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ABSTRACT

In many geomorphic transport systems, the time and length scales of motion vary widely:
particles can be trapped for both short and long periods of time and they can travel large
or small distances in very short intervals of time. To model such systems we need fresh
conceptual and mathematical formalisms. The goal of this collection of papers is to
challenge existing thinking in geomorphic transport by putting forward new ideas and
theories for environmental fluxes, from particle transport in a single stream, to landslide
debris mobilization, sediment and water transport on hillslopes, dynamic transport on
river networks, and interpretation of sedimentary deposits over geologic time. Advanced
stochastic theories of transport are proposed, the notion of non-local flux is introduced,
and fractional advection-diffusion equations are explored as possible models of

geomorphic transport.



1. INTRODUCTION

In November, 2007 a working group meeting entitled Stochastic Transport and Emergent
Scaling on the Earth’s Surface (STRESS) was convened in Lake Tahoe, Nevada. Its
scope was to bring together geomorphologists, hydrologists, mathematicians, and
physicists with the goal of rethinking the mathematical treatment of transport processes
on the Earth’s surface. The specific questions asked were: (1) How can we reconcile
observed patterns and organization (from sand dunes, to landslides, sedimentary deposits,
hillslope profiles, and sediment transport in rivers) with theories and dynamical models
that can reproduce these patterns? (2) Are geomorphic transport laws based on the notion
of a locally derived flux limited in some fundamental sense, and is the notion of a non-
local flux (flux determined by conditions at some distance from the point of interest) a
physically viable alternative? (3) How can we relate micro- and macro-scale dynamics in
stochastic transport theories and in predictive models?

The papers in this special issue provide some insight into these questions. They stretch
the envelope of geomorphic modeling by introducing new mathematical theories and
models of transport, providing new explanations of old data, and posing alternative
hypotheses to explain process from form. They also open new questions for future

research.

2. CHALLENGING OLD THEORIES: THE NOTION OF NON-LOCALITY

Current geomorphic transport laws for landscape evolution are formulated as partial
differential equations framed around approximations of the physics of advection and
diffusion/dispersion: in particular, assumptions are made that facilitate the integration of
processes from micro-scales in time and space to geomorphic model scales. Such
assumptions are inconsistent with transport processes in which significant contributions

to the total flux come from events across a broad span of magnitude and frequency.



For example, the advection-dispersion equation (ADE) is based on the classical definition
of divergence of a vector field. The classical notion of divergence maintains that as an
arbitrary control volume shrinks, the ratio of total surface flux to volume must converge
to a single value. However, if a considerable fraction of the total sediment flux during
the period of observation arises from a flux of particles from far upstream, then the
classical divergence theorem fails. Instead, a divergence associated with a finite volume,
and defined as the ratio of total flux to volume, is more appropriate. However, by
increasing the arbitrary volume a greater heterogeneity in the medium properties and in
the physical processes contributing to transport is sampled, and the degree of resulting
variability is bound to depend on scale. Thus, the ratio of total flux to volume does not
remain constant but varies with the size of the volume. As a result, the classical diffusion
equation is no longer self-contained with a closed-form solution at all scales. Within the
limits of classical theory, the best that can be done is to assume that the total flux to
volume ratio is constant within small ranges of scales, allowing one to talk about an
“effective” scale-dependent dispersion coefficient. Another approach is to depart

altogether from the classical theory.

Recently, the physics of advection and dispersion has evolved beyond describing
classical phenomena to include materials that exhibit variability from large to very small
scales, power-law velocity distributions, chaotic dynamics, and slow reactive transport
(e.g., see the review paper of Schumer et al. [2009], this issue). Fractional calculus
treatments of advection and diffusion/dispersion capture non-classical behavior in a
simple and elegant form. For example, changing the second derivative in the diffusion
equation to a fractional derivative of order less than two yields a model for
superdiffusion, in which particles spread faster than the classical diffusion equation
predicts. Changing the first order time derivative in that same equation to a fractional
derivative of order less than one models subdiffusion. Superdiffusive models are
connected with power-law particle jump lengths; subdiffusive models emerge from

power-law waiting times between jumps.



Several techniques have been proposed in the subsurface transport literature to tackle the
problem of scale-dependent dispersivity which arises for similar reasons, namely, the
presence of inhomogeneities at all scales and the wide range of length and time scales of
motion [see discussion and references in Schumer et al, 2009, this issue] . The treatment
of surface transport faces similar challenges, i.e., time and scale-dependent flux statistics,
presence of heterogeneities at all scales, scale-invariance and power-law spectra of
landscapes (in analogy with fractal porous media in the subsurface), and yet geomorphic
flux laws that can accommodate such behavior are not available. The contributions in

this issue are a step in this direction.

3. NEW THEORIES AND NEW PERSPECTIVES

The contributions in this volume can be broadly classified as addressing the following
three geomorphic transport problems: (a) bedload transport in rivers (Ganti et al.,
Bradley et al., Ancey, McElroy et al., and Hill et al.); (b) transport on hillslopes
(Foufoula-Georgiou et al., Tucker and Bradley, Furbish et al, a,b, Harman et al., and
Stark & Guzzetti); and (c) transport in erosional-depositional systems and river networks
(Voller and Paola, Zaliapin et al., and Schumer and Jerolmack). A summary of these

developments is presented below.

3.1. Bedload transport in rivers

Despite considerable research over the past several decades, the problem of accurate
estimation of bedload sediment transport in rivers remains unsolved. One of the main
challenges lies in the fact that the motions of individual particles happen at random,
rendering the process of transport a stochastic process. Along these lines, contributions
in this issue relate to the development of new stochastic discrete or continuous
formulations of transport that can explicitly account for stochastic behaviors such as large

variations in particle displacement and long times spent in immobile phase.



Ganti et al. reconsider the problem of tracer dispersal in rivers and argue that long
leading tails in tracer concentration are to be expected in certain cases where the step
length distribution of particle movements is heavy tailed [see also Stark et al, 2009].
Starting with an active layer formulation of the probabilistic Exner equation they show
that the continuum equation describing the tracer concentration in this case takes the form
of a fractional advection-dispersion equation. By identifying the probabilistic Exner
equation as a forward Kolmogorov equation, they also propose a stochastic model
describing the evolution of tracer concentration and show that the classical (normal) and
fractional (anomalous) advection-diffusion equations arise as long-time asymptotic
solutions of this stochastic model. More data are needed to fully verify such a model

based on particle-scale and macro-scale statistics.

Bradley et al. revisit a 50-year old tracer experiment in which the tracer plume exhibits
behavior not possible to be explained with classical transport models, namely,
anomalously high fraction of tracers in the downstream tail of the distribution, a decrease
of detected tracer mass over time and enhanced particle retention near the source. They
propose a fractional advection-dispersion equation and a two-phase transport model
(which partitions mass into detectable mobile and undetectable immobile phases) and

show an impressive agreement with observations.

McElroy et al. note that the movement of bed material associated with bed deformation is
not accounted for in standard methods of calculating sediment flux and propose a
framework for calculating that portion of the flux in sandy bed rivers (which they term
deformation flux). They note differences between laboratory and real river systems in the
statistics of the bed deformation rates and define normalized metrics for comparing
systems of different size. They also note the time-dependence (power-law scaling) of the
deformation flux in sand-bed rivers, not explainable by classical theories of advection-
dispersion, motivating the exploration of fractional dispersion models that can explain

such scaling behavior.



Ancey examines the influence of randomness in bed sediment flux on the initial genesis
of bedforms, and shows how strong fluctuations in flux can arise even in the absence of
heavy-tailed probability distributions of stream-bed sediment exchange. A Markovian,
birth-death process model of sediment entrainment is developed and cast into a stochastic
form of the Exner equation. In the large number limit, he shows that the model admits a
Fokker-Planck representation, simplifying subsequent analysis. Derivations of the
stochastically varying number of particles in motion and of the coupled bed height are
provided, allowing prediction of the scaling of the variance of model bed topography

with time.

Hill et al. consider the problem of modeling bedload transport in gravel bed rivers which
exhibit a broad range of particle sizes. Based on a series of carefully controlled flume
experiments, they document an exponential distribution of the travel time of entrained
particles of a given size, with the parameter of the distribution (mean travel distance)
depending on both particle size and shear stress. In real settings, the convolution of the
distributions of travel distances and particle sizes is shown to yield a power law
distribution, which requires re-consideration of standard diffusion models and
introduction of superdiffusive models of transport.

3.2. Transport on hillslopes

Sediment transport on hillslopes forms an area of active research both theoretical and
experimental. Typical models available to date include standard diffusive models which
consider a linear or nonlinear formulation of flux based on local slope or other local
attributes such as soil depth. The contributions in this issue address some important
elements of hillslope transport related to stochasticity in the diffusion coefficient to
incorporate rain splash effects or dependence on soil thickness, extension to a non-local
flux formulation (in a discrete or continuous framework) to incorporate large scales of
particle motion, reformulation of the kinematic wave equation for hillslope subsurface

transport, and a stochastic theory for landslide-driven erosion.



Stark and Guzetti present a physically-based stochastic theory for landslide-driven
erosion. The proposed model describes a simplified process of rupture propagation, slope
failure and debris mobilization, and it reproduces the probability distributions observed
for landslide source areas and volumes, including their power-law tail scaling. The peak
(rollover) and tail scaling of the distributions are explained in terms of the relative
importance of cohesion over friction in setting slope stability, allowing thus for a physical
interpretation. Numerical experiments validate the analytical results and document the
sensitivity of the model to parameterization. The interplay of river incision and hillslope
steepening in adjusting the landslide magnitude-frequency is interpreted in physical and
statistical terms.

Furbish et al. [2009a] revisit the problem of soil grain transport by rain splash and
formulate it as a stochastic advection-dispersion process. One of their innovations rests
on the explicit separation of the grain activity probability (determined by the rain storm
intensity and soil properties at weather time scales) from the physics of the grain motions.
They perform rain-splash experiments to confirm that gradients in raindrop intensity are
as important as gradients in grain concentration and surface slope in affecting overall
transport. Their result points to the importance of the ecological behavior of desert
shrubs as “resource islands” (temporary storage zones of soil derived from areas
surrounding the shrubs) and the implication that this behavior can have for land-surface
evolution modeling. The proposed formulation provides a general framework for
transport and dispersal of any soil material moveable by rainsplash, including nutrients,
seeds and soil-borne pathogens.

Furbish et al [2009b] probe the physical justification of the linear slope-dependent
transport formulation. Balancing the particle fluxes that tend to loft a soil with the
gravitationally driven particle settling, they show how a slope-dependent transport
relation emerges with, however, a statistical description of the diffusion-like coefficient.
This coefficient involves the active soil thickness as a fundamental length scale that
provides the minimum length scale over which measurement of the surface slope is

meaningful. This in turn implies that the diffusion-like linear slope-dependent model



(soil flux proportional to the depth-slope product) is applicable at scales larger than the
disturbance scales producing the transport. The formulation is consistent with
observations of topographic profiles of hillslopes evolving by soil creep and by transport
associated with biomechanical mixing. However, the theory does not explain the

nonlinear flux-slope relations observed in many systems.

Tucker and Bradley are concerned with transport on hillslopes exhibiting a broad
distribution of grain-motion length scales. They examine, in a simple discrete particle-
based model, relations between grain-motion dynamics, bulk transport rates, and hillslope
morphology, and they illustrate conditions under which standard local-gradient theory is
not appropriate. They show that a nonlinear relationship between flux and local gradient
emerges from their discrete model formulation at steep slopes and make a preliminary
exploration of continuum generalizations based on a probabilistic form of the Exner
equation. They provide insightful discussion on the notion of non-local flux
computation and how high-probability, long-distance particle motions violate the
assumption embedded in many commonly used local gradient-based geomorphic

transport laws, calling for extensions.

Foufoula-Georgiou et al. propose a non-local formulation of sediment flux on hillslopes
to account for the wide range of particle displacement lengths related to disturbance
processes. This formulation computes flux at a point not only as a function of local
topographic attributes, such as slope, but also as a function of topography upslope of the
point of interest. They show that such a formulation leads to a continuum constitutive
law that takes the form of fractional diffusion. The model predicts a hillslope equilibrium
profile that is parabolic in shape very close to the ridge top and becomes power law
downslope, with an exponent equal to the non-locality model parameter. Furthermore,
they show that a nonlinear relationship between sediment flux and local gradient emerges
from this linear non-local model and that the model reproduces, with a single parameter,

the natural variability of sediment flux found in real landscapes.



Harman et al. revisit the problem of subsurface transport in hillslopes with heterogeneous
conductivity fields. They argue that, in such cases, variations in the down-slope velocity
of impulses induce a non-piston type flow response (piston response would arise from
impulses starting at different locations but moving at a constant speed). Assuming heavy
tails in the velocity distribution of those impulses, they invoke the notion of
subordination (replacing real time with a random time representing the time that impulses
spend in motion). As a result they recast the standard kinematic wave equation into a
subordinated kinematic wave equation appropriate for modeling flow response in
heterogeneous hillslopes. They evaluate their model under different degrees of
heterogeneity and link the statistical parameters of the heterogeneous random fields and
the parameters of the subordinator, implying that the subordinator can eventually be

parameterized by physical measurements of hillslope properties.

3.3. Transport in erosional-depositional systems and river networks

Zaliapin et al. aim to develop simple theories of dynamic transport on river networks.
They introduce the concept of a “dynamic tree” to describe transport of fluxes on a
topological static tree representing the river network. They show that the corresponding
dynamic trees exhibit self-similarity, albeit with different parameters than the underlying
static trees, providing thus the possibility of developing process-specific dynamic scaling
frameworks. They also report a “phase transition” in the dynamics of river networks
indicating a time (or equivalently length) scale at which the connectivity of the system
reaches a critical point, i.e., the system acts as a single cluster. Analysis of three real
river networks indicates a possible universality and points to the need for further analysis
to understand how this framework can be used for stochastic flux propagation and for

scaling of dynamic processes operating on river networks.

