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Following the introduction of the Brownian motion model for sediment transport by Einstein, several
stochastic models have been explored in the literature motivated by the need to reproduce the observed
non-Gaussian probability density functions (PDFs) of the sediment transport rates observed in laboratory
experiments. Recent studies have presented evidence that PDFs of bed elevation and sediment transport rates
depend on time scale (sampling time), but this dependence is not accounted for in any previous stochastic
models. Here we propose an extension of Brownian motion, called fractional Laplace motion, as a model for
sediment transport which acknowledges the fact that the time over which the gravel particles are in motion is
in itself a random variable. We show that this model reproduces the multiscale statistics of sediment transport
rates as quantified via a large-scale laboratory experiment.
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I. INTRODUCTION

Stochastic theories of sediment transport were initiated
with the seminal work of Einstein [1], who introduced a
Brownian motion model for particle motion. Since then,
these theories were advanced by the need to reproduce the
observed statistics of sediment transport rates or particle
movement. In [2], a birth-death process was proposed for
sediment transport, which was later shown, in [3], to be in-
adequate as it failed to predict the heavy tails found in the
probability density functions (PDFs) of the number of mov-
ing particles in a given observation window. In [4], the birth-
death model was extended to a birth-death-immigration-
emigration model to reproduce the experimentally observed
negative binomial distributions for the number of moving
sediment particles. The stochastic nature of sediment particle
entrainment has been widely recognized and considerable ef-
forts have been invested in modeling this behavior [5-8].
The underlying assumption of these models is that the shear
stress, which is the initiator for sediment entrainment, fol-
lows a Gaussian distribution. However, many experimental
studies have shown that the shear stress fluctuations do not
follow a Gaussian distribution, and in particular it has been
shown that they follow a Gamma distribution (e.g., [9,10]).
The role of near-bed turbulence in sediment transport has
also been recognized to play an important role [11,12]. How-
ever, turbulence is well known to exhibit variability over a
range of scales, and it is reasonable to ask whether this mul-
tiscale variability shows its effect on sediment transport se-
ries and bed elevation fluctuations.

In a recent study [13], the dependence of the statistics of
sediment transport on time scale (sampling time) akin to the
scale-dependent statistics of fully developed turbulence [14]
was documented. Specifically, it was shown that the PDF of
sediment transport rates at small sampling times exhibits a
heavy-tailed distribution which however approaches a
Gaussian distribution as the sampling time increases. To the
best of our knowledge, no stochastic model of sediment
transport exists which reproduces this observed multiscale
statistical structure of sediment transport series. It is the
scope of this paper to present such a model and discuss its
mathematical properties and its physical relevance to model-
ing sediment transport.
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The paper is structured as follows. In the following sec-
tion a brief review of multiscale statistics of sediment trans-
port series observed in a large-scale laboratory experiment is
given. In Sec. III the application of a stochastic model, called
the fractional Laplace motion, is proposed to characterize the
sediment transport series and is shown that it is able to re-
produce the observed statistics. In Sec. IV the proposed
model is validated against the sediment transport series ob-
tained from a large-scale laboratory experiment. Finally, dis-
cussion and conclusions are given in Secs. V and VI.

II. MULTISCALE STATISTICS OF SEDIMENT
TRANSPORT SERIES

A large-scale laboratory experiment was recently con-
ducted in the Main Channel facility at the St. Anthony Falls
Laboratory, University of Minnesota, in order to study sedi-
ment transport dynamics in gravel and sand-bed rivers. The
details of the experimental facility can be found in
[13,15,16]. Here we briefly describe one of the experiments
from which data were used in this study. The flume is 2.74 m
wide and 55 m long, with a maximum depth of 1.8 m (see
Fig. 1). Gravel with a median particle size (D50) of 11.3 mm
was placed in a 20-m-long mobile-bed section of the 55-m-
long channel. A constant discharge of water at 4300 liters per
second was released into the flume. At the downstream end

FIG. 1. Experimental flume facility at the St. Anthony Falls
Laboratory, University of Minnesota.
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of the test section was located a bedload trap, consisting of
five weighing pans of equal size that spanned the width of
the channel. Any bedload sediment transported to the end of
the test section of the channel would fall into the pans, which
automatically recorded the weight of the accumulated sedi-
ment every 1.1 s. Data were collected over a period of 30 h
once a state of statistical equilibrium was reached (see
[13,16]). The original series of 1.1 s sampling interval were
converted to 2 min sediment accumulations via moving av-
eraging in order to remove mechanical (due to vibration)
noise present in the raw data (see [13,16]). Let us denote by
S(7) the 2 min sediment accumulation series which is shown
in Fig. 2. In this section, we present the multiscale analysis
performed on this sediment transport series.

