destroy any correlation or nonlinear relation-

ship, while keeping the pdf unchanged. The reshuffled

series is the starting point for the iteration s
ðoÞ
n

n o
:

2. Construct the discrete Fourier transform of the series at

the ith iteration s
ðiÞ
n

n o
; and adjust the amplitudes to

recreate the power spectrum of the original data. Keep the

phases unchanged. Perform inverse Fourier transform.
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Fig. 1 Bed elevation time series for a low discharge (4,300 l/s; bed

elevation mean is 27.38 mm and standard deviation 10.06 mm) and c
high discharge (5,500 l/s; bed elevation mean is 185.51 mm and

standard deviation 66.61 mm). Surrogate series for b low and d high

discharge. Notice that although it is difficult to distinguish any

difference between the original and the surrogate series, the surrogate

series in high discharge has linear underlying dynamics while the

original series is shown to be highly nonlinear (see Fig. 2)
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3. The pdf will no longer be correct. Transform the data

to the correct pdf by rank ordering and replacing each

value with the value in the original series xo
n

� �
with

the same rank. This will result in an updated series

s
ðiþ1Þ
n

n o
:

4. Repeat steps 2 and 3 until discrepancy in the power

spectrum is below a threshold, or the sequence stops

changing (reaches a fixed point). In this manner a

surrogate data series can be generated with an identical

pdf and optimally similar power spectrum to the

original series.

Figure 1b and 1d shows two realizations of the surrogate

series corresponding to the bed elevation series for low and

high flow discharge. It is noted that in both cases it is

difficult to distinguish visually any difference between the

original series and their surrogates (compare Fig. 1a to 1b

and 1c to 1d. It is reminded that the original and surrogate

series share the same pdf and correlation structure or

spectrum, but the surrogate series contain only linear cor-

relation). However, as it will be demonstrated later, our

methodologies depict important differences in the case of

high discharge, emphasizing the presence of inherent

nonlinearity in the bed forming process.

Once an ensemble of surrogate series is generated, a

probabilistic metric of the ‘‘distance’’ between each one

of those series to the original series xo
n

� �
and between

multiple realizations of the surrogate series snf g ¼
xi

n

� �
; i ¼ 1; . . .;Ns is formed. If the original series were

linear, these two distance metrics would overlap as one

would not be able to discriminate the original series from

members of the ensemble of surrogates; however, if they

do not overlap, nonlinearity in the original series can be

inferred with confidence.

Following Basu and Foufoula-Georgiou (2002), we use

the transportation distance functions doi ¼ dðxo
n; x

i
nÞ and

dij ¼ dðxi
n; x

j
nÞ; ði 6¼ jÞ to measure, respectively, the differ-

ence in the long term behavior between the original data set

and the ith surrogate data set and the mutual distances

between surrogates. The idea is to transform two given

scalar time series (x, y) in vector time series (X, Y) by

phase-space reconstruction using an embedding dimension

(e) and an integer delay (s), thus obtaining an e-dimen-

sional embedding spaceRe which captures the dynamics of

the x and y systems’ attractors (Moeckel and Murray 1997).

The details of determining embedding dimension and delay

can be found in Kennel et al. (1992), Hegger et al. (1999).

In practice, a box in the reconstructed phase space, Re;

containing both the X and Y vector time series is divided

into a finite number Bk, k = 1,…,b of sub boxes, each

characterized by the discretized probability measures pk

and qk defined as

pk ¼
Xb

l¼1

lkl; qk ¼
Xb

l¼1

lkl; l ¼ 1; . . .; b ð2Þ

where lkl C 0 defines the amount of ‘‘material’’

(information) shipped from box Bk to box Bl. These

constraints ensure that the initial and final probability

distributions are preserved and allow us to determine the

set M(p, q) [with p = (p1,…,pb) and q = (ql,…,qb)] of all

transportation plans. The transportation function is then

obtained by minimizing (e.g., through the network simplex

algorithm) the transportation cost

dðp; qÞ ¼ inf
l2Mðp;qÞ

Xb

k;l¼1

lkldkl ð3Þ

where dkl is the taxi cab metric (Moeckel and Murray 1997)

normalized to the embedding dimension between the cen-

tres of Bk and Bl. If the pdf of the transportation distances

doi between the original series and the surrogates is distinct

from the pdf of the mutual distances dij between the sur-

rogates, nonlinearity is inferred. Details of the

methodology and examples of its application to known

linear and nonlinear series, e.g., autoregressive series,

Lorenz series, stochastic Van der Pol oscillator series, and

the Santa Fe Institute competition series, can be found in

Basu and Foufoula-Georgiou (2002).