Schumer and Jerolmack, provide a novel interpretation of the field-documented
observation that sediment deposition rate decreases as a power law function of the
measurement interval. They argue that this phenomenon is the result of the heavy tailed



distribution of non-deposition periods and use limit theory and Continuous Time Random
Walk (CTRW) models to estimate the actual average deposition rate from observations of
the surface location over time. Their analysis highlights that caution has to be exercised
in attributing observed changes in accumulation rates through time to real changes in the
rates of erosion and deposition. The consequences of these finding for interpreting the
stratigraphic record in terms of climate variability are important.

Voller and Paola, put forth the observation that laboratory experiments of aggrading
rivers, driven by subsidence or base-level rise, display profiles that deviate from those
expected from standard diffusion models. They propose a fractional diffusion model
which accounts for non-Fickian sediment transport in systems where the length scale of
significant sediment extraction is comparable to the scale range of the channel-pattern
behavior. They point out that these length scales seem well separated in natural systems
but not in laboratory systems. This distinction may explain discrepancies between

laboratory and natural system profiles and has implications for modeling.

4. CLOSING REMARKS AND OPEN PROBLEMS

The 15 papers in this volume present new ideas for modeling transport on the Earth’s
surface from tracer and bedload transport in rivers, to hillslope transport, to the
complexities of mixed erosional/depositional systems, and to transport along the whole
river network. They explore stochastic formulations that account for the deformation of
bedforms as they contribute to sediment flux, the erosional impact of spatially and
temporally variable raindrops as they contribute to the ecology and geomorphology of
hillslopes, theories for explaining the power law distributions of landslide areas and
volumes, and theories that take into account the broad range of scales participating in
transport. Several papers revisit old data sets and show that predictions from generalized
transport laws agree with observations more closely than predictions based on classical
theories. A few papers attempt to make connections between micro-scale (particle-scale)
dynamics and macro-scale statistics and note that parameters of the macro-scale models



can be resolved from physical observables as opposed to empirical fitting. Emphasis is
placed on parsimonious parameterizations, that is, on models that can explain the
observed structure and variability with few parameters. The idea of non-locality in flux
computation is discussed in several papers and fractional advection-dispersion

formulations or discrete space-time models are proposed.

Several open problems have emerged from the research presented in these papers. First,
the physical motivation of non-local transport laws and the data needed to more directly
estimate model parameters and discriminate between local and non-local hypotheses are
areas of future study. Also, stochastic formulations that invoke particle-scale statistics
explicitly or implicitly require new kinds of data, such as statistics of particle movement,
to be tested and validated. The same applies to models that consider bedform
deformation as a diffusion problem. The idea of extending well known transport models
via time-subordination is compelling and awaits more exploration: such an approach will
have application in the modeling of environmental fluxes in which “time in motion”
rather than “clock time” is relevant and where time can therefore be treated as a random
variable. The exploration of Continuum Time Random Walk (CTRW) models as discrete
counterparts of continuum formulations has to be further studied, and extensions of those

models to two dimensions awaits development.

A problem with all local geomorphic transport laws is that they yield scale-dependent
sediment flux since the local slope and curvature are scale (resolution)-dependent. As
such, closures are needed to incorporate the effect of sub-grid scale variability and render
the model coefficients scale-independent [e.g., see Passalacqua et al., 2007]. An open
problem for future research is to examine whether non-local transport models naturally
overcome the problem of scale-dependence, as this becomes an issue of increasing

concern with the availability of high resolution topographic data.

Theories for the transport of fluxes on river networks where the heterogeneity of the input
(e.g., spatially variable precipitation which dynamically changes over time, or discrete
fluxes that are injected at only a portion of the nodes of the network) await further



development such that scaling relations incorporating both the topology of the network
and the dynamics of the driving process are considered. Finally, models for transport in
erosional/depositional systems that capture the large range of scales of motion, and the
use of these models for the interpretation of the stratigraphic record (e.g., apparent scale-
dependent erosion rate), require new data to be rigorously tested and validated. The
outcomes could have important implications for deciphering climate variability from

stratigraphy.
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On the influence of gravel bed dynamics on velocity power

spectra
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Abstract.

A series of flume experiments were conducted to study the effect of bedform

dynamics on the flow over a gravel bed comprised of a wide distribution of grain sizes.
Instantaneous high-frequency streamwise flow velocities were sampled using ADV at a
frequency of 200 Hz, while the simultaneous bed elevations were sampled using sonar
transducers at a frequency of 0.2 Hz for a duration of 20 hours. Spectral analysis of the
measured velocity fluctuations reveals the existence of two distinct power-law scaling regimes.
At high frequencies, an inertial subrange of turbulence with ~ —5/3 Kolmogorov scal-
ing is observed. At low frequencies, another scaling regime with spectral slope of about
—1.1 is found. We interpret this range as the signature of the evolving multi-scale bed
topography on the near-bed velocity fluctuations. The two scaling ranges are separated
by a spectral gap, i.e., a range of intermediate scales with no additional energy contri-
bution. The high-frequency limit of the spectral gap corresponds to the integral scale

of turbulence. The low-frequency end of the gap corresponds to the scale of the small-
est bedforms identified by the velocity sensor, which depends on the position of the sen-
sor. Our results also show that the temporal scales of the largest bedforms can be po-
tentially identified from spectral analysis of low resolution velocity measurements col-

lected near the channel bed.

1. Introduction

Measurement of turbulent flow structures in a gravel-
bedded environment has received considerable attention in
the past few decades; yet, there is still debate about the ori-
gin and development of these flow structures and, in turn,
their influence on the bed surface itself [Wiberg and Smith,
1991; Dinehart, 1992; Robert et al., 1992; Buffin-Bélanger
and Roy, 1998; Lacey and Roy, 2007; Hardy et al., 2009]. It
has been suggested that the initiation of gravel movement
is strongly influenced by large transient coherent flow struc-
tures with time scales of about 1-10 seconds which are super-
imposed on the more random small-scale turbulence [Drake
et al., 1988; Kirkbride, 1993; Kirkbride and McLelland, 1994;
Kirkbride and Fergusson, 1995; Lamarre and Roy, 2005].
Over a rough boundary, such as in a gravel-bedded channel,
friction created by individual gravel particles or clusters of
particles (i.e., microtopography as well as bedforms) retards
the flow velocity, but the effect diminishes with increasing
height above the bed [Lacey and Roy, 2007, 2008]. This
surface roughness creates near-bed turbulence which is re-
sponsible for entrainment of particles predominately linked
to sweeps, bursts and larger coherent structures [Robert et
al., 1992; Best, 1993; Robert et al., 1993; Lamarre and Roy,
2005; Schmeeckle et al., 2007; Hardy et al., 2009]. These
large-scale coherent flow structures are a key component of
turbulent boundary layers and scale with the flow depth, h
[Roy et al., 2004]. In a mobile gravel bed the size of these
macro-turbulent flow structures is found to scale with A in
the vertical direction and 2 to 12 times A in the horizontal
direction [Shvidchenko and Pender, 2001; Roy et al., 2004].
The downstream motion of these flow structures may cause
quasiperiodic fluctuations of the local flow velocity compo-
nents and could lead to the development of troughs and
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ridges on the mobile bed, inducing bed particle destabiliza-
tion (sediment transport). Imamoto and Ishigaki [1986a, b]
investigated the turbulent flow structure over smooth and
rough immobile beds and detected the existence of upwelling
and downwelling circular fluid motion over the entire flow
depth. They found that both the lateral and the longitu-
dinal integral scale of fluid motion was about 2h. Yalin
[1992] hypothesized that the macro-turbulent structures are
closely linked to the bursting phenomena in boundary lay-
ers and do not originate in their full size (~h). According
to Yalin [1992] turbulent eddies are generated near the bed
surface as a result of bursts with sizes much smaller than
h, then grow until their size becomes approximately equal
to h; they are then destroyed, prompting the generation of
new smaller eddies, and so on. The complete cycle of the
eddies’ formation, evolution, and destruction occurs over a
distance of ~6h.

In spite of the important role that these macro-turbulent
structures could play in the dynamics of rivers, there is no
model that relates the interaction of turbulent flow struc-
tures to bed topography and sediment transport. This is
partly due to the unavailability of long reliable records of
turbulent data sampled at high-resolution and partly due
to the presence of complex bed topography varying spa-
tially and temporally in a gravel-bedded channel [Paiement-
Paradis et al., 2003; Marquis and Roy, 2006]. In particular,
little is known about how the relatively slow evolution of
moving multi-scale topography can affect the scaling prop-
erties (e.g., spectral density) of the velocity field at different
positions in the flow. For instance, Dinehart [1999] associ-
ated the presence of large-scale/low-frequency fluctuations
of velocity, obtained from long velocity records, to migrating
bedforms in gravel bed rivers. In a previous study [Dine-
hart, 1989] documented the passage of bedforms at periods
ranging from 2 to 5 min that corresponds with velocity fluc-
tuations. In a recent study Nikora [2008] suggested that
the currently used three-range spectral model (production
range, inertial subrange and dissipation range) for gravel
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bed rivers should be further refined by adding an additional
range, leading to a model that consists of four ranges of
scales with different spectral behavior and should be tested
with field and experimental observations. However, to re-
solve the potential differences in velocity spectra, for ex-
ample, between fixed and weakly mobile gravel beds, much
longer velocity records would be required [Nikora and Gor-
ing, 2000].

Unlike the situation in river flows, a considerable amount
of work has been performed in atmospheric boundary layer
flows towards characterizing and isolating the signature of
relatively slow (synoptic scale, mesoscale) variability from
that of the turbulence (for examples, see Van Der Hoven
[1957]; Fiedler and Panofsky [1970]; Smedman-Hdogstrom
and Hdégstrom [1975]). In a classical work Van Der Hoven
[1957] showed a marked spectral gap between mesoscale
(synoptic) and microscale (turbulent) flow variability in the
analysis of large-range spectrum of horizontal wind velocity.
Since then, several investigators have confirmed the exis-
tence of a spectral gap in the spectra of horizontal wind
velocity over land. Hess and Clarke [1973] also showed a
tendency for a gap in the spectra of wind velocity measured
at different heights between the surface layer and free atmo-
sphere.

In this paper we use simultaneous high resolution long
time series of bed elevations and velocity fluctuations along
with longitudinal transects of bed profile measured over a
gravel-bedded experimental channel to quantify the multi-
scale variability of both flow structures and bed structures.
Our results show the signature of bed structures on the near-
bed velocity fluctuations and point to the potential of using
relatively low frequency measurements of velocity in the field
to detect time scale of bed topography in real rivers.

2. Experimental setup and data analyzed

Experiments were conducted in the Main Channel facil-
ity at St. Anthony Falls Laboratory, University of Min-
nesota. These experiments were the follow-up of previous
experiments conducted in spring of 2006 known as Stream-
Lab06 [ Wilcock et al., 2008]. StreamLab06 was an 11 month
multidisciplinary laboratory channel study focused on var-
ious aspects of ecogeomorphology in gravel bed streams.
Five separate projects were conducted as part of Stream-
Lab06, while all the studies shared the same sediment and
general experimental configuration. The extensive data set
collected in these experiments includes hydraulic conditions
(discharge, water slope, bed slope, depth average velocity,
and flow field), morphological conditions (bed topography,
bar locations and shapes, photo images of the bed), sedi-
ment transport characterization (continuous sediment flux,
recirculation grain size information), water chemistry (tem-
perature, dissolved oxygen, nutrient concentrations) and bi-
ological conditions (heterotrophic respiration, biomass ac-
cumulation, nutrient processing rates). For the experiments
presented here (which we call Streamlab08), we focus on flow
field and spatio-temporal bed topography for the discharges
of 2000 1/s and 2800 1/s.

The Main Channel is a 55 m long, 2.74 m wide channel
with a maximum depth of 1.8 m and maximum discharge ca-
pacity of 8000 1/s (Figure 1). It is a partially sediment recir-
culating channel while the water flows through the channel
without recirculation. The sediment recirculation system is
capable of entraining and recirculating particles up to 76
mm in size. The recirculation system’s intake is in the bed
trap below the weigh-pan system, where a horizontal auger,
driven by a variable-speed motor, spans the full width of
the channel. The rotating auger conveys sediments accumu-
lated from weigh-pan dumps toward an outlet recessed in
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the right side of the flume and into the recirculation-pump
(dredging-pump) intake. The recirculation auger speed was
adjusted manually every 30 mins to maintain a constant el-
evation of sediment in the auger hopper and to continuously
transport sediment through the recirculation pipe. This pro-
cedure avoided sending large pulses of sediment through the
pipe each time a weigh-pan dumped. Intake of the water in
the channel was directly from the Mississippi River.

The bed of the channel was composed of a mixture of
gravel (median particle size diameter, dsp = 11.3 mm) and
sand (median particle size diameter, dsp = 1 mm). It is flu-
vial in nature. A total of 15% sand was added to the gravel.
The final grain size distribution obtained after mixing the
sediments had a dso = 7.7 mm, dig = 2.2 mm and dss =
21.2 mm. The mean specific density of sediment of all size
fractions was ~ 2.65. The thickness of the bed at the start
of the run was approximately 0.45 m. Figure 2 shows the
patches of bed surface obtained at the end of the run for a
discharge of 2000 1/s (Figure 2, left) and for 2800 1/s (Figure
2, right).

Prior to data collection a constant water discharge, @,
was fed into the channel to achieve quasi-dynamic equi-
librium in transport and slope adjustment for both water
surface and bed. Sediment transport rates were measured
simultaneously during the entire course of the run. Deter-
mination of the dynamic equilibrium state was evaluated by
checking the stability of the 60 min average total sediment
flux at the downstream end of the test section. Using the
pan accumulation data, the acquisition software computed
a 60 min mean of sediment flux in all five pans. Dynamic
equilibrium was reached when variation in this value became
negligible. In other words, when the average of the previous
60 min of instantaneous flux values computed from the pan
data stabilized, we determined the channel to be in dynamic
equilibrium and proceeded with formal data collection and
sampling. After attaining equilibrium, experiments ran for
approximately 20 hrs. (More details about the experimental
setup can be found in Singh et al. [2008, 2009]).