The goal of a multiscale analysis is to quantify the manner
in which the statistics of the local fluctuations, or variability
in a series, changes with scale. In order to investigate the
multiscale structure of S(¢) over a range of scales, differences
(or increments) were computed at different scales (lags) r,
denoted by 85(z,r), as

oS(t,r)=S(t+rAr) - S(2), (1)

i.e., 8S(t,r) is the incremental sediment accumulation within
a time interval rAf, where Ar=2 mins. In [13], “generalized
fluctuations” were used defined via wavelet transforms (act-
ing as a differencing filter). Notice that while S(¢) can only
be positive, the fluctuation series 8S(r,r) will have zero
mean and can be both positive and negative. The estimates of
the gth-order statistical moments of the absolute values of
sediment transport increments at scale r, also called the par-
tition functions or structure functions, M(q,r) are defined as

G
M(q,r) = ]72 |88(t,7)

r=1

1 (2)

where N, is the number of data points of sediment transport
increments at a scale r. The statistical moments M(q,r) for
all g completely describe the shape of the PDFs as the scale
r changes. Statistical scaling, or scale invariance, requires
that M(q,r) is a power-law function of the scale, that is,

M(gq,r) ~ 9, 3)

where 7(g) is the so-called scaling exponent function. For a
scale-invariant series, it has been shown that the function
7(q) completely determines how the PDF of the variable
changes with scale (e.g., [17,18]). The simplest form of scal-
ing, known as simple scaling or monoscaling, is when the
scaling exponents are a linear function of the moment order,
i.e., when 7(g)=Hg. In this case, the shape of the PDF re-
mains the same over scales apart from a rescaling by a de-
terministic function which depends on the single parameter
H. If 7(q) is nonlinear, the shape of the PDF changes over
scales and more than one parameter is required to describe
this change (e.g., [17,18]). In this case, the series is called a
multifractal. For most processes the nonlinear relationship of
7(g) with g can be parameterized as a polynomial, and the
simplest form is a quadratic approximation,
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FIG. 2. Sediment transport series S(¢) (in kgs) at a sampling
interval of 2 min, i.e., series of 2 min sediment accumulation.

T(q)=clq—%q2. 4)

The multiscale analysis in this framework provides a com-
pact way, using two parameters c; and c¢,, of parametrizing
the change of the PDF over a range of scales. In parallel to
the statistical interpretation of these parameters, there is also
a geometrical interpretation. Specifically, the parameter c; is
a measure of the average “roughness” of the series and c,,
the so-called intermittency coefficient, is a measure of the
temporal heterogeneity of the abrupt local fluctuations in the
series [in fact, it relates to the variance of the so-called local
Holder exponent which measures the local degree of nondif-
ferentiability of the series (e.g., [18])]. It is noted that using a
higher than second degree polynomial approximation of
7(gq), say a third degree polynomial, introduces a third pa-
rameter c3, which is a measure of the third moment of the
local differentiability of the series and it might be hard to
accurately estimate from a limited sample size of data. Thus,
in most practical applications the approximation of 7(g)
curve is restricted to a quadratic function which is parameter-
ized by ¢; and c,. Estimation of the multifractal parameters,
¢y and c,, can be performed in various ways. For example,
one can use a quadratic fit to the whole 7(g) curve [estimated
for several values of g from the slopes of M(g,r) vs r in
log-log space] or use the first two scaling exponents only,
7(1) and 7(2), or use the cumulant analysis method (e.g., [18]
and references therein). In this study, we use the quadratic fit
to the 7(g) curve for the estimation of the parameters ¢, and
CH.