3.2 Quantification of complexity

It is well known that many natural systems, although

deterministic, are characterized by a limited degree of

predictability owing to the presence of deterministic chaos

which makes small errors in the initial conditions to grow

exponentially fast with time (e.g., Lorenz 1969). In the

traditional sense, predictability is assessed via computation

of the maximum Lyapunov exponent which dictates that

the predictability time is

Tp �
1

kmax

ln
D
d

ð4Þ

where kmax is the leading (or maximum) Lyapunov

exponent, measuring the average exponential rate of

separation of nearby trajectories, d is the size of the

initial (strictly infinitesimal) perturbation, and D is the (still

small) accepted error tolerance. The above formula holds

only for infinitesimal perturbations, and, by construction, it

cannot assess the predictability in systems with many

scales of variability, such as turbulence which possesses a

hierarchy of eddy turnover times. In those multiscale

systems the predictability time Tp is determined by the

nonlinear mechanism responsible for the error growth and

it is not captured by kmax which is governed by the

linearized equations of motion, given the assumption of
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small perturbations. To address these issues, Aurell et al.

(1996b) proposed a generalization of the maximum

Lyapunov exponent method. Specifically, they introduced

the quantity Tp(d, D) which is the time it takes for a finite

perturbation to grow from an initial size d (in general not

infinitesimal) to a tolerance level D. The so-called finite

size Lyapounov exponent (FSLE) k(d, D) is then the

average of some function of this predictability time, such

that if both d and D are infinitesimally small one would

recover the usual Lyapunov exponent:

kðd;DÞ ¼ 1

Tpðd;DÞ

� �
ln

D
d

� �
: ð5Þ

Various methodologies are available for computing

finite-size Lyapunov exponent (see Aurell et al. 1997). In

the present contribution we have adopted the method of

Boffetta et al. (1998).

4 Results and discussion

4.1 Nonlinearity

The results of nonlinearity tests carried out on the two time

series of bed elevations are reported in Fig. 2. For low

discharge conditions (Fig. 2a), the pdf of the transportation

distance between the original series and the surrogates

overlaps the one obtained by considering multiple real-

izations of the surrogates. On the other hand, Fig. 2b shows

that for the high discharge case the pdfs of the transpor-

tation distance between each surrogate series and the

original time series and between multiple realizations of

surrogates are completely different, suggesting that strong

nonlinearities are inherent in the processes which shaped

the bed morphodynamics. These nonlinearities are likely to

be connected to the irregular and unsteady large-scale

bedforms, mainly dunes, observed in this high flow

experiment, promoting the formation of patterns of sorting

and leading to a strong reworking of the sediment bed

(Klaassen 1990; Blom et al. 2003).

To shed light into the above findings, we proceed with the

following analysis guided by some recent findings in Singh

et al. (2008). We synthetically generated two series with

known underlying dynamics: a fractional Brownian motion

(fBm) series and a multiplicative cascade series. The fBm

series (with the Hurst exponent H = 0.5) is known to have

linear underlying dynamics, arising from the integration of

white noise. A multiplicative cascade series, on the other

hand, arises from a nonlinear (multiplicative) mechanism of

energy transfer from larger to smaller scales and thus pos-

sesses clearly nonlinear underlying dynamics. These latter

dynamics cannot be rendered linear by any external trans-

formation but rather are intrinsically embedded in all scales

of variability of the process. In this work, we generated

multiplicative cascade series using the random wavelet

cascade (RWC) model (e.g., Arneodo et al. 1997) parame-

terized by two coefficients: c1 and c2. These two parameters

dictate how the energy breaks down from larger to smaller

scales, i.e., they characterize the probability distribution of

the multiplicative weights of the cascade generator. Here we

set c1 = 0.7 and c2 = 0.1 on the basis of the results recently

obtained by Singh et al. (2008). This study employed a

wavelet-based multifractal formalism and reported that the

spectrum of scaling exponents of the same bed elevation

fluctuation series analyzed here is well described by a qua-

dratic model with c1 and c2 ranging in the intervals 0.53–0.76

and 0.06–0.14, respectively.

For visual comparison, Fig. 3 shows the fluctuations

(computed as first order differences) of the original bed

elevation series at low discharge (Fig 3a), the generated

fBm series with H = 0.5 and the same standard deviation

as the original series (Fig. 3b), the original bed elevation

series at high discharge (Fig. 3c) and the generated RWC

series (Fig. 3d) with c1 = 0.7 and c2 = 0.1 It is noted that

there is much more ‘‘clustering’’ in the bed elevation series

at high discharge than at low discharge which mathemati-

cally is depicted by the larger parameter c2 (0.1 at high

discharge vs. 0 at low discharge). More details of this

multifractal analysis and interpretation of the parameters c1

and c2 can be found in Singh et al. (2008).
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high discharge runs. Notice the

linear underlying dynamics in

the case of low discharge
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The nonlinearity test described in Sect. 3 was applied to

these two generated series. As was expected, the results of

the test shown in Fig. 4 correctly depict the inherent line-

arity of the fBm series and the strong nonlinearity of the

RWC series. Comparison of Figs. 2 and 4 gives more

confidence to conclude the presence of linear underlying

dynamics in gravel bed formation at low discharge condi-

tions which progressively evolve to strongly nonlinear

dynamics at high flow conditions (i.e., when the bed shear

stress is well above the critical value for incipient motion

of sediments). The complexity analysis to follow will shed

more light to those conclusions.