The data presented here are the velocity fluctuations (in
the flow direction), simultaneous temporal bed elevation col-
lected at the downstream end, and the longitudinal transects
of bed profile, measured along the centerline of the chan-
nel. The continuous velocity fluctuations were measured
using Acoustic Doppler Velocitimeter (ADV) at an approx-
imate distance of 15 cm above the mean bed level. Relative
heights, the ratio between D, (distance of velocity probe
from mean bed level) and D (average depth of flow), were
computed to be 0.23 and 0.29 for the discharge of 2000 1/s
and 2800 1/s respectively (see Table 1). NortekVectrino®
ADV was used for this study. The ADV was mounted 20
cm upstream of the centrally located bed sonar (sonar 3, see
Figure 3) and could measure 3D water velocity with a sam-
pling frequency of 200 Hz, and a precision of +/- 1 mm/s.

For the bed elevation measurements, submersible sonar
transducers of 2.5 cm diameter were deployed 0.3 m (on an
average) below the water surface. These sonar transducers
were mounted to the end of rigid 1.5-cm steel tubes and di-
rected perpendicular to the bed. The transducers collected
continuous temporal bed elevation information upstream of
each weigh-pan. The sampling interval of bed elevation
measurements was 5 sec with a vertical precision of 1 mm.
Figure 1 and Figure 3 (schematic) show the setup of ADV
and the sonar placed at the downstream end of the channel.
Measurements were taken over a range of discharges corre-
sponding to different bed shear stresses. Bed shear stress
is often characterized in terms of the dimensionless Shields
stress, 7, . For steady, uniform flow it may be approximated
as

_._ haS
b — Rd50’

(1)
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where hr and S are the hydraulic radius and channel slope,
respectively, and R = 1.65 is the relative submerged density
of silica. Here we report the data collected at discharges
of 2000 1/s and 2800 1/s corresponding to Shields stress
of 0.058 and 0.099 respectively (for details about the hy-
draulic conditions see Table 1). (Note that for computing
Reynolds number and Froude number, kinematic viscosity of
water (v), and acceleration due to gravity (g), were taken as
1x107%mn?/s, and 9.81 m/s respectively). Critical Shields
stress (7.) was assumed to be 0.03 as suggested by Buff-
ington and Montgomery [1997] and references therein. Fig-
ures 4a and 4c show the time series of velocity fluctuations
(top) and the corresponding bed elevations (bottom) for dis-
charges of 2000 1/s and 2800 1/s, respectively, collected for
the duration of 20 hrs.

For the longitudinal bed profiles a three-axis position-
able data acquisition (DAQ) carriage was used. This DAQ
was designed, fabricated, and installed at St. Anthony Falls
Laboratory. The DAQ carriage was capable of traversing
the entire 55 x 2.74 meter test section and could position
probes to within 1 mm in all three axes. Streamwise travel
speeds of DAQ could be set up to 2 m/s. The DAQ carriage
was controlled by a backbone computer that also served as
the master time clock for all data collection in the study.

Because the data were collected in the fall, there were
some leaves floating in the channel which might have re-
sulted in spikes in the velocity and bed elevation data. Even
though the amount of spurious spikes in the data (0.81 per-
cent for 2000 1/s and 0.79 percent for 2800 1/s) was found to
be very small, these were removed as part of the data treat-
ment for erroneous measurements using the methodology
described in Parsheh et al. [2009]. Parsheh et al. [2009] used
modified version of the Universal Phase-Space-Thresholding
technique proposed by [Goring and Nikora, 2002] for detect-
ing the spikes and subsequently replacing them by the last
valid data points with Sample-and-Hold technique [Adrian
and Yao, 1987].

3. Spectral analysis results

Power spectral density (hereafter PSD) is a commonly
used tool to measure the distribution of energy (variance)
in the signal across frequencies (or scales). In other words, it
shows at which scales the contribution to the signal variance
are strong and at which scales contribution to the signal vari-
ance are weak. For a signal X (¢), the power spectral density
is given by

B(w) = = / R(r)e " dr 2)

T o
—o0

where R(7) is the autocorrelation function defined as

Ry - B0 —p(Xan—w) o

o2

T is the time lag, 1 and o are the mean and standard de-
viation of the signal respectively, and w is the frequency. A
simple way to estimate PSD is by taking the fast Fourier
transform (FFT) of the signal [Stoica and Moses, 1997,
Lacey and Roy, 2007]. In our case, the signal X(¢) is the
flow velocity or the bed elevation in the streamwise direc-
tion. Special emphasis is placed here on identifying spectral
scaling regimes, i.e., ranges of scales over which log-log lin-
earity is observed in the power spectral densitg/. (Note that
the units for the velocity spectrum is quantity”/ frequency,
ie., m?/s).

The power spectrum of the velocity fluctuations (mea-
sured at 200 Hz) at a discharge of 2000 1/s is shown in Fig-
ure 5a. Two clear scaling ranges can be observed, separated
by a spectral gap. For relatively small scales (high frequen-
cies) in the range of 0.1 sec to 0.5 sec, the slope of the PSD
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(power spectral density) is ~ —5/3, which corresponds to
the inertial subrange of turbulence. A second scaling range
is observed for scales between 2 min and 55 min, for which
the slope of PSD is ~ —1.05. The range of observed spectral
gap is from 10 sec to 2 min (see Table2). The scales from
high frequency end of the spectral gap which also coincides
with the integral scale of the turbulence (see the following
section for discussion about ~ —1 spectral slope) to the low
frequency end of the inertial subrange shows a spectral slope
~ —1. Figure 5b shows the PSD of the bed elevation (mea-
sured at sampling intervals of 5 sec). A clear scaling is also
found in the elevation field, with a PSD slope of ~ —1.94 for
the scales of 15 sec to 42 min (Table 2). Figures 6a and 6b
show the power spectral density of the velocity fluctuations
(measured at 200 Hz) and the bed elevations (measured at
0.2 Hz), respectively, for the discharge of 2800 1/s. The
second scaling range (low frequency regime) in the PSD of
velocity fluctuations at the discharge of 2800 1/s is shifted
towards higher frequencies and is from 35 sec to 28 min with
a spectral slope ~ —1.15 (Figure 6a). Temporal bed eleva-
tions for the same discharge show a scaling range of 15 sec
to 28 min with a spectral slope of —2.1 (Figure 6b). Figures
7a and 8a show the spatial bed transects for the discharge
of 2000 1/s and 2800 1/s respectively, measured along the
centerline of the channel. The spectral slopes of spatial bed
elevations are similar to those of temporal bed elevations as
can be seen by comparison of Figures 5b, 7b, and Figures
6b, 8b.

4. Interpretation of the results and discussion

Power spectral densities of streamwise velocity have been
studied extensively in the case of wall-bounded turbulent
flows over flat homogeneous surfaces (e.g., Perry et al
[1986]; Katul et al. [1995]; Porté-Agel et al. [2000]). In
those flows, three scaling subranges have been identified.
At low frequencies, a scaling subrange often referred to as
the production subrange is found at scales larger than ap-
proximately 27z (where z is the distance to the surface) and
smaller than the integral scale of the turbulence (on the or-
der of the depth of the flow in a channel). This range is
characterized by a —1 spectral slope [Kader and Yaglom,
1991; Katul et al., 1995]. At intermediate frequencies, an
inertial subrange with a —5/3 spectral slope [Kolmogorov,
1961] is observed. It is associated with eddy scales smaller
than approximately 27wz. The third scaling subrange is the
viscous subrange observed at smaller scales than the sur-
face roughness size where spectra decays much faster than
in the inertial subrange [Nezu and Nakagawa, 1993; Nikora
and Goring, 2000].

In the case of flow over bedforms, it is expected that the
turbulence will lead to similar scaling regimes as those found
in the velocity spectra calculated over flat surfaces. More
specifically, one would expect to find both an inertial sub-
range and a production subrange, even though the transition
scale between these two ranges and the slope of the produc-
tion subrange are likely to be affected by the presence of
the topography, which may cause eddy shedding effects [La-
pointe, 1992; Buffin-Bélanger and Roy, 1998; Hardy et al.,
2007].

In the hypothetical case of stationary bedforms, turbu-
lence is the only source of velocity fluctuations and, conse-
quently, no additional energy is introduced at scales larger
than the integral scale of the turbulence (on the order of the
flow depth in the channel). However, in the case of a mov-
ing bed, the evolution of the bedforms introduces additional
variability in the velocity field at the range of temporal scales
associated with that evolution. We set forth the hypothesis
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that this effect explains the existence of the second scaling
range (between 2 min and 55 min for the case of 2000 1/s,
and 0.5 min to 28 min for the case of 2800 1/s) in the power
spectrum of velocity, as shown in Figures 5a and 6a. Notice
that the largest scale in that range (~ 55 min for 2000 1/s
and 28 min for 2800 1/s) corresponds to the integral scale
of the measured bed elevation field presented in Figures 5b
and 6b. This largest scale is the characteristic time scale at
which the largest bedforms move. Also notice that the sec-
ond scaling range in the velocity spectra (scaling range due
to bedform migration) shifts towards the higher frequencies,
right in PSD, (compare Figure 5a to Figure 6a) with an in-
crease in discharge, suggesting that the bedforms at higher
flow (2800 1/s) are moving faster than the bedforms in the
lower flow (2000 1/s). The clear signature of the large-scale
bedforms on the multi-scale variability of the velocity time
series as captured in its PSD suggests the potential of using
relatively low frequency velocity measurements near the bed
to detect the characteristic time scales associated with the
evolution of bed topography. The spectral analysis of our
velocity measurements also shows that this scaling range is
separated from the turbulence range by a spectral gap, i.e.,
a range of scales with virtually no additional contribution
to the velocity variance.

We hypothesize that the presence of a spectral gap is
due to the lack of physical processes which could support
the velocity fluctuations in this frequency range. A similar
spectral gap was reported in the seminal work of Van Der
Hoven [1957], who analyzed velocity time series collected in
the atmospheric boundary layer.(Note that in that study the
spectral density is plotted as wS(w), while in our work it is
S(w)). In that flow, the gap separates the energy contribu-
tions associated with turbulence at the high frequencies from
those corresponding to relatively slower frequency mesoscale
and diurnal-cycle variability. The presence of this gap has
important practical implications since it allows to separate
the contribution of the turbulence from that of mesoscale
motions to the total kinetic energy and fluxes. Similarly,
the presence of the spectral gap in channel flows with mov-
ing bedforms should be considered when using velocity time
series to study turbulent transport in these flows.

The high frequency end of the spectral gap coincides with
the integral scale of the turbulence, i.e., the scale of the
largest turbulent eddies present in the flow. (Note that in-
tegral sale of turbulence is computed via visual inspection
from the figure of velocity spectra.) In Figures 5a and 6a,
that integral scale is found at a frequency of approximately
0.1 Hz for both flow discharges under consideration. The
low frequency end of the spectral gap is associated with the
characteristic time scale of the smallest bedform structures
that can be identified by the velocity sensor. From Figures
5a and 6a, that limit corresponds to frequencies of approx-
imately 0.01 Hz and 0.02 Hz, for the 2000 1/s and 2800 1/s
cases, respectively. This contrasts with the approximately
0.1 Hz associated with the relatively fast evolution of the
smallest bedform structures, as shown in the spectral den-
sity of bed elevation (Figures 5b and 6b).

It is important to note that the size of the smallest fea-
tures detected by the velocity sensor and, as a result, the
width of the spectral gap, should depend on the distance
from the sensor to the bed. This is consistent with results
from a previous study of the multiscale wavelet correlation
between surface shear stress and velocity in a flat turbulent
boundary layer | Venugopal et al., 2003]. That study showed
that turbulent eddies of vertical size smaller than the dis-
tance to the surface z (and horizontal size smaller than 27z)
that affect the surface shear stress do not produce a signa-
ture on the velocity measured at height z. With that in
mind, here we speculate that the larger the distance between
the velocity sensor and the surface, the larger the spectral
gap. In general, the width of the spectral gap Agqp could
be expressed as:

Agap = f(va;)a (4)
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where, k = ?—:, D, is the distance from the probe to the
mean bed level, and o} is the standard deviation of the
temporal bed elevation (note that in our case, for both
discharges, the ratio k is constant and close to 5). In
the limiting case of a deep flow (flow depth much larger
than bedform variability), if the velocity sensor is placed
far enough from the bed surface, above the blending height
(level above which the effect of the bed surface heterogeneity
cannot be detected), the spectral gap would not exist. Fu-
ture research will investigate this issue through comparison
of spectra from measurements collected at different distances
from the bed surface and, consequently, different k ratios.

Bed elevation fields and their evolution are found to share
important similarities with other natural surfaces such as
landscapes. Landscapes present multiscale self-similar prop-
erties through a wide range of scales (see Vening Meinesz
[1951]; Newman and Turcotte [1990]; Pelletier [1999]; Pas-
salacqua et al. [2006] and references therein). In fact, Pas-
salacqua et al. [2006] documented that landscapes also share
important similarities with turbulence since both systems
exhibit scale invariance (self-similarity) over a wide range of
scales and their behavior can be described using comparable
dynamic equations. This similarity can be seen, for exam-
ple, in the behavior of power spectra of the landscapes which
exhibit a log-log scaling range with a slope of approximately
—2. Here also, we observe a slope of ~ —2 in power spec-
tra of bed elevations for both the discharges of 2000 1/s and
2800 1/s (Figure 5b and 6b). Furthermore, Singh et al. [2009]
have shown the multi-scale behavior of bed elevations (bed
topography) for different flow conditions in a gravel-bedded
environment. In that study, they quantified the slope of
the second order structure function 2H (which is related to
slope of the PSD with a relation g = 2H + 1, where  is the
slope of PSD, and H is the Hurst exponent), and found that
it is similar to the slope obtained here in the PSD of bed
elevation fluctuations (Figure 5b and Figure 6b). In the case
of bedforms in gravel-bedded channels little is known about
the scaling properties of bed surfaces [Nikora et al., 1998;
Marion et al., 2003; Nikora and Walsh, 2004]. For instance
Nikora et al. [1998] characterized gravel bed roughness using
second order structure functions. They found that the bed
elevation distribution in laboratory flumes (unworked beds)
and in natural gravel-bed streams (water-worked beds) was
close to Gaussian although the latter was skewed positively.
They also observed that the scaling exponent (Hurst expo-
nent) H = 0.79 for natural beds was significantly higher
than that of unworked beds, H = 0.5. A similar analysis
was performed in [Aberle and Nikora, 2006].