The multiscale analysis described above was performed
on the sediment transport series shown in Fig. 2. Figure 3(a)
shows the scaling of the moments of the sediment transport
increment series &S(¢,7) with scale r. It is to note that the
structure functions follow a power-law relation in r over a
range of scales from r=4 to 64 (8 to 128 min). The scaling
exponents of the structure functions M(q,r) are plotted as a
function of the order of moments g in Fig. 3(b) for ¢
=0.5,1,1.5,...,3. We observe that 7(g) has a nonlinear de-
pendence on ¢, which is an indication of the presence of
multifractality and the fact that the shape of the PDF changes
with scale. Figure 3(c) displays the PDFs of sediment trans-
port increments at two scales, r=10 and r=60 (i.e., 20 and
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120 min sediment accumulations, respectively). It is noted
that at smaller scales the PDF of the sediment increments
deviates from a Gaussian distribution and is close to a double
exponential. The PDF, eventually, becomes Gaussian at
larger scales. The PDFs reported in Fig. 3(c) are for scales
that fall within the scaling regime of the sediment data series
[see Fig. 3(a)]. The dependence of the statistics of the sedi-
ment transport rates on scale has also been documented in
field observations (see [19] and a discussion in [13]). As
discussed above, we estimated the parameters of multifrac-

tality by approximating the 7(g) curve in Fig. 3(b) as a qua-
dratic function in g and the estimates obtained together with
their 95% standard errors were ¢;=0.41%0.005 and c,
=0.04 =0.004. It is noted for comparison that the ¢, estimate
of velocity fluctuations in fully developed turbulence is of
the order of 0.03 [14]. We emphasize that no existing sto-
chastic model for sediment transport addresses the issue of
statistical scale dependence documented in experimental and
field observations. In the following section, we propose a
stochastic model for sediment transport which exhibits the
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observed change in PDFs of sediment transport increments
over scales, reproduces the multifractal behavior of the ex-
perimental data series, and provides the potential for relating
the observed macroscale statistics to the microscale dynam-
ics of sediment particle movement.

III. PROPOSED MODEL: FRACTIONAL LAPLACE
MOTION

A. Brownian motion

Brownian motion is widely recognized to be a special
case of a continuous time random walk (CTRW). In general,
CTRWs specify the particle location x; at a time ¢; by the
iterative discrete equations (e.g., [20,21]),

Xip1 =X+ 75, (5a)

lig =14+, (5b)

where (7;, 7;) is a set of random numbers drawn from a PDF
W (7, 7). One can recast the above equations in the following
form:

=2, (6a)

X(f) = 2 i (6b)
i=1

where t € [t,,1,,,). The CTRW is said to be decoupled when
the random variables 7; and 7; are mutually independent.
Brownian motion is a special case of a decoupled CTRW
where 7; are independent identically distributed (i. i. d) ran-
dom variables drawn from a Gaussian distribution and 7; are
i. i. d random variables sampled from an exponential distri-
bution. It is to note that the increments of Brownian motion
follow a Gaussian distribution. However, the increments of
most natural phenomena often show deviation from Gaussian
PDFs and this has prompted the introduction of other sto-
chastic processes such as Lévy walks and continuous-time
Lévy flights, where the random variables 7; and/or 7; are
sampled from heavy-tailed PDFs. However, such processes
do not have all of their statistical moments convergent. For
example, Lévy walks and Lévy flights do not have conver-
gent second moments [22]. It is also noted that modeling real
data with such processes typically requires an exponential
truncation of the algebraic decays [23] or sometimes even
milder than algebraic decay [24]. Correlation and long-range
dependence in the observed data can be modeled by relaxing
the independence assumption in sampling 7, and/or 7; or by
relaxing the independence assumption of a decoupled
CTRW. Fractional Brownian motion, denoted by By(?), is a
decoupled CTRW starting at zero and has the following cor-
relation function:

1
E[By(t)By(s)] = 5(|t|2H+ |s|*H — |t - s|*), (7)

where E(.) denotes the expectation operator and H is a pa-
rameter of fractional Brownian motion called the Hurst ex-
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ponent. For H=0.5, the fractional Brownian motion reduces
to the standard Brownian motion with independent incre-
ments. For other values of 0 <<H <1, By(t) is called the frac-
tional Brownian motion and its increments are positively cor-
related for H>0.5 and negatively correlated for H<<0.5.
An extension of Brownian motion, or fractional Brownian
motion, can be obtained via subordination. The notion of
subordination was originated by Bochner [25]. One can ob-
tain a subordinated stochastic process Y(¢)=X[T(z)] by ran-
domizing the clock time of a stochastic process X() using a
new time 7,=T(¢). The resulting process Y(z) is said to be
subordinated to the so-called parent process X(t.), and t, is
commonly referred to as the operational time [26]. We pro-
pose the application of subordination of fractional Brownian
motion (called fractional Laplace motion) as an extension to
the Brownian motion model proposed by Einstein for sedi-
ment transport [2]. In the following subsection, we describe
the properties of subordinated fractional Brownian motion.