4.2 Complexity and predictability

As discussed before, bed elevation fluctuations are known

to exhibit multiple scales of variability (e.g., see Nikora

and Walsh 2004; Singh et al. 2008) and thus the FSLE

approach is a more appropriate methodology for quanti-

fying complexity, than is the standard maximum Lyapunov

exponent analysis.

The delay time and embedding dimension adopted in the

analysis of the bed elevation series for low and high dis-

charge were chosen to be d = 10 and e = 3 following the

mutual information and false nearest neighbor approaches,

respectively (see Kantz and Schreiber 1997), and these

algorithms were implemented using the TISEAN package

(Hegger et al. 1999). Figure 5a displays the Lyapunov

exponent for the two series as a function of the initial

perturbation size d = 1 mm, while Fig. 5b shows the

predictability time Tp (in seconds) for the same two series

as a function of the prescribed tolerance level D (D = rd,

where r is the so-called threshold factor and is assumed to

be as H2 in this work. (For more details about the threshold

factor see Aurell et al. 1997.)

The following observations are worthwhile. First, from

Fig. 5b it is observed that the high-discharge bed elevation

series is less predictable (more complex) than the series at

low-discharge. This is not surprising given the previous

results which inferred a pronounced inherent nonlinearity

in the high-discharge bed elevation series and simpler

linear dynamics for the case of low discharge. It is also

interesting to observe that for an initial error of d = 1 mm

(measurement precision) the predictability time associated

to a tolerance level of the order of the coarser sediment

grain size (�d84 = 23.07 mm) is of the order of 2 9 102

and 4 9 103 seconds for high and low flow condition here

examined, an information which can be used to assess the
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Fig. 3 Fluctuations (first order differences) of a measured bed

elevation series for low discharge (4,300 l/s), b generated fBm series

(H = 0.5), c measured bed elevation series for high discharge

(5,500 l/s), and d generated random wavelet cascade (RWC) series
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Fig. 4 a Probability density function (pdf) of the transportation

distances between the synthetically generated fractional Brownian

motion series (fBm) with H = 0.5 and the surrogates (broken lines)
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generated random wavelet cascade (RWC) series with c1 = 0.7 and
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Fig. 2 which displays the same analysis for the original bed elevation

series at low and high discharge conditions, respectively
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performance of mechanistic models of sediment transport.

Second, from Fig. 5a it is interesting to observe that for

larger d, the FSLE has a slope of -2.0, i.e., k(d) � d-2, a

behavior consistent with that of deterministic diffusion

(e.g., Aurell et al. 1997). To verify this assertion, we

generated a series of equal length to the bed elevation

series, using the 1D Lagrangian map

xnþ1 ¼ xn þ a sinð2pxnÞ ð6Þ

which is a well-known model for deterministic diffusion,

and performed the FSLE on this series. Figure 6 shows the

theoretically expected behavior of the size-dependent

Lyapunov exponent for this series, that is, k(d) � const for

small values of d, while k(d) � d-2 for larger values of d.

The similarity of this behavior to that of Fig. 5a for the

low-discharge bed elevation series is worth noting and calls

for further exploration.

It is encouraging that for the low-discharge series the

linearity inference (Fig. 2a), the similarity to a fBm with

H = 0.5 (compare Figs. 3a, 3b and 4a to 2a), and the

inference that the complexity of this series is similar to that

of deterministic diffusion (compare Figs. 5a, 6), are all

consistent with each other. It is also encouraging that for

the high-discharge elevation series, the presence of strong

nonlinearity (Fig. 2b), similar to that of a multiplicative

cascade series (Fig. 4b) and the higher complexity (lower

predictability) of this series (Fig. 5b), are consistent to each

other and also consistent with the multifractal analysis

results of this series in Singh et al. (2008). An interesting

result is that the predictability time seems to follow a

power law relationship with the tolerance level of predic-

tion in both low and high discharge conditions, that is

Tp�Db ð7Þ

where b is approximately 2 for low discharge and 1.25 for

high discharge (directly quantifying the lesser degree of

predictability of bed elevation series at high discharge). This

relationship can be of practical significance (sets the upper

limit of prediction) and should also be reproducible by

mechanistic models of sediment entrainment and transport.