Spectral densities of the time series (Figures 5b and 6b)
and of spatial transects (Figures 7b and 8b) of bed eleva-
tions are not independent of each other. Both have a clear
scaling range with slope of approximately —2, expanding
over a similar range of scales (about two decades). The spa-
tial spectra of bed elevation saturate at the same scale for
both flow conditions (see Figures 7b and 8b, and Table 2).
That scale is about 10 m and it can be interpreted as the
integral scale, i.e., the characteristic scale of the largest bed
forms. The temporal scales associated with these bed forms
are approximately 55 min and 28 min for the 2000 1/s and
2800 1/s flows, respectively (Figures 5 and 6). Considering
these integral spatial and temporal scales, it is possible to
determine a characteristic travel speed of the largest bed-
forms. This advection velocity is approximately 14 m/hour
and 22 m/hour for the 2000 1/s and 2800 1/s discharges,
respectively.
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Comparison of spectral densities of flow velocity and bed
elevation measurements shows that relatively low-resolution
velocity measurements collected near the channel bed can
be used to estimate the travel time of the largest bedforms.
This application can potentially be used in the field; though
it would require a long time series of river flow velocities
[Soulsby, 1980; Nikora and Goring, 2000].

Two major priorities for further research are suggested by
this work. First, a better understanding is needed of what
controls the slope of low frequency velocity fluctuations in
the PSD, and how it is related to the slope of PSD of tempo-
ral bed elevations and flow conditions. Second, the quantifi-
cation of the dependence of length scale of the spectral gap
on the Shields stress, depth-wise position of velocity mea-
surements, and grain size distribution of the bed material
should be undertaken. In order to meet these objectives, fu-
ture work will be focused on the behavior of spectral density
of velocity measured at different positions along the depth
of the flow as a function of varying Shields stress and grain
size distribution.

5. Conclusions

This paper investigates the behavior of power spectral
density of flow velocity and bed elevation time series mea-
sured in a large-scale experimental channel under two flow
conditions. The power spectral density of the velocity shows
two distinct power-law scaling regimes. At high frequencies,
an inertial subrange with ~ —5/3 Kolmogorov scaling is
observed. It is associated with turbulent eddy motions of
sizes smaller than the distance from the velocity sensor to
the gravel bed. For slightly larger eddy scales, up to the
integral scale of the flow, the effect of the bed leads to a
reduction in the slope of the velocity spectrum. At lower
frequencies, another scaling range with spectral slope of ap-
proximately —1.1 is found. This range is associated with the
relatively slow evolution of the multiscale bed topography.
At intermediate scales, a clear spectral gap, i.e., a range of
scales with no additional energy contribution, separates the
turbulence and bed evolution spectral ranges. The high fre-
quency limit of the spectral gap corresponds to the integral
scale of the turbulence. The low-frequency end of the gap
corresponds to the scale of the smallest bedforms identified
by the velocity sensor, and it is expected to depend on mea-
surement location and bed variability. Our results also show
that the temporal scales of the largest bedforms can be po-
tentially identified from spectral analysis of low resolution
velocity measurements collected near the channel bed.
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Table 1: Hydraulic conditions and characteristics of temporal series of bed elevation

v h Shields T D o

R mean P b
QuWs) | D) | sceey | Sv (m) s(t:f:)s R Eoleoy | em | @mm| ¥
2000 0.55 1.18 0.0019 0.39 0.058 646640 | 0.51 23.5 12.59 | 23.95 5.3
2800 0.64 1.55 0.0029 0.44 0.099 992000 | 0.62 16.23 19.17 | 38.65 5.0
where,

Q. = water discharge for the run
D = average depth of flow in test section
v =average flow velocity

hg = hydraulic

radius

Sw = water surface slope
1%, = dimensionless Shields stress (computed using hydraulic radius)

R. = Reynolds number (kinematic viscosity of water, v = 1X10"° m?*/sec)
F; = Froude number
Tmean = mean water temperature.

D, = distance of the velocity probe from mean bed level

G = standard deviation of temporal bed elevation series

k =ratio between D, and oy

Table 2: Characteristics of power spectrum for velocity, temporal bed elevations and spatial bed

clevations.
Qw . Temporal-bed Spatial-bed
V/s) Velocity v(t) elevation h(t) elevation h(x)
dynamic scaling | spectral | spectral | scaling | spectral | scaling
slope regime gap slope regime slope regime
2min- | 10sec- 15 sec - 10 cm —
2000 -1.05 55 min 2 min -1.94 42 min -1.87 10 m
35 sec - 6 sec — 15 sec - 15cm-
2800 -1.15 28 min 35 sec -2.1 28 min -2.06 10 m
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Figure 1. Experimental channel facility at St. Anthony
Falls Laboratory, University of Minnesota showing the
locations of ADV and the sonar at the downstream end
of the channel. A total of seven submersible sonars were
deployed. In this study the data collected from the ADV
and the sonar (located 15 cm downstream of ADV) along
the centerline of the channel (see also schematic in Figure
3) are used. The direction of the flow is from bottom to
the top of the figure.
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Figure 2. Photograph of bed surface at the end of the
flow for the discharges of 2000 1/s (left), and 2800 1/s
(right). The direction of flow in both cases is from the
top to the bottom of the figures.

055m 0.55m 0.55m 0.55m 0.55m

Panl| Pan2 | Pan3 | Pan4 | Pan5 >

0.95m H
lSonar 1 Sonar2 Sorar3 Sonar4 Sonar5

20cm |
: <+ ADV 12
?Q I\ é l
I \Y) V)
t

Sonar 7 Sonar 6

55

B=275m \

Figure 3. Schematic of experimental setup showing the
locations of sonars (used for measuring temporal bed el-
evation) and the ADV (used for measuring velocity fluc-
tuations) at the downstream end of the channel. Note
that the solid dots represent the measurement locations
of temporal bed elevations (h(t)) and velocity (v(t)) used
in this study. The dash line represents the centerline of
the channel.
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Figure 4. Time series of velocity (top) and bed elevation
(bottom) measured at the downstream end of the channel
for flow discharges of 2000 1/s (left) and 2800 1/s (right)
over a duration 300 mins. The middle panels show a
blown-up image of the velocity series shown in the top
panels for a duration 0.2 mins. The flow velocity was
measured at a frequency of 200 Hz (sampling interval,
At = 0.005 sec) and the bed elevations were sampled at
a frequency 0.2 Hz (sampling interval, At = 5 sec). In
the case of bed elevation (bottom panel), it can be seen
that short fluctuations are superimposed on larger ones.
This suggests that small bedforms (small dunes, ripples
or bedload sheets) are propagated over larger dunes.
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Figure 5. Power spectral density of a) velocity fluc-
tuations and, b) corresponding bed elevations for a dis-
charge of 2000 1/s. In the velocity spectrum, scaling at
small scales is due to turbulence while at larger scales it
is modulated by bed topography.
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Figure 6. Power spectral density of a) velocity fluctua-
tions and, b) corresponding bed elevation for a discharge
of 2800 1/s. In the velocity spectrum, scaling at small
scales is due to turbulence while at larger scales it is
modulated by bed topography.
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Figure 7. a) Longitudinal transect of bed profile eleva-
tions at a resolution of 10mm and, b)its power spectral
density for a discharge of 2000 1/s. Note that similar
spectral slopes are observed in both temporal bed eleva-
tion and spatial bed elevation series (compare with Fig.
5b).
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tral density for a discharge of 2800 1/s. Note that similar
spectral slopes are observed in both temporal bed eleva-
tion and spatial bed elevation series (compare with Fig.
6b).
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Abstract.

This study is motivated by problems related to environmental transport on

river networks. We establish statistical properties of a flow along a directed branching
network and suggest its compact parameterization. The downstream network transport
is treated as a particular case of nearest-neighbor hierarchical aggregation with respect
to the metric induced by the branching structure of the river network. We describe the
static geometric structure of a drainage network by a tree, referred to as the static tree,
and introduce an associated dynamic tree that describes the transport along the static
tree. It is well known that the static branching structure of river networks can be de-
scribed by self-similar trees; we demonstrate that the corresponding dynamic trees are
also self-similar, albeit with different self-similarity parameters. We report an unexpected
phase transition in the dynamics of three river networks, one from California and two
from Italy, demonstrate the universal features of this transition, and seek to interpret

it in hydrological terms.

1. Introduction and motivation

The topology of river networks has been extensively stud-
ied over the past decades using the suite of quantitative
methods developed in the pioneering works of Horton [1945],
Strahler [1957], Shreve [1966], and Tokunaga [1978]. These
authors found that the geometry of real river networks
can be closely approximated by so-called self-similar trees
(SSTs). Such trees can be completely specified by a small
number of parameters; this specification facilitates the de-
velopment of similarity metrics and scaling theories within
and across river networks. As a result, stream-ordering
schemes and statistical self-similarity concepts have been
explored to a considerable extent [see Jarvis and Wolden-
berg, 1984; Rodriguez-Iturbe et al., 1992; Peckham, 1995;
Rodriguez-Tturbe and Rinaldo, 1997; Sposito, 1998; Peckham
and Gupta, 1999; Veitzer and Gupta, 2000; Dodds and Roth-
man, 2000; and references therein].

The connection between river network topology and the
hydrologic response of a basin has also been extensively
studied; see, for instance, the early work of Surkan [1969],
Kirkby [1976], and Rodriguez-Iturbe and Valdes [1979], while
Gupta and Mesa [1988], and Rodriguez-Iturbe and Rinaldo
[1997] review the later developments. Apart from stream-
flow, the river network is also known to structure other
processes operating on it, such as sediment bedload, grain
size, nutrients, riparian vegetation, and the food web struc-
ture of aquatic organisms [e.g., Sklar et al., 2006; Benda
et al., 2004a,b; Kiffney et al., 2006; Lowe et al., 2006;
Muneepeerakut et al., 2006; Power and Dietrich, 2002; Rice
and Church, 1998; Rice et al., 2006; Stewart-Koster et al.,

Copyright 2009 by the American Geophysical Union.
0148-0227/09/$9.00

2007; Wohl et al., 2007]. The impact of such processes is
of great interest from environmental, economic, and societal
points of view.

The development of a systematic framework within which
to study dynamical processes on river networks remains of
considerable theoretical and practical interest in hydrology,
geomorphology, and river ecology. In this paper, we propose
a new way of studying dynamical processes that operate on
directed trees, which are commonly used to model river net-
works. Specifically, we introduce the concept of a “dynamic
tree,” which describes the directed transport along the links
of a “static tree” that has a given topology and link-length
distribution, as well as other space- and time-dependent at-
tributes.

This dynamic tree is likely to have a different hierarchy
and topology than the static one. For instance, some of the
static-tree branches might be completely cut off, either due
to a blockage that prevents transport along these branches
or due to the absence of conditions that favor sediment or
nutrient generation for downstream transport. In this and
other cases, the structure of the dynamic tree will differ from
that of the static one, and this difference might affect the
scaling of fluxes that participate in defining the envirody-
namics on the network of interest. In general, a static tree of
a given Horton-Strahler order [Horton, 1945; Strahler, 1957]
could become a dynamic tree of a lesser or higher order,
depending on the dynamics acting on the tree.

The purpose of this paper is to study the dynamic topol-
ogy of directed trees, starting with several simple cases, first
synthetic and then realistic. We work here with downstream
fluxes, oriented from the sources to the outlet, and with
time-continuous transport. The possibility of reverse (up-
stream) motion, as in tidal systems or in association with
the movements of biota, and discontinuous transport is left
for future work. We focus on a dynamic hierarchy built on
the concept of “connectivity”: once two streams are con-
nected, they both influence the downstream dynamics. In
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other words, a dynamic node of order 2 is created only when
the fluxes from both order-1 streams do reach the connecting
node. Such considerations will result in a different ordering
of the dynamic tree than of the static one. Moreover, the
newly created dynamic tree will be time-oriented, a property
that is absent in conventional static trees. Alternatively, one
might keep track of traveled distance, rather than time: the
two are equivalent if the flow velocity is constant along all
the branches, which we will assume in the present paper, for
simplicity’s sake.

The static branching structure of river networks can be
described by self-similar trees, following Tokunaga [1978],
Peckham [1995], and Peckham and Gupta [1999], among oth-
ers. It is shown here, using three actual river networks,
that the corresponding dynamic trees are also self-similar,
although their properties differ systematically from those of
the corresponding static trees. We also demonstrate an un-
expected phase transition in the dynamics on river networks,
from a pattern of numerous disconnected fluxes initiated at
the network sources to a single connected flux. Finally, we
place our findings within the general framework of hierar-
chical aggregation and cluster dynamics. This framework
helps describe and understand such diverse phenomena as
population genetics, interacting particle systems in statisti-
cal mechanics, phylogeny, percolation, and extreme natural
hazards.

The paper is structured as follows. We review in Sec-
tion 2 the relevant concepts and main results in river net-
work topology, including the branching taxonomies of Hor-
ton [1945] and Strahler [1957] and of Tokunaga [1978]. Sec-
tion 3 introduces the concept of a dynamic tree that is asso-
ciated with a given static tree, by using two examples from
river transport. Hierarchical aggregation, including aggre-
gation in an abstract metric space, is introduced in Section
4. Section 5 describes the three river basins from Califor-
nia and Italy that we study here, as well as the static trees
that represent the stream networks of these basins. The re-
sults of the study are presented in Section 6. A summary
and discussion, as well as an outline of further work follow in
Section 7. Examples of hierarchical aggregation from several
fields of inquiry appear in Appendix A.