B. Fractional Laplace motion

Fractional Laplace motion is a subordinated stochastic
process, whose parent process is fractional Brownian motion
and the operational time is a Gamma process [27],

L(r) = By(I')), (8)

where By(1) is fractional Brownian motion with Hurst expo-
nent 0<H <1 and I'; represents a Gamma process for any
t=0. The increments of the Gamma process (I',,,—I",) have
a gamma distribution with shape parameter v=s and scale
parameter =1, i.e.,

fx) = xle, )

B'T(v)
For H=0.5 the subordinated process L(r)=By(I’,) is called
the Laplace motion.

Increments of the fractional Laplace motion defined by
Y(¢,r)=L(t+r)-L(z), called the fractional Laplace noise,
form a stationary process. Fractional Laplace noise has three
parameters, namely, the Hurst exponent of the parent process
H, the variance of the parent process By(r) at the smallest
scale =1, i.e., 0>=Var[By(1)], and the shape parameter of
the Gamma process (I',), v. The variance of the fractional
Laplace noise can be expressed as a function of the scale r
and its parameters as [27]

I'2H +rlv)
Var[Y(t,r)] = > ——— . 10
(Y (t,r)] T(7v) (10)
The covariance function of the fractional Laplace noise at a
given scale r, defined as p(n)=E[Y(z,r)Y(r+n,r)], can be
expressed in terms of its parameters for any n=1 as

_f IM2H +(n+ Dr/v] T[2H+ (n-1)r/v]
P =21 " Tl s o] (- D)r/v]
I'(2H + nr/v)
[C(nriv)] } (n)

Fractional Laplace noise is positively correlated for H>0.5
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and is negatively correlated for H<<0.5. In particular, frac-
tional Laplace noise exhibits long-range dependence for H
>0.5.

The fundamental difference between fractional Laplace
motion and other similar stochastic processes such as frac-
tional Brownian motion and Lévy motion is that in the latter
two cases the PDFs of the increments remain Gaussian and
Lévy stable, respectively, at all scales. In fractional Laplace
motion, the PDFs of the increments are variable with scale
with Laplace PDFs at small scales and as the scale increases
the PDFs approach Gaussian. In particular, fractional
Laplace motion deviates from the classical self-similarity
and shows stochastic self-similarity [27]. The Laplace PDF
emerges from a different and less well-known central limit
theorem called the geometric central limit theorem, which
states that the sum of a random number of independent iden-
tically distributed variates with finite variance is asymptoti-
cally Laplace if the random count is geometrically distrib-
uted [28]. In fact, the Laplace PDF can be considered as a
Gaussian PDF with a random variance or spread [29]. Given
the stochastic self-similarity extensively documented in sedi-
ment transport series (in [13] and also in Sec. II of this pa-
per), the subordination of the fractional Brownian motion
model proposed herein offers an attractive and simple exten-
sion to Brownian motion for particle movement, as demon-
strated in more detail in the next section.

IV. FRACTIONAL LAPLACE MOTION MODEL FOR
SEDIMENT TRANSPORT

The physical relevance of the fractional Laplace motion to
model sediment transport is argued on the basis that the no-
tion of operational time acknowledges the randomness in the
entrainment time experienced by sediment particles which
are subject to a varied range of velocities in turbulent flows.
It is known that turbulent velocity fluctuations themselves
exhibit intermittency and possess a multifractal behavior
(e.g., [14]). Turbulent velocity “sweeps” and “bursts” are
expected to influence particle motion and introduce a multi-
scale variability in the fluctuations of the resulting sediment
transport series. In groundwater hydrology, the notion of op-
erational time has been used to acknowledge the fact that
time passes faster for particles in higher velocity zones
[30,31]. Along these lines, a subordinated Brownian motion
model has been proposed to model hydraulic conductivity
[28] and connections between turbulent velocities and het-
erogeneous sediment properties have been proposed [32].

In the following subsections we study the multiscale prop-
erties of fractional Laplace motion and show that fractional
Laplace motion reproduces the intricate stochastic structure
shown by the sediment transport series. Further, we elaborate
on the model parameter fitting to the sediment transport se-
ries.