5 Concluding remarks

The goal of this paper was to gain insight into the com-

plexity of the processes governing the temporal evolution

of gravel bed elevation by objectively analyzing data from

a controlled experimental setting. Specifically, we analyzed

bed elevation series under low and high discharge condi-

tions (i.e., with a bed shear stress slightly higher or

significantly higher than the critical value for incipient

sediment motion) to quantify the presence of inherent

Fig. 5 a Finite size Lyapunov exponent (FSLE) k(d) as a function of

perturbation d for bed elevation at low discharge (circle) and high

discharge (square). The line of slope -2 (deterministic diffusive

behavior) is also shown; b Predictability time Tp, based on FSLE, as a

function of prediction error tolerance D for bed elevation at low

discharge (circle) and high discharge (square). The initial perturba-

tion was specified to be d = 1 mm

10
-1

10
0

10
1

10-3

10-2

10-1

100

101

δ

λ(
δ)

Slope = -2

Fig. 6 FSLE for deterministic diffusion generated by the 1D

Lagrangian map xnþ1 ¼ xn þ a sinð2pxnÞ; with a = 0.8, correspond-

ing to a diffusion coefficient D = 0.18
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nonlinearity and the degree of complexity (the higher the

complexity the lesser the degree of predictability of the

series). We used the phase-space transportation distance

metric to quantify the presence of nonlinearity in the series

and the finite size Lyapounov exponent (FSLE) method-

ology to quantify complexity.

Overall, our results indicate that under higher discharge

conditions, the presence of bedforms and substantial bed

variability at all scales (from grain size to well-formed

dunes) leads to bed elevation series whose nonlinearity and

complexity are demonstrably more pronounced compared

to the bed elevation series under low discharge. For low

discharge conditions, in the substantial absence of bed-

forms, the bed elevation series was found statistically

indistinguishable from a series with linear underlying

dynamics and also exhibiting a behavior similar to that of

deterministic diffusion. Conversely, for high discharge

conditions, the temporal evolution of bed elevation was

clearly nonlinear and, in fact, it showed a behavior similar

to that of a multiplicative cascade process, which is

extensively used to model turbulent velocity fluctuations.

Given that bedforms are shaped by the near-bed turbulence

which is expected to posses nonlinear and multi-scale

structure for both low and high discharge, the differences

found in the nonlinearity and complexity of bed elevation

fluctuations in the two different discharges is interesting

and requires further study. They highlight the nontrivial

(and mostly unknown) two-way interactions between tur-

bulent flow, sediment transport and bedforms and call for

further experiments and analysis under a continuum of

discharges and turbulence regimes.

We consider this study as a first step towards a more

comprehensive study aimed to: (1) understand the complex

multiscale dynamics of bed elevation and the resulting

sediment transport series; (2) make inferences about the

inherent predictability, or expected upper limit to predic-

tion, by any mechanistic model of sediment transport; and

(3) parameterize this complexity in terms of macroscopic

flow and sediment properties (e.g., mean bed shear stress,

grain size distribution) to provide useful information for

physical model development.

Acknowledgments This research was supported by the National

Center for Earth-surface Dynamics (NCED), a Science and Technology

Center funded by NSF under agreement EAR-0120914. The support by

the Joseph T. and Rose S. Ling Professorship in Environmental

Engineering at the University of Minnesota is also gratefully

acknowledged. A series of experiments (known as StreamLab06) were

conducted at the St. Anthony Falls Laboratory as part of an NCED

program to examine physical-biological aspects of sediment transport

(http://www.nced.umn.edu). Computer resources were provided by the

Minnesota Supercomputing Institute, Digital Technology Center at the

University of Minnesota. The authors are grateful to David Olsen for his

assistance in the preparation of the manuscript.

References

Aberle J, Nikora V (2006) Statistical properties of armored gravel bed

surfaces. Water Resour Res 42:W11414. doi:10.1029/

2005WR004674

Arneodo A, Muzy JF, Roux SG (1997) Experimental analysis of self-

similarity and random cascade processes: application to fully

developed turbulence data. J Phys II 7:363–370

Aurell E, Boffetta G, Crisanti A, Paladin G, Vulpiani A (1996a)

Growth of noninfinitesimal perturbations in turbulence. Phys

Rev Lett 77:1262–1265

Aurell E, Boffetta G, Crisanti A, Paladin G, Vulpiani A (1996b)

Predictability in systems with many characteristic times: the case

of turbulence. Phys Rev E 53:2337–2349

Aurell E, Boffetta G, Crisanti A, Paladin G, Vulpiani A (1997)

Predictability in the large: an extension of the concept of

Lyapunov exponent. J Phys A Math Gen 30:1–26

Basu S, Foufoula-Georgiou E (2002) Detection of nonlinearity and

chaoticity in time series using the transportation distance

function. Phys Lett A 301:413–423

Basu S, Foufoula-Georgiou E, Porté-Agel F (2002) Predictabilty of
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