2. Network topology: Overview of concepts
and results

This section summarizes the main concepts used in the
topological analysis of river networks, as well as the key re-
sults of this analysis.

2.1. Branching-order taxonomies

In our study of river transport, a drainage network is rep-
resented by a tree T (see Fig. 1). In this representation, the
stream junctions correspond to tree nodes, the stream seg-
ments between junctions — to links or edges, the network’s
sources — to tree leaves, and the basin outlet — to the root of
the tree. A source link is a link attached to a stream head;
while an outlet link is the link attached to the basin outflow
node.

In many applications, there is a need to order the net-
work links or tree edges according to their importance in
forming the entire network. Horton [1945] developed a con-
venient way to order hierarchically organized river tribu-
taries; this method was later refined by Strahler [1957] and
further expanded by Tokunaga [1978]. Currently, the so-
called Horton-Strahler (HS) and Tokunaga ordering schemes
are standard tools of branching analysis, well beyond purely
hydrological applications.

Horton-Strahler ordering is performed in a hierarchical
fashion, from the sources to the outlet. Each source link in
a binary rooted tree is assigned an HS order r(source) = 1;
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see Fig. 2(a). When two links with the same order r meet,
the link immediately downstream is assigned order r + 1;
when two links with different orders meet, the link immedi-
ately downstream is assigned the larger one of the two orders
[e.g., Horton, 1945; Strahler, 1957; Newman et al., 1997]. A
branch is defined as a union of connected links with the same
order. We will denote by IV, the total number of branches of
order r. Notice that each branch has linear structure: each
of its links can be connected to only one upstream and/or
one downstream link from the same branch. The order (2
of a tree is the maximal order of its branches. An HS order
can also be assigned to the stream junctions (tree nodes);
in this case the order is the same as that of the immediate
downstream link.

Tokunaga indexing [Tokunaga, 1978; Peckham, 1995;
Newman et al., 1997] expands upon the Horton-Strahler or-
ders; it is illustrated in Fig. 2(b). This indexing catalogues
the merging points between branches of different order. A
first-order branch that merges with a second-order branch
is indexed by “12” and the total number of such branches
is denoted by Ni2. A first-order branch that merges with a
third-order branch is indexed by “13” and the total number
of such branches is Ni3, and so on. In general, N;; for j > i
denotes the total number of order-¢ branches that join an
order-j branch.

The Tokunaga index T3; is the number of branches of or-
der i that merge with a branch of order j, normalized by
the total number of branches of order j; in other words, Tj;
is the average number of branches of order i < j per branch

of order j:
7, = N (1)
1] — N] .

Merging of branches of different orders is referred to as
side branching. A complete tree is one where side branching
is absent. For incomplete trees, the side-branching indices
become increasingly important as they help define a tree’s
structure and may help specify distinct classes of trees.

For consistency, we denote the total number of order-i
branches that merge with other order-i branches by N;; and
notice that in a complete binary tree N;; = 2N;+1. The
“diagonal” Tokunaga indices T;; thus satisfy:

N
Nit1

Il
N

Ty =

Theset {T3; : 1 <i<Q—1,1 <j <O} of Tokunaga indices
provides therewith a complete statistical description of the
branching structure of an order-{2 tree.

We also use in this study the following two link statistics:
the number of links within a given branch and the number
m; of sources upstream from a link 7. The latter statistic
is also called a link’s magnitude [Shreve, 1966]; a branch’s
magnitude is the magnitude of its furthest downstream link.
The branch magnitude is coarsely proportional to the branch
drainage area, with the coefficient of proportionality equal
to the average drainage area for the stream sources. The av-
erage number of nodes and average magnitude of an order-r
branch are denoted by C, and M, respectively.

2.2. Self-similar trees and Horton laws

The concept of self-similarity provides a powerful tool
for describing and studying trees. A self-similar tree (SST)
is defined by the constraint that the value of each Tokunaga
index T;; depends only on the difference (j — i) between the
orders of respective branches. Accordingly, we define, for all
i,

Tk = TZ(Z+I€) fOI' k = 17 27 P (2)

Tokunaga [1978] was probably the first to study SSTs;
he assumed also that the ratio of two consecutive branching
indices is constant:

Tit1

=¢, or Tp=ac" " for a,c>0. (3)
Ty
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The SSTs that satisfy (3) are called Tokunaga trees.

Empirically, the average values of branching statistics for
observed river networks depend exponentially on the order
r, for large r and €. In particular, for the total number
N, of branches of order r, the average magnitude M,, and
the average number C of links within an order-r branch we
have:

N, =NoRY", M,=MyRy', C.=CoRe  (4)
for some positive constants No, Mo and Cy. Such relation-
ships are called Horton laws; the bases Rg, Ry, and Rc of
the exponential relatonships are called stream ratios.

McConnell and Gupta [2008] showed that the first two of
the Horton laws (4) hold asymptotically, i.e. for r — oo, in a
self-similar Tokunaga tree; they also proved that Rg = Ras.
Zaliapin [2009] demonstrated asymptotic validity of all the
laws in (4) and established the stream ratio inequality

Rc < R = R, (5)

that had been conjectured by Peckham [1995]. In addition,
Zaliapin [2009] showed that the Horton laws may or may
not hold, under some additional assumptions on the Toku-
naga indices T}, for self-similar trees that do not necessarily
satisfy condition (3).

3. Dynamic vs. static trees

The topological structure of a river network is well de-
scribed by a directed tree, which we denote by Ts and call
the static tree. To describe the downstream transport on Tg
we introduce the notion of a dynamic tree Tp, which com-
bines the topological structure of Ts with the correspond-
ing link-length values. The dynamic tree is introduced as
follows. Imagine that we inject a dye simultaneously into
all the sources of our river network Ts, and the dye starts
propagating down the river, from the sources to the outlet,
with the same constant velocity along all the streams. The
influx of the dye is continuous and happens at a constant
rate. The tree Tp describes the time-dependent history of
the mergings of the colored streams.

We consider below two detailed examples to further clar-
ify this concept, while restricting ourselves to the simplest
case of constant velocity along all the streams. Taking this
velocity to be unity allows one to interchange time and
length scales. We shall see that the dynamic tree Tp is com-
pletely determined by the static tree Ts and the set of time
delays T; necessary for the dye to propagate from a junction
i to the nearest downstream junction. These delays can be
proportional to the link lengths, as is the case in the present
study, or be determined by spatially or temporally variable
velocities. The latter extension is left for a future study.

3.1. Synthetic example

Figure 3 shows how to construct the dynamic tree for a
basin with four sources a, b, ¢, and d. The static tree for
this basin is a complete binary tree shown in the top right-
most panel. The same tree with the link lengths explicitly
displayed is shown in the top row of the panels; the top
leftmost panel indicates the values of these lengths.

The consecutive phases of construction of the dynamic
tree are shown in the bottom row of panels. At step 0 (the
leftmost top and bottom panels), all the links in the tree
are “empty” (dashed lines) and the dye is injected into the
sources a, b, ¢, and d. Accordingly, we have four discon-
nected clusters of colored flux; they correspond to four dis-
connected nodes in the lower left panel. We assume that
the dye is being continuously injected at all later times at a
constant rate. Each step in the figure is a snapshot of this
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process after a unit time interval; recall that we use only
constant velocity in this paper and, without loss of general-
ity, this velocity equals unity.

At step 1 the dye has propagated a unit length along
each stream, which is depicted by solid lines in the top
panel. Since all four streams are disconnected so far, the dy-
namic tree still consists of four disconnected branches, each
of which corresponds to a colored stream of unit length. At
step 2 the streams a and b merge, and so the nodes a and b
are now connected into a single cluster in the dynamic tree.
Notice that the sources a and b are not directly connected
in the static tree; this connection reflects a property of the
dye’s downstream propagation.

At step 3 stream c reaches stream a. Since stream a by
that time is already merged with stream b, we say that the
stream ¢ merges with the cluster of a and b; this is reflected
in the dynamic tree in the corresponding lower panel. Hence,
at step 3 there exist two connected clusters of the colored
flux: one cluster is formed by streams a, b, and c, while
stream d alone forms the second cluster. Finally, at step 4,
all the colored fluxes have merged. The conventional repre-
sentation of both static and dynamic trees, which does not
show the link lengths, is given in the two rightmost panels.

This example shows that the dynamic tree Tp can be very
different from the corresponding static tree Ts. We notice
in particular that in this example the static tree is a tree
with no side branching; it has the largest possible Horton-
Strahler order, 2 = 3, for a tree with four sources. At
the same time, the dynamic tree exhibits exhaustive side-
branching; accordingly, it has the smallest possible order,
Q) = 2, for a tree with four sources.

3.2. Data-based hydrologic example

We illustrate here the dynamic tree for an order-3 sub-
basin of the Upper Noyo basin. This basin is located in
Mendocino County, California, USA; it is described by Sklar
et al. [2006] and appears in Fig. 7(a) of Section 5, along
with an outline of the subbasin discussed in the present ex-
ample. The stream network for this subbasin is shown in
Fig. 4; its fifteen sources are marked by numbers 1 to 15
and fourteen stream junctions by letters a to n. The static
tree Ts for this stream network is shown in Fig. 5(a); it has
the Horton-Strahler order 2 = 3.

The time-oriented dynamic tree Tp is shown in Fig. 5(b)
against the distance traveled by the dye from each source (on
the ordinate). Notice that distance in Fig. 5(b) can also be
interpreted as time. The order of the dynamic tree is 2 = 4.
In this example (unlike the synthetic example of Fig. 3), the
dynamic tree shows a smaller degree of side-branching com-
pared to the static tree; this smaller degree yields a larger
HS order. We shall see in other realistic examples, further
below, that this seems to be the case for most actual river
networks. Three snapshots of the simulated dye propaga-
tion, at distances d = 20,200 and 600 are shown in Fig. 6
to further illustrate the dynamic tree concept.

4. The dynamics of hierarchical aggregation

The consecutive merging of river streams discussed in the
previous section gives rise to a time-oriented dynamic tree.
Study of such trees calls for the development of a new math-
ematical framework: hierarchical aggregation is a promising
candidate for such a framework.

4.1. Hierarchical aggregation

Hierarchical aggregation studies how multiple individual
particles (molecules, species, individuals, etc.) merge (ag-
gregate, collide) with each other to form clusters in different
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physical, chemical, biological, or sociological settings [Albert
and Barabasi, 2002; Leyvraz, 2003; Wakeley, 2009]. In the
river transport setting, particles represent individual chan-
nel links, merging refers to the situation of two channels join-
ing downstream, and a cluster represents all the upstream
channels that jointly contribute to the flow at a given junc-
tion.

Formally, consider a process that starts at time ¢ = 0 with
N individual particles (say the sources of a river network),
which can be considered as clusters of unit mass. As time
evolves (and as a substance propagates down the river net-
work) the clusters start to merge with one another, accord-
ing to a set of rules imposed by the dynamics of propagation,
thus forming consecutively larger clusters. If we assume that
only two clusters can merge at the same time, then the num-
ber of clusters decreases by one after each merging. The
process continues until all particles have merged into a sin-
gle cluster of mass N; in our case, this would be when all
the nodes of the river network are parts of the same cluster,
i.e. when the whole system is connected.

The evolution of the above process can be described by
a time-oriented binary tree, whose leaves correspond to the
initial particles, the root to the final cluster of N particles,
and each internal node to an intermediate cluster. Among
the many instances of the above general aggregation scheme,
we mention population genetics [Wakeley, 2009], phyloge-
netic trees [Maher, 2002], percolation [Albert and Barabas,
2002; Zaliapin et al., 2005], and billiards [Gabrielov et al.,
2008]; see Appendix A for details. Bertoin [2006] gives a
modern review of mathematical results related to aggrega-
tion.

An important role in aggregation studies is played by the
notion of cluster dynamics [Bogolyubov, 1960; Sinai, 1973].
This concept refers to a system that contains an infinite
number of interacting particles, which can be decomposed
into finite clusters that move independently of each other for
some random interval of time. After this time, the particle
interactions give rise to infinite-range correlations (meaning
that the mean cluster size becomes infinite, or an infinite
number of particles affects each other’s dynamics), although
the system can be decomposed into yet another set of finite
independent clusters, and so on.

Sinai [1973, 1974] developed a self-consistent mathemat-
ical formalism and proved the existence of cluster dynamics
for some particle systems in statistical mechanics. The ideas
of cluster dynamics have been applied to plasma physics,
economics, and the study of precursory patterns for extreme
events in geophysics [Rotwain et al., 1997; Molchan et al.,
1990; Keilis-Borok and Soloviev, 2003]. Recently, Gabrielov
et al. [2008] evaluated numerically the cluster dynamics of
elastic billiards, leading to the detection of what appear to
be the first genuine phase transitions and scaling phenom-
ena with time, rather than usual temperature 71" or density,
being the order parameter. Thus, a transition occurs and
scaling develops as time ¢ approaches a critical value t*,
rather than as the parameter T crosses a critical value 7.
As will be shown in Section 6.2, we report here a remarkably
similar and equally unexpected phase transition, with time
being the order parameter, in the cluster dynamics of a river
network.