A. Multifractal properties of fractional Laplace motion

In order to study the self-similar behavior of fractional
Laplace motion, we first study the analytical behavior of the
structure functions of fractional Laplace motion. The struc-
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FIG. 4. (a) Structure functions of fractional Laplace motion for
a set of chosen parameters H=0.4, v=3.0, and o=1 computed from
Eq. (12). The vertical lines correspond to the scaling regime of the
sediment transport series which is from scales of r=4 to r=64. (b)
Estimated 7(g) curve (solid points) from the fitted slopes of the
structure functions. The solid line indicates a quadratic fit and the
nonlinear dependence of 7(g) on ¢ establishes that fractional
Laplace motion shows a multifractal behavior in the scales under
consideration. (c) Change of PDF of increments of simulated frac-
tional Laplace motion series. Solid dots correspond to PDF of in-
crements at r=10 and + to r=60. Solid line indicates a Gaussian
PDF.

ture functions of fractional Laplace motion for =1 can be
written in terms of its parameters H and v as [27]

29 (1+q\I'(Hg+r/v)
M(q’r)_\/zr< 2 ) I'(riv) (12)

Statistical scaling or self-similar behavior requires that the
structure functions follow a power-law relationship in scales.
Figure 4(a) shows the structure-function dependence on
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scales in log-log space for an arbitrary choice of the param-
eter values, H=0.4 and v=3.0. (These values of H and v are
used for illustration of the model properties and the estima-
tion of these parameters is discussed more thoroughly in the
next subsection). It is to note that from Fig. 4(a) that al-
though Eq. (12) does not analytically accept a power-law
expression on r, for all practical purposes, fractional Laplace
motion can be approximated by a self-similar process, i.e.,
the structure functions show a power-law relationship in
scales at least for the range of scales which coincide with the
scaling regime of sediment transport series (scales or lags of
r=4 to r=64). Plotting the 7(g) curve [estimated from the
slopes of M(q,r) vs r in log-log space within the above
scaling regime] one can see that the scaling exponents, 7(q),
show a nonlinear dependence on the order of moments ¢ [see
Fig. 4(b)]. Tt is to note that the scaling exponents 7(q) are
independent of the variance of the parent process o”. The
change in PDF of the increments of fractional Laplace mo-
tion with scale is shown in Fig. 4(c), where the PDF at small
scales [r=10 in Fig. 4(a)] shows a double-exponential behav-
ior and it eventually tends to a Gaussian distribution for large
scales [r=60 in Fig. 4(a)]. The above results document that
fractional Laplace motion can be approximated by a stochas-
tic self-similar process in an intermediate range of scales and
within those scales it exhibits a multifractal behavior. At the
limit of very large time scales, i.e., as r—oo, fractional
Laplace motion tends to a fractional Brownian motion with
7(q) a linear function of ¢ (i.e., monofractal behavior).

It is interesting to note from Eq. (12) that the second-
order structure function of Laplace motion (H=0.5 and ¢
=2) obeys a power-law relationship in scales and in particu-
lar it shows a linear dependence on scales

M(2,r)=[%l—‘(l.5):|r, (13)
v
yielding an exponent of 7(2)=1. This implies that Laplace
motion has self-similar second-order moments, i.e., it shows
a log-log linear power spectrum (although higher order mo-
ments are not exact power laws). In the next subsection we
elaborate on the parameter estimation of the fractional
Laplace motion from the sediment transport series.

B. Model fitting

As seen in the previous section, fractional Laplace motion
has three parameters H, v and o. The scale parameter of the
operational time PDF, 3, is 1 by the definition of fractional
Laplace motion [27]. Estimation of the parameters H and v
from the sediment transport series is performed by minimiz-
ing the mean squared error between the empirical and theo-
retical 7(g) curves. The mean squared error, denoted by
MSE, is a function of H and v and is independent of o,