4.2. Nearest-neighbor clustering

Hierarchical aggregation can be described in great gener-
ality by using the framework of nearest-neighbor clustering
in a metric space. Specifically, consider a finite set S with
distance d(a,b) for a,b € S; the elements of the set will be
called points. The distance d(A, B) between two subsets of
points A = {a;}i=1,...n, and B = {b;i}i=1,... Ny from S is
defined as the shortest distance between the elements of the
sets:

d(A,B) = min
1<i<N4,1<j<Np

d(ai,bj).
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Nearest-neighbor clustering is a process that combines
points from S into consecutively larger subsets, called clus-
ters, by connecting at each step the two nearest clusters; this
process can be described by the nearest-neighbor spanning
tree T. Specifically, consider N points ¢ € S, i =1,...,N
with pairwise distances d?j = d(c?,c?). These points, con-
sidered as clusters of unit mass (m; = 1), form N leaves of
the tree T. Each node in this tree is assigned a time mark,
thus producing a time-oriented tree; the leaves are assigned
the time mark ¢ = 0. Recall that in this work we focus on
the constant-velocity transport and thus use the time and
distance interchangeably. Accordingly, one can talk about
a distance-oriented tree T with distance marks being equal
to the time marks. The first internal tree node is formed
at the time ¢; = min,; d?j by merging two closest points ¢l
and ¢}« with (i*, ) = argmin,; d};, where argmin,; f(i, j) is
defined as a pair (¢*, %) such that f(¢*,j*) = min;; f(i,7).
This merging creates a new cluster of two points, with a
mass of m; +m; = 2. Hence, at time ¢, there exist N — 1
clusters: N — 2 clusters with unit mass and one cluster of
mass m = 2.

We can now reindex so as to work with clusters c;,
1 =1,..., N — 1; their total mass is Zi\;l m; = N and
pairwise distances are d}j = d(czl, c;) The second internal
node of tree T is formed at time ¢> = min;; d%j > t1 by
merging the two closest clusters from the set {ci }i=1,... N—1-
Thus, at time ¢2 we have N —2 clusters ¢? such that their to-
tal mass is NV and pairwise distances are d?j =d(c3, c?) We
continue in the same fashion, so the k-th internal cluster, for
1 <k < N-—2,is formed at time ¢}, = min;; dfj > tr_1, and
at that time we have (N — k) clusters ¢, i =1,...,N — k
with masses m; such that ZZV:E’“ m; = N. Finally, at time
tny—1 we create a single cluster of mass NV that combines all
points ¢¥; this cluster forms the root of the tree T.

Consider two nodes a and b from the nearest-neighbor
tree and let t, and ¢, be their time marks; recall that the
tree is time-oriented by the definition of the successive times
tr = miny; dfj > trp—1 at which the cluster mergers occur.
The ancestors of a node are its parent, the parent of that
parent, and so on, all the way to the root. Clearly, the time
mark for an ancestor is larger than that of a descendant.
The nearest common ancestor p of nodes a and b is their
common ancestor with the minimal time mark ¢,.

The distance u(a, b) along the nearest-neighbor tree is de-
fined as the maximum of the values u(a,p) = t, — t, and
u(b,p) = tp — tp. This distance satisfies two of the usual
distance axioms, symmetry and strict positivity, but the tri-
angle inequality can be replaced by a more stringent one,
namely

u(a,b) < max [u(a, c), u(c,b)],

which holds for any three nodes a,b and c¢. Such a dis-
tance function is called an wltrametric [Rammal et al., 1986;
Schikhof, 2007]. Ultrametric spaces have many peculiar
properties; for instance, one can rename any triplet a,b,c
of nodes in such a way that

u(a,c) = u(b,c).

These unusual properties give ultrametric spaces consider-
able flexibility in applications, and point sets connected via
nearest-neighbor clustering are a representative example of
such spaces.

In our river transport problem, the space S is the set of
all river sources. The distance d(a,b) between two sources is
defined as the time necessary for the corresponding fluxes in-
jected into these two sources to meet down the river path. If
the static river geometry is described by the tree Ts (and we
assume, as previously stated, that fluxes move downstream



ZALIAPIN ET AL.: TRANSPORT ON RIVER NETWORKS

continuously with unit speed) the distance d(a,b) between
two sources equals the maximal length along the tree to their
nearest common parent in Tg. The nearest-neighbor span-
ning tree of hierarchical-aggregation theory thus becomes
what we called so far, in the context of river transport, the
dynamic tree Tp.

As previously stated, this dynamic tree differs, in gen-
eral, from the static tree Ts and depends not only on the
topology of the latter, but also on the actual length of the
links. The ultrametric distance u(a, b) equals the time nec-
essary for the above-mentioned fluxes to belong to the same
cluster or, equivalently, the time to establish a connected
colored path between sources a and b. If the velocities vary
in time or space, then the spanning tree Tp will depend
on the specific dynamics of the processes operating on the
static tree.

To better understand transport on river networks, we elu-
cidate in the next sections the connection between the sta-
tistical properties of Ts and those of Tp by using three real
river networks.

5. River basin data

We have analyzed three river basins: Upper Noyo, Men-
docino County, California, USA (called here Noyo); Tirso,
Sardinia, Italy; and a part of the Brenta basin at the con-
fluence with the Grigno river, Trento, Italy (called here
Grigno). Information about the physiographic and geologic
characteristics of these basins can be found in Sklar et al.
[2006], Pinna et al. [2004], and Guzzetti et al. [2005], re-
spectively. In our analysis we used Digital Elevation Models
(DEMs) with regularly gridded pixel resolutions of 10 m for
the Noyo basin, 30 m for the Grigno basin, and 100 m for
the Tirso basin.

In an actual landscape, channels are initiated when the
area upstream suffices to create a sustainable source of
streamflow and this source imprints a permanent channel on
the terrain. Although these channels are typically detectable
by field observations, the extraction of the channel initiation
points, or “channel heads,” from DEMs has been a subject
of sustained effort [e.g., Montgomery and Dietrich, 1989;
Tarboton et al., 1991; Montgomery and Foufoula-Georgiou,
1993; Costa-Cabral and Burges, 1994; Giannoni et al., 2005;
Hancock and Evans, 2006].

In typical DEM analysis, channel heads are mapped
where the upstream area, or (area)x(typical slope), ex-
ceed a given threshold; the parameters of such relationships
are field-calibrated. More recently, the availability of high-
resolution, 1-m elevation data from LIght Detection and
Ranging (LIDAR) has initiated a new generation of method-
ologies for the automatic detection of channels as terrain
“features” [e.g., Lashermes et al., 2007; Passalacqua et al,
2009]. Given the available DEM resolution, and the fact that
the focus of this study is not the extraction of the most ac-
curate river network from the available DEMs, we adopted a
simple criterion for channel initiation as A. = 100 pixels for
all three basins. This criterion is certain to miss the small-
est first order basins in the Tirso basin but the extracted
network, although clipped in its uppermost branches, still
has the right topology.

The extracted stream networks for the three river basins
(using the steepest gradient D8 algorithm) are shown in
Fig. 7. The corresponding dynamic stream networks were
then constructed for each basin, assuming a constant unit
speed of downstream propagation for the fluxes. We thus
analyzed two different kinds of trees, static and dynamic,
for each basin.
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and demonstrate a phase transition phenomenon in the dy-
namics of river networks.

6.1. Self-similarity indices

Figure 8 shows the distributions of the number N, aver-
age magnitude M., and the average number C. of links for
branches of order r for the static trees (panels (a,b)) and
dynamic trees (panels (c,d)) of the three basins.

Despite the usual small-sample fluctuations, the figures
demonstrate a large degree of consistency among the branch-
ing indices. All branching statistics considered are closely
approximated by the Horton laws. Moreover, these results
suggest that the relationship (5) holds in all the cases con-
sidered herein.

We observe that the values of the stream ratios for static
trees are higher than the corresponding values for dynamic
trees. This means that the degree of side-branching (i.e., the
proportion of network branches that merge with branches of
a higher Horton-Strahler order) is larger for static trees than
for dynamic trees.

The only indices that deviate considerably from the Hor-
ton laws at higher orders are C, (the average number of
nodes within an order-r branch) for the Noyo basin’s static
and dynamic trees; this discrepancy warrants further inves-
tigation. Apart from this point, we conclude that both types
of trees, dynamic and static, can be closely approximated by
Tokunaga SSTs; the characteristic indices, however, differ
from one type to the other.

6.2. Phase transition in dynamic trees

Does river network connectivity, in terms of elements of
the network participating in transport, exhibit a phase tran-
sition, with time being the order parameter, akin to those
found in other systems? Figure 9 shows the fractional mag-
nitudes m;/N of the branches in the dynamic trees as a
function of the distance d traveled by the dye. Recall that
this distance can also be interpreted as the time ¢ when the
node was created by merging of upstream branches.

In all three panels we observe the following scenario: We
start at distance d = 0 (or time ¢ = 0) with N branches
(clusters) of unit magnitude corresponding to the network
sources. As distance increases (time evolves), the number
of clusters decreases while their magnitudes become larger
and exhibit substantial variability. In particular, at small
distances the maximal magnitude increases exponentially
with distance; this growth is reflected by an approximately
linear form of an upper envelope of the points in the fig-
ures (envelope not shown). Furthermore, we notice that
at short distances (small times) the magnitude distribution
is “continuous,” i.e. it does not have significant gaps. At
some critical distance d* (time t*), however, the distribu-
tion undergoes a marked qualitative change: a prominent
maximal cluster appears, such that its magnitude becomes
significantly larger than that of the second-largest cluster.
Moreover, while the magnitude of the largest cluster keeps
growing, the rest of the distribution is fading off and so, af-
ter some time, all clusters present at d = 0 merge with the
largest cluster. Still, at the critical distance d*, the mag-
nitude of the largest cluster is just about 10% of the total
magnitude N of the system, and this is the case for all six
panels.

The magnitude distribution of the clusters was analyzed
for d varying from 0 to about 2d*, in both log-log and

6. Branching characteristics of river networks semilogarithmic scales (not shown). Our analysis strongly

In this section we quantify similarities and differences be-
tween the branching topology of static and dynamic trees

suggests that the magnitude distribution at smaller dis-
tances has an exponential tail, while at the critical distance
d* it becomes a power law. This observation is illustrated in
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Fig. 9, panels (b,d,f), which show the magnitude distribu-
tion, in log-log coordinates, at the critical distance d* and
at a shorter distance d & d*/2; those distances are indicated
by vertical lines in panels (a,c,e). Recall that, in a log-log
plot, power-law behavior shows up as a straight line, while
exponential behavior becomes a convex curve. This change
indicates that a phase transition occurs at the distance d*.

This phase transition is further illustrated in Fig. 10,
which shows three snapshots of the dye propagating down
the Noyo basin. The distances traveled by the dye at these
snapshots are marked by vertical lines in Fig. 11; the largest
distance is chosen to be equal to the critical distance d* for
this basin. The figure shows the number of clusters (dot-
ted line) and the magnitude of the largest cluster for the
Noyo dynamic tree (solid line), as a function of downstream
propagation distance. One can easily see how unconnected
clusters suddenly merge together at the critical distance
d* = 1000m. Importantly, the value of critical distance is in-
dependent of the basin order; hence such a merging happens
simultaneously at all the scales (basin orders), constituting
a phase transition.

7. Concluding remarks

7.1. Summary and discussion

In this study we have focused on the statistical description
of environmental transport on river networks. We have ap-
proached the problem by considering downstream transport
on such a network as a particular case of nearest-neighbor
hierarchical aggregation. The so-called ultrametric induced
by the branching structure of the river network provides the
distance function with respect to which the downstream flow
gives rise to clusters that decrease in number and increase
in size with time (see Figs. 10 and 11).

We have described the static topological structure of a
river network by the type of tree structure that goes back
to the pioneering studies of Horton [1945], Strahler [1957],
and Shreve [1966]; this structure has been referred to as a
static tree, to distinguish it from the associated dynamic tree
(Section 3, Figs. 3 and 5). The latter concept helps describe
downstream transport along the static tree.

We have studied the statistical properties of both static
and dynamic trees using the Horton-Strahler and Tokunaga
branching taxonomies. Using the DEM-extracted river net-
works in three river basins (Noyo, Grigno and Tirso) we
have shown that both static and dynamic trees can be
well approximated by Tokunaga self-similar trees (SSTs).
The Horton-Strahler and Tokunaga parameters of these two
types of trees differ significantly, though, for each of the
three basins (Section 6.1, Fig. 8). This difference supports
the relevance of the dynamic tree concept; its parameter val-
ues depict important properties of the envirodynamics on a
given river network that are not captured by the conven-
tional, static tree.

An important new result of this study is the phase transi-
tion we have found in river network dynamics in Section 6.2:
as one fills an empty river network through its sources, or
injects a dye at the sources of a water-filled one, the num-
ber of clusters of connected nodes decreases and the size
of the largest cluster increases, until a dominant cluster of
connected streams forms. During this process, the time-
dependent size distribution of the connected clusters changes
from an exponential to a power-law function as the critical
time approaches (Fig. 9).

This phenomenon, which may seem rather unexpected in
the present hydrological setting, can be better understood
within the framework of complex networks. This framework
has been explored in many natural and socio-economic set-
tings, ranging from the functioning of a cell to the organiza-
tion of the Internet [Albert and Barabasi, 2002; Dorogovtsev
and Mendes, 2002; Newman, 2003].

The mathematical theory of complex networks considers
a group of nodes that can be connected with each other
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according to some problem-specific rules, thus forming a
graph. In the simplest case, the node connections are inde-
pendent of each other and can be specified by the probability
p that two randomly chosen nodes are connected. There ex-
ists a critical value p. such that, for p < p., the network
consists of isolated clusters, while a single giant cluster ap-
pears as p crosses p., and spans the entire network. The
same phenomenon is observed under more realistic rules of
node connectivity as well. The appearance of the giant clus-
ter is remarkably reminiscent of infinite-cluster formation in
percolation theory [Stauffer and Aharony, 1994].

Albert and Barabasi [2002] review parallels and differ-
ences between complex-network theory and percolation the-
ory. The book by Newman et al. [2006] collects the major
papers in complex network theory, while Barrat et al. [2008]
provide an introduction for a readership of physicists, and
Durrett [2007] gives a rigorous mathematical treatment of
the topic.

It readily follows from the analysis of Section 3 that trans-
port on river networks fits rather naturally the complex-
network paradigm. Formally, each stream source is repre-
sented by a node and two streams are considered to be con-
nected when their respective fluxes join downstream. This is
exactly the scheme we used to define a dynamic tree, with
the only difference that we have ignored the connections
between nodes within already formed clusters. This differ-
ence does not affect the process of cluster formation, so the
results of the complex-network theory do apply to enviro-
dynamics on river networks. From this point of view, the
rather sudden formation of the giant cluster and the cor-
responding transition of the cluster magnitude distribution
from exponential to power-law seems rather natural.