MSE(H,v) = 2 [7,(q) - 7q) ] (14)
q

where 7(g) are the estimated scaling exponents of the sedi-
ment transport series [see Fig. 3(b)] and 7,,(¢) are the scaling
exponents of the fractional Laplace motion model which are
computed from the slopes of the theoretical M(q,r) versus r
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within the scaling regime of the sediment transport series
(4<r<64) in the log-log space [see Fig. 4(b)]. Minimiza-
tion of the mean squared error for the sediment transport
series yields a Hurst exponent of H=0.39 and a shape pa-
rameter of ¥=6.8. It is to note that the multiscale structure of
fractional Laplace motion model is determined by the param-
eters H and v. Further, we estimate the parameter o by mini-
mizing the mean squared error between the variance of the
increments of sediment transport series and the fractional
Laplace noise for H=0.39 and v=6.8 over the scaling regime
(4<r<o64),

r=64
o=Min 2, {Var[85(t,r)] - Var[ Y(1,r) ]}, (15)

r=4

where Var[ 8S(¢,7)] is the variance of the increments of sedi-
ment transport series and Var[ Y(z,r)] is the variance of frac-
tional Laplace noise at the scale r, given by Eq. (10). The
value of o estimated using Eq. (15) was 0=0.296. The mul-
tifractal parameters of the fractional Laplace motion model
computed with the estimated parameters of H=0.39 and v
=6.8 were ¢;=0.41 and ¢,=0.041, which compare very well
to the values estimated from the sediment transport data of
¢;=0.41 and ¢,=0.04. [Note that ¢; and ¢, were not used
directly in the model fitting which was done via Eq. (14) on
the whole 7(g) curve]. As a result the model and the data-
estimated 7(q) curves are indistinguishable. Figure 5(a)
shows the increments of sediment transport series at a scale
of r=20 or 40 min (note that this scale lies within the scaling
regime of the sediment transport series). For visual compari-
son, the fractional Laplace noise simulated series with the
estimated parameters H=0.39, v=6.8, and ¢=0.296 at the
same scale is shown in Fig. 5(b).

As noted in the previous section, fractional Laplace noise
is negatively correlated for H<<0.5. Figure 6(a) shows the
autocorrelation function of the increments of sediment trans-
port series at the scale r=20 (40 min). The data show a
negative correlation in the scaling regime of the sediment
transport series for small lags. This is qualitatively consistent
with the fractional Laplace noise model which shows a nega-
tive correlation for the estimated parameter values [see Fig.
6(b)]. The increments of fractional Laplace motion at small
scales follow a Laplace PDF which eventually becomes
Gaussian at larger scales. Figure 7(a) shows the PDF of sedi-
ment transport increments at a scale of r=4 which is the
beginning of the scaling regime of the sediment transport
series. A Laplace PDF provides a good fit to the increments
at that scale. As noted in Fig. 7(b), the PDF of sediment
transport increments at a scale of r=64 (128 min) tends to a
Gaussian PDF. Thus, one can see that the sediment transport
series are consistent with the properties of fractional Laplace
motion within the scaling regime.

V. DISCUSSION

In the previous section we established the fact that the
fractional Laplace motion model is able to reproduce the
intricate stochastic structure of the observed sediment trans-
port series over a range of scales and also reproduce the
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FIG. 5. (a) Comparison of the increments of the sediment trans-
port series in kgs at scale r=20 (40 min) and (b) the same scale
increments of simulated fractional Laplace motion series with H
=0.39, v=6.8, and 0=0.3. The values of H and v were obtained by
minimizing the mean squared error defined in Eq. (14). The value of
o was obtained using Eq. (15). The scale of r=20 was chosen for
comparison as it lies within the scaling regime of the sediment
transport series.

change of the PDFs of increments of sediment transport se-
ries in the scaling regime. In this section, we discuss the
physical significance of the notion of operational time in
sediment transport series. Near-bed turbulence is known to
play an important role in sediment transport [12]. Turbulent
velocity fluctuations pick up sediment particles and transport
them over long distances. However, since the turbulent ve-
locities themselves are known to exhibit variability over a
large range of scales, the entrainment time experienced by
the sediment particles is also expected to carry some of this
variability. This consideration leads to a randomization of
time over which a sediment particle is operated upon, as
sediment particles in different velocity zones experience time
to move faster or slower depending on whether they are in a
high- or low-velocity zone, respectively. Thus, the notion of
operational time can arise due to the stochastic nature of
sediment particle entrainment. It is interesting to note that
the turbulent velocity fluctuations themselves exhibit
Laplace and stretched Laplace distributions at small scales
and their PDFs become Gaussian at larger scales [33]. It is
also interesting to note that the rate of sediment particle en-
trainments, which are proportional to the shear stress fluctua-
tions at the bed, have been reported to follow a Gamma
distribution [9]. Both these observations are qualitatively
consistent with the fractional Laplace motion model for sedi-
ment transport proposed in this paper.