There is an important difference, though, between com-
plex networks in general and the dynamic trees considered
in this study. Our dynamic trees, unlike general networks,
are time-oriented, i.e., their nodes can be ordered in “time”
or with respect to a “downstream distance” parameter. The
ultrametric distance along such trees satisfies a stronger tri-
angle inequality than ordinary distance (see Section 4.2),
and thus induces interesting properties [e.g., Schikhof, 2007].
In fact, a set of points in a metric space with a traditional
distance d naturally forms an ultrametric tree according to
the nearest-neighbor clustering procedure described in Sec-
tion 4. Asshown there, hierarchical aggregation via nearest-
neighbor clustering provides a common framework for many
apparently different processes (such as billiards, river trans-
port, and percolation) in the setting of ultrametric trees,
and thus may provide novel insights into these processes.

In percolation models, the cluster-size distribution at
phase transition is given by a power law whose index is a
function of the system’s dimension alone. In our three river
networks, this index differs from one network to another (see
Fig. 9, panels (b,d,f)). We notice that in the hierarchical
aggregation on dynamic trees, different clustering rules may
correspond to different effective “dimensions” of the system.
At the same time, it is known that the critical percolation
indices are universal for systems in high dimensions [Hara
and Slade, 1990] and trees are a simple model for infinite-
dimensional systems [Albert and Barabasi, 2002]. Thus, one
expects to see the same values of the critical indices when
working with percolation on a tree. From this perspective,
the fact that our critical exponents vary from basin to basin
still needs to be understood.

7.2. Further work

In this study we have considered only the simplest clus-
tering rules for river streams: two streams belong to the
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same cluster if there is a connected path from one stream
to another along the river network. This approach is pat-
terned after percolation studies and allows for a straight-
forward treatment. It may result, however, in a situation
when two streams belong to the same cluster despite the
fact that the respective fluxes are not mixed yet: think of
two short streams that merge with a spatially extended clus-
ter at about the same time. Formulating a physically more
appropriate set of clustering rules might yield more realistic
results for a wealth of transport problems related to river
networks.

So far, we have investigated only dynamic trees that have
the same set of sources as the corresponding static tree; do-
ing so is equivalent to injecting a flux through the sources
alone. We emphasize at this point that the present study for-
mulates merely a conceptual model, rather than attempting
to mimic the realistic dynamics of fluxes in river networks.
Indeed, actual precipitation or seepage from groundwater
corresponds to activating multiple internal nodes within the
network, not only its sources. Moreover, it might happen
that a flux of interest is injected exclusively into an internal
node, e.g., an industrial pollutant from a plant or nutrient
production from a local biotic activity. Such situations can
be modeled by considering a dynamic tree whose sources
sample the entire river network. More elaborate models
along these lines are also left to further study.

The flux-propagation model used in this paper is highly
idealized (constant speed) and it only allows for continuous
downstream transport, while real fluxes can violate both of
these assumptions. For instance, sediments can be routed in-
termittently, undergoing several periods of intervening stor-
age before arrival at points downstream. In addition, there
exist upstream extensions of surface flow into headwater val-
leys of zero-order. We notice also that the flux velocity may
depend on slope or other factors, thus violating our assump-
tion of constant transport velocity. These as well as other
extensions of the simple model considered herein can be in-
corporated, in principle, into our general framework. Do-
ing so certainly constitutes an interesting avenue for future
work. It remains, of course, to be seen whether or not any
of these potential extensions affect the main conceptual and
qualitative conclusions of this study.

To construct a richer theoretical framework for envirody-
namics on river networks one may also model the transport
along real and synthetic networks by using Boolean delay
equations (BDEs) [Dee and Ghil, 1984; Ghil and Mullhaupt,
1985]. In BDEs, the discrete state variables describe the
flux through the river branches; naturally, the rules for up-
dating these variables inherit the child-parent relationship
of the stream’s static tree. The parent variables are up-
dated based on the values of the children variables, after
delays that correspond to the time it takes the flux to prop-
agate from a child to its parent. Ghil et al. [2008] recently
reviewed BDEs and their applications to climate and earth-
quake modeling. We expect such models to shed further
light on the complex and important problems of transport
on river networks.
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Appendix A: Hierarchical aggregation and
cluster dynamics: Examples

Among the many instances of the general aggregation
scheme of Section 4, we mention here the following three.

Percolation: In the site percolation process on an L x L
lattice, the initial N = L? particles correspond to the sites of
the lattice, while clusters correspond to connected patches
of occupied sites that are formed during the percolation pro-
cess [Albert and Barabasi, 2002; Zaliapin et al., 2005]. The
same scheme can be applied to bond percolation, as well as
to percolation on grids in higher dimensions.

Billiards: FElastic billiard on a rectangular table can be
used to model gas dynamics in two dimensions (2-D). Here
the initial particles are the N billiard balls (gas molecules)
at time ¢t = 0. Each of the balls is assigned an initial posi-
tion and velocity. The clusters at time A are formed by balls
that have collided during the time interval [0, A] [Gabrielov
et al., 2008]. Formally, two balls are called A-neighbors if
they collided during the time interval [0, A]. Each connected
component of this neighbor relation is called a A-cluster.
Notice that within an arbitrary A-cluster each ball has col-
lided with at least one other ball during the time interval
[0, A]. In other words, a A-cluster is a group of balls that
have affected each other’s dynamics during the time interval
of duration A. The mass of each cluster is simply the total
number of balls within that cluster. Upon many collisions
of the balls, the whole system will be composed of clusters
of different sizes. As time evolves, the number of clusters
will decrease and their mass increase.

The same scheme can be applied to a system of particles
that interact according to some potential U(x). Bogolyubov
[1960] suggested that when the interaction of particles is re-
stricted to the near field, the system can be decomposed
into finite clusters so that during some random interval of
time, each cluster moves independently of other clusters as a
finite-dimensional dynamical system. After this time inter-
val, the system can be decomposed again into other dynami-
cally independent clusters and so on. This type of dynamics
is called cluster dynamics and Sinai [1974] showed analyt-
ically that it exists in a one-dimensional (1-D) system of
statistical mechanics. Numerical results of Gabrielov et al.
[2008] describe the presence and various properties of cluster
dynamics in a 2-D system of hard balls.

In the metric setup of Section 4.2 for the billiard dy-
namics, the space S is the set of N billiard balls and the
distance function d(a, b) equals the time before the first col-
lision of the balls a and b. Naturally, this distance depends
on the initial positions and velocities of the two balls a and
b, but it is also affected by the global billiard dynamics: our
two balls may be set to collide at a given time t* in the
absence of other balls, but may be hit by some other ball
at time ¢ < t*, thus postponing the collision. The ultra-
metric distance u(a,b) equals the time before both a and b
belong to the same dynamic cluster. It is readily seen that
u(a,b) < d(a,b) since two balls do not have to collide to be
within the same cluster; yet a collision necessarily puts them
into the same cluster.

Phylogenetic trees: Probably the best-known appli-
cation of hierarchical aggregation is in constructing phy-
logenetic trees that describe the evolutionary relationships
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among biological species [Maher, 2002]. Here, a node cor-
responds to a set of species. Two species are connected if
they have a direct common ancestor; the link length from
a species to its direct ancestor equals the time it took to
develop the descendant species from that ancestor.
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h  Source (leaf)

Stream junction (node)

Link (edge)
Outlet (root)
(a) River network (b) Corresponding tree

Figure 1. Tree representation of a river network: (a)
hypothetical river network; and (b) its representation by
a binary tree. The network sources and the respective
tree leaves are marked by the same letters in both panels.
The figure also illustrates the terminology used in our
river transport study.

11 11
12
11 1
22
22
(a) Horton-Strahler orders (b)Tokunaga indices

Figure 2. Example of (a) Horton-Strahler ordering, and
of (b) Tokunaga indexing of a static tree Ts. Two order-
2 branches are depicted by heavy lines in both panels.
The Horton-Strahler orders refer, interchangeably, to the
stream junctions or to the immediate downstream links.
The Tokunaga indices refer to entire branches, and not
to individual links; these indices are shown next to the
last downstream junction on each branch.
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Figure 3. Constructing a dynamic tree Tp. The initial
static tree Tg and the final dynamic tree Tp are shown
in the rightmost pair of panels. The dynamic tree re-
flects the propagation of a flux from the sources to the
outlet of the static tree, at a constant velocity. The top
row of panels shows the static tree at different steps of
this process; for visual convenience we explicitly show the
static tree’s link lengths. The bottom row shows the cor-
responding phases of the dynamic tree. The top leftmost
panel indicates the lengths of the links in the static tree;
each step in the figure takes one time unit, that is the flux
propagates one unit of length downstream. See Section
3.1 for details.

Figure 4. Stream network for an order-3 subbasin of
the Noyo river, Mendocino County, California. The lo-
cation of this subbasin is shown in Fig. 7(a); sources are
marked by numbers (1 to 15), and stream merging points
by letters (a to n). The same marks are used in Fig. 5
below, which shows both the static and the dynamic tree
for this subbasin.
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Figure 5. The static and the dynamic tree for the Noyo

subbasin of Fig. 4. (a) Static tree Ts, and (b) dynamic

tree Tp. Letter and number markings are the same as in

Fig. 4.
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Figure 6. Three snapshots of the evolution of the dy-
namic tree (heavy solid lines) on the static tree (light
solid lines) for the stream network of Fig. 4.
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(a) Noyo

(b) Grigno
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Figure 7. Stream networks of the three basins analyzed
in this study, shown as static trees; outlets are marked
by black dots. (a) Upper Noyo basin, Mendocino County,
California, USA; the outlet is located at 39°26’ N, 123°45’
W, and the order-3 subbasin of Figs. 4-6 is outlined by
a small, light rectangle in the panel’s lower-right (i.e.,
southeastern) corner. (b) A part of the Brenta basin, at
the confluence with the Grigno river (called here Grigno
basin), Trento, Italy; the outlet is located at 40°00'04.96"
N, 8°49'59.26" E. (c) Tirso, Sardinia, Italy; the outlet is
located at 46°00'28.40” N, 11°38'21.55" E. See Section 5
for details of channel initiation.
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Figure 8. Branching statistics for the stream trees of
the Noyo, Grigno, and Tirso basins, shown in Fig. 7.
(a,c) Number N, and average magnitude M, for (a) the
three static, and (c) the three dynamic trees; and (b,d)
average number C,. of links within a branch for (b) static
and (d) dynamic trees.
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Figure 9. Phase transition in river network dynamics.
(a,c,e) Fractional branch magnitudes m;/N as a function
of the distance d; traveled by the dye at the instant of
branch creation. (b,d,f) Distribution of branch magni-
tudes m; at the critical distance d* (circles) and at an
earlier time, given by d (squares), for the dynamic trees
of the three basins. Each of these panels shows two dis-
tributions, at distances d* and d < d*, respectively; the
corresponding distances are depicted by vertical lines in
panels (a,c,e). The downward deviations from pure power
laws are due to the finite-size effect. (a,b) Noyo stream;
(c,d) Grigno stream; (e,f) Tirso stream.
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Figure 10. Transport down the Noyo stream net-
work. Three snapshots of flux propagation from the
stream sources to the outlet, at (a,d) d = 200 m; (b,e)
d = 500 m; and (c,f) d = 1000 m. Panels (a)—(c) show
the entire Noyo basin, while panels (d)—(f) zoom onto an
order-4 subbasin located in the basin’s southeastern part.
This order-4 subbasin encompasses the order-3 subbasin
shown in Figs. 4-6; its location is depicted by a light
rectangle in panel (c¢). See also Fig. 11.
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ABSTRACT

Hillslopes are typically shaped by varied processes which
have a wide range of event-based downslope transport
distances, some of the order of the hillslope length itself.
We hypothesize that this can lead to a heavy-tailed
distribution of displacement lengths for sediment particles.
Here, we propose that such a behavior calls for a non-local
computation of the sediment flux, where the sediment flux
at a point is not strictly a function (linear or nonlinear) of
the gradient at that point only but is an integral flux taking
into account the upslope topography (convolution Fickian
flux). We encapsulate this non-local behavior in a simple
fractional diffusive model which involves fractional
derivatives, with the order of differentiation (1< a <2)
dictating the degree of non-locality (¢ = 2 corresponds to
linear diffusion and strictly local dependence on slope).
The model predicts an equilibrium hillslope profile which is
parabolic close to the ridgetop and transits, at a short
downslope distance, to a power law with an exponent equal
to the parameter « of the fractional transport model.
Hillslope profiles reported in previously studied locations
support this prediction. Furthermore, we show that the
non-local transport model gives rise to a nonlinear
dependency on local slope, and that variable upslope
topography leads to widely varying rates of sediment flux
for a given local hillslope gradient. Both of these results
are consistent with available field data and suggest that
non-linearity in hillslope flux relationships may arise in part
from non-local transport effects in which displacement
lengths increase with hillslope gradient. The proposed
hypothesis of non-local transport implies that field studies
and models of sediment fluxes should consider the size and
displacement lengths of disturbance events that mobilize
hillslope colluvium.