The observed multiscaling and intermittency in sediment
transport series (macroscale behavior) was shown to arise by
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FIG. 6. (a) The autocorrelation function of the increments of
sediment transport series at a scale of r=20 (40 min). The dashed
lines indicate the 95% confidence intervals (approximated as
+1.96/ y‘“N, N=30 293 points) on the autocorrelation coefficients.
(b) The autocorrelation function of generated fractional Laplace
noise series at the same scale with parameters H=0.39 and v=6.8
fitted to the data. The autocorrelation of the fractional Laplace noise
is computed from Egs. (10) and (11).

the introduction of the notion of operational time in
Brownian-type particle movement (microscale behavior).
Thus, while the model parameters H and v relate to the (un-
observed) particle movement statistics, they are estimated
from the (observed) sediment transport statistics, and specifi-
cally from their multiscale behavior concisely parameterized
via the parameters c¢; and ¢,. It is of interest to study how the
parameter space of (H, v) relates to that of (¢;,c,) in order to
gain insight on model sensitivity and the physical meaning of
the parameter v which characterizes the variability of the
particle motion. We compute the multifractal parameters c;
and ¢, for different values of the model parameters H and v
by evaluating M(q,r) from Eq. (12), estimating 7(¢g) in the
range 4 =<r=64, and approximating the 7(¢g) curve as a qua-
dratic function in g [Eq. (4)]. Figure 8 shows the contour
plots of ¢, and ¢, for different values of H and v. It is to note
that the average “roughness” of the sediment series, quanti-
fied by the parameter c, is strongly dependent on the Hurst
exponent of the fractional Brownian motion H [see Fig. 8(a)]
and not as much on the parameter v of the operational time.
On the other hand, from Fig. 8(b), one can see that the inter-
mittency coefficient ¢, is strongly dependent on the shape
parameter v of the distribution of operational time for a
given value of H. In particular, for a given value of H, the
value of ¢, is higher for a higher value of v. One way to
understand this is to note that for higher values of v the
Gamma distribution has a higher variance. Thus, for higher
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FIG. 7. Change in PDF of sediment transport increments in the
scaling regime. (a) Laplace PDF (solid line) provides a good fit to
the PDF of sediment transport increments at r=4 (8 min; beginning
of the scaling regime) and (b) the PDF of sediment transport incre-
ments becomes Gaussian (solid line) at r=64 (128 min; ending of
the scaling regime).

values of v the operational time is sampled from a distribu-
tion with higher variance and this variability in the opera-
tional time shows up as a higher intermittency coefficient in
the sediment transport series (larger degree of temporal het-
erogeneity in bursts of sediment transport increments). It is
emphasized that estimation of the parameter values of the
fractional Laplace motion, H and v, was performed through
the scaling exponents of the structure functions of the sedi-
ment transport series [Eq. (14)]. Direct estimation of the pa-
rameters H and v, or for that matter direct assessment of the
whole statistical structure of operational time from observa-
tions, would require access to series of particle entrainment
which are difficult to make and are not available in the ex-
perimental setting studied here. Rather, the present study at-
tempted a physical insight via relating the macroscale statis-

tics of the sediment series to the microscale dynamics of
particle movement.

VI. CONCLUDING REMARKS

In this work we proposed the adaptation of fractional
Laplace motion as a stochastic model for sediment transport.
Fractional Laplace motion arises from randomization of the
clock time in fractional Brownian motion, and introduces the
notion of operational time. The physical significance of op-
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FIG. 8. Contour plots of the multifractal parameters, (a) ¢; and
(b) ¢y, for different values of the fractional Laplace motion model
parameters H and v.

erational time in the context of sediment transport was rea-
soned on the basis that the stochastic nature of turbulent
velocity fluctuations near the bed induces stochasticity in
particle entrainment and, therefore, the time over which par-
ticles are in motion. The proposed model was shown able to
reproduce the multiscale statistics of sediment transport se-
ries and was validated against a data set from a large-scale
laboratory experiment. The effect of the model parameters on
the multifractal parameters of sediment transport series was
also discussed. Although direct estimation of the model pa-
rameters would require particle-scale observations, it was
shown here that an indirect estimation based on the statistics
of sediment transport series is possible. We see this work as
a step toward relating the microscale dynamics of particle
movement to the macroscale statistics of sediment transport
via minimum complexity stochastic models.
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