1. Introduction

In absence of overland flow-driven or wind-driven
transport, the movement of soil on landscapes requires
some kind of disturbance (Figure 1). This disturbance arises
in many ways—Ieading to a wide range of length scales of
displacement. In clay-rich soils mantling sloping
landscapes, periodic wetting of the ground may cause
swelling and downslope flow, but even as the soils remain
wet, progressively increasing grain resistance may halt
motion. Drying and cracking then resets the contacts and
allows another period of flow in the next wet season

[Fleming and Johnson, 1975]. This cycle operates over
some length scale of displacement.  Simple wetting
expansion and drying collapse through a season can
incrementally shift near surface soils short distances
downslope [e.g., Kirkby, 1967]. Seasonal cycles of
movement by ice-driven processes shift soils and during
spring melt can give way as continuously moving
solifluction lobes which may carry soil a considerable
distance even on gentle slopes [e.g., Washburn, 1973].
Biota work the soil at a wide range of scales, leading to
dilation and displacement downslope. Insects and worms
may cause minor local displacement but through their
persistent and pervasive activity cause significant
movement [e.g., Darwin, 1881]. Burrowing animals can
make an extensive network of tunnels and push piles of dirt
meters downslope. The collapse of large trees may rotate
and expose their root system and displace clumps of soil
meters downslope [e.g. Norman et al., 1995; Gabet et al.,
2003]. The exposed, locally-steep, tree throw mound and
the smaller annual burrow mounds are sites of accelerated
rain splash, raveling and fine scale biotic disturbance. In
effect, the biotic roughening of the ground surface by the
local mound formation leads to accelerated soil movement.
On sufficiently steep granular soils, fire may suddenly
remove particles stored behind fallen woody debris and
unleash particles to ravel downslope [e.g., Roering and
Gerber, 2005], sometimes tens of meters. Shallow
landslides may also initiate, mobilize, and redeposit on
hillslopes. Soil movement, then, arises through the sum of
stochastic processes, influenced by seasonal and biotic
cycles, the integral of which is a net flux of soil which
tends to increase with increasing hillslope gradient. The
individual particle step lengths resulting from disturbances
will vary greatly.

On gentle hillslopes there is field evidence [e.g.,
McKean et al., 1993] that the mean soil transport varies
linearly with local gradient. On steeper slopes, however,
theory and limited observations suggest that transport
increases non-linearly with slope [e.g., Roering et al.,
1999]. Increasing field and theoretical evidence indicates
that flux also depends on active transport depth [Heimsath,
et al., 1999; Roering, 2008, Furbish et al., in this volume].
In particular, Furbish et al. [in this volume] show that a
diffusivity-like coefficient which takes into account the
local slope-depth product produces a sediment flux which
varies linearly with local gradient. Both linear and non-
linear flux laws assume that transport depends on some



“local” slope, although we lack theory for what sets the
length scale over which that slope should be determined.
The disturbance by biota creates an irregular ground
surface, with locally steep piles of loose soil that diffuse
downslope across the mean slope (Figure 1).  Hence, the
slope at any point may not represent the actively
contributing slope-driving processes, and cannot account
for travel distances resulting from disturbances. If we could
monitor every particle on a hillslope where these
disturbance-driven processes (often placed together under
the term “creep”) occur, it is possible that long transport
events occur with a finite, non-vanishing, non-
exponentially decaying probability such that the pdf of
transport distances is heavy-tailed [e.g., Tucker and
Bradley, 2009 this issue]. This conception of soil transport
may not be well represented by a transport expression that
relates flux to a “local” slope. Moreover, the possibility of
heavy-tailed particle travel histories makes selecting a
meaningful mean slope for the application of such local
laws problematic. To date, empirical fitting procedures
(reducing variance by increasing the length scale of
averaging while trying to maintain local profile curvature)
have been used for the estimation of the mean slope;
common methods include polynomial fitting and Gaussian
filtering (e.g., Roering et al., 1999; Lashermes et al., 2007)
Here we propose an alternative formulation of
sediment transport on hillslopes which relies on the notion
of non-local computation of sediment flux, reflecting the
fact that mass flux at a point on the hillslope is being
influenced by disturbances well upslope and not simply
linked to local slope (and soil depth). Our analysis may
also explain the variance in flux rate for a given local slope
observed in some studies. Our theory, although not derived
from physical considerations (e.g. involving balances of
forces and resistances), presents a general mathematical
framework within which the upslope influences to the
sediment flux at a given point can be cast into a continuum
constitutive law for sediment transport. Specifically, we
propose a non-local formulation of transport laws which
relies on an integral (non-Fickian) flux computation which
explicitly takes into account the upslope topography from
any point of interest. The proposed non-local transport
model includes linear-diffusive transport as a special case.
The paper is structured as follows. In section 2, we
formulate the non-local constitutive law for sediment
transport on hillslopes and in section 3 we derive its steady-
state equilibrium profile under appropriate boundary
conditions. In Section 4 we interpret observed hillslope
profiles in the Oregon Coast Range, in the Appalachians of
Maryland and Virginia, and east of San Francisco
(California) within the non-local transport formulation. In
section 5 we compare the linear, non-linear and non-local
transport models in several ways. The most important
result is that the linear non-local model gives rise to a non-
linear relationship between sediment flux and local slope,
akin to that observed on steep slopes. In section 6 we

demonstrate that applying the non-local flux model to an
ensemble of hillslope profiles produces significant
variability of sediment flux for a given value of local slope
as a result of variations in upslope topography. In section
7, we discuss the relationship between the shape of the
probability density function of the sediment displacement
lengths (which dictate the microscopic behavior of the
transport process but which are typically not measured) and
the parameter ¢ of the non-local transport model (which
describes the macroscopic properties of the transport). In
section 8 we present some preliminary thoughts as to the
ability of the non-local transport formulations to
circumvent the scale-dependence of sediment flux
computed using local, non-linear models. We conclude that
our model shows the possibility that non-local sediment
transport processes may be important on hillslopes and
warrant more consideration both in field studies and
theoretically. Our model anticipates more process-based
considerations that would account mechanistically for
biotic disturbance and it suggests that models for transport
and weathering of colluvial soils and geochronological
analysis of particles on steep hillslopes should consider the
possible effects of non-local transport.

2. A non-local constitutive law for hillslope sediment
transport: Convolution Fickian flux
The simplest sediment flux law, proposed by Culling
[1960] in analogy to Fick's law of diffusion, expresses
sediment flux as proportional to the topographic gradient:
g (x) = =K Vh(x) @

where ¢, (x) is sediment flux (volume per unit time per

unit width: L*/L/T ) at location x (where xis distance

from the ridgetop), K is the diffusivity coefficient (L* /T
) and h(x) is the surface elevation with respect to a datum.

It is easy to show (e.g. Howard, 1994) that substituting (1)
in the continuity (Exner) equation:

h
—=pU-pV. 2
Pz =PY =PV @

where p. and p, are the bulk densities of sediment and

rock respectively and U is the rock uplift rate, results in the
linear diffusion equation:

a_ U +KV?h A3)
a

where we have assumed for simplicity that the bulk
densities of rock and sediment are the same (which is
almost never the case) and have ignored chemical erosion.
(Note that equation (3) can also be derived using a moving
coordinate system of erosion driven by diffusive transport
in which the uplift term enters as a lower boundary
condition.) If the rate of surface erosion is approximately
balanced by the rock uplift, i.e., dynamic equilibrium

[Gilbert, 1909; Hack, 1960], then oh/ot ~0 and the



steady-state 1D case can be written as:
h d? h U
— 0 —
a a2 K
Integrating twice and imposing the boundary conditions:

U

(4)

h(0)=H,, = K —° 5
dn| . ©)
dx|,_,
such that h(L) =0 (river edge), the solution is given by:
U
h(x)=H x? 6
(X)=Hyp — K" (6)

for 0<x<L [eg. Koons, 1989]. Furthermore, the
properties of the equilibrium hillslope profiles predicted by
linear diffusion are: (a) linear increase of local slope with
downslope distance, and (b) constant curvature along the
hillslope profile.

The underlying assumption of a classical diffusion
equation is that the step lengths of sediment particles,
defined as the distances traveled by the particles once
entrained until they are deposited again on the surface, have
a thin-tailed (e.g., exponential or Gaussian) distribution
[e.g., Ganti et al., Schumer et al., in this volume].
However, for the reasons discussed in the introduction, the
distribution of step lengths of sediment particles may be
heavy-tailed, i.e., they have a small but significant chance
of traveling a large distance downslope. In such cases, the
sediment flux at a point xhas a significant contribution
from a large upslope distance and thus a local computation
of flux, such as that of equ (1), is no longer appropriate.
Recently, a particle-based model for sediment transport on
hillslopes was developed based on a plausible set of rules
capturing disturbance-driven transport processes and it was
shown that a heavy-tailed step length distribution can
emerge due to the interactions between these disturbances
and microtopography [Tucker and Bradley, in this volume].
Here, we develop a continuum constitutive model for such
a behavior. Specifically, we propose a notion of non-local
sediment flux which takes into account the heavy-tails in
step lengths of sediment particles by expressing the
sediment flux at a given point as a weighted average of the
upslope topographic attributes:

g (x) =K .T g(DVh(x —Nydl

0
where @, (X) is sediment flux (volume per unit time per
unit width: L*/L/T ) at location X (where X is distance
from the ridgetop), K is the diffusivity coefficient, h(X)
is the topographic elevation at location X, and g(l) is a

kernel performing a weighted average of local gradients
upslope of the point of interest X as they contribute to the
sediment flux at the point X (Figure 1) . This is a special

(7)

case of the more general convolution Fickian flux laws
[Cushman, 1991, 1997]. It has been shown [Cushman and

Ginn, 2000] that when the weighting function g(I) has no
characteristic length scale, i.e., when g(l) decays as a
power law with the lag |, g(l) ~ , (5) takes the form
of a fractional derivative:

g, (x) = —K'V*h(x) ®
where o €(1,2]. Substituting (8) in the continuity

equation (2) and making the assumption that bulk densities
of rock and sediment are equal, leads to a fractional
diffusion equation:
ch .

E =U+K'V?h 9)
The order of differentiation, «, directly relates to the
heaviness of the distribution of step lengths [Meerschaert et
al., 1999, 2001; Schumer et al., 2001, Schumer et al., in this
volume] and 1< a <2 implies a distribution of step
lengths with a finite population mean but infinite
population variance (sample variance that diverges unstably
as the number of samples increases) [Lamperti, 1962],
resulting in an accelerated diffusion (super-diffusion). It is
noted that for o =2, (8) becomes the standard Fickian flux
(1), and (9) collapses to the linear diffusion equation (3).

The concept of non-local transport, implemented via
fractional derivatives or Continuous Time Randon Walk
(CTRW) models, has been extensively used in other fields
of study, such as subsurface transport [e.g., Benson et al.,
2000a; Berkowitz et al., 2002], transport of pollutants in
rivers [Deng et al., 2005, 2006], hydrodynamics [e.g.,
Metzler and Compte, 2002], statistical mechanics [e.g.,
Bouchaud and Georges, 1990; Pekalski and Sznajd-Weron,
1999; Sclesinger et al., 1995], molecular biology [e.g.,
Campos et al., 2005] and turbulence [e.g., Biler et al.,
1998; Woyczynski, 1998]. Recently, it has been used in
geomorphology to encapsulate the non-locality of bed
sediment transport along bedrock channels [Stark et al.,
2009] and to model the anomalous diffusion of tracer
particles in gravel streams and sand- bed rivers [Ganti et al.
2009; Bradley et al., 2009; in this volume]. A review of the
application of partial fractional differential equations to the
transport of solutes and sediment can be found in Schumer
et al. [in this volume].

|2—a

3. Equilibrium hillslope profiles for non-local transport
In order to derive the equilibrium hillslope profile
for the fractional diffusion equation (9) we note that under
dynamic equilibrium, the steady state 1D equation can be
written as:
h 0o d“h U 10)
a dx* K’
The two most commonly used definitions of a fractional
derivative are the Riemann-Liouville and the Caputo forms
[Miller and Ross, 1993]. These forms differ from each
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other in that the Riemann-Liouville definition expresses the
fractional derivative as an integer order differential of a
fractional integral (equation 11a), whereas the Caputo
definition expresses the fractional derivative as a fractional
integral of an integer order derivative (equation 11b):

dh _d" ..,
v dxn(lx h(x)) (11a)
d*h .. d”h(x)]

=1 11b
(o) G dx" (b)

where N is an integer such that n—1<a<n and
I, 7“() is a fractional integration operator of order N — c.
This distinction is important in the case of boundary-valued
and initial-valued problems as the Riemann-Liouville
definition requires the calculation of the derivatives of the
fractional integrals of the function at the initial value,
whereas the Caputo definition only requires the calculation
of initial values of the function and its integer derivatives
[see Voller and Paola, in this issue for a detailed
discussion]. It is further worth noting that the Caputo-
fractional derivative (equ 11b) of a constant is zero, and in
this form a fractional integral and a fractional derivative are
commutative, whereas the Riemann-Liouville fractional
derivative (equ 1la) of a constant is a power law.
Specifically, the « -order fractional integral of a constant ¢
is a power function:

i
=

where 1/{}is the fractional integral operator of order «,
cis a constant and I() is the gamma function.
Implementation of the fractional derivative on a finite
domain 0<x<L with boundary conditions, requires
defining the functional value h(x) beyond the left

boundary, that is for x < 0. In a boundary-valued problem,
the Caputo-form of the fractional derivative assigns the
values of the function (in this case h(X)) beyond the
boundary to be equal to the value of the function at the
boundary, i.e., it inherently assumes that h(—o0) up to
h(0) are assigned the value of h(0)=H,,. This,

however, is physically unreasonable as no sediment is
supplied at the ridge from any point beyond the ridge. In
order to circumvent this issue we numerically evaluate the
steady-state equilibrium hillslope profiles predicted by
equation (10).

A fractional derivative can be discretized using the
one-shift Grinwald expansion [Meerschaert and Tadjeran,
2004]:

d“h(x) =1
dx” AX“
where @, are the one-shift Grinwald weights, AX is the
spatial step-size in the numerical implementation, N is the
number of node points upslope of the given point and

(12)

N
> gh(x —kAX + AX)

k=0

(13)

l<a <2 is the order of differentiation. The Griinwald

weights are given by the following expression [Griinwald,

1967; Meerschaert and Tadjeran, 2004]:
I'k—-a)

9 T T Cark+1 (14)

Imposing the boundary conditions:
U
h(0O)=H, =——L*
(©)=He, I+ a)K
(15)
L
dX x=0 -

such that h(L) =0 at the river edge, and imposing an
additional condition that
h(x)=0 for x<0

(since there is no sediment supply to the domain from any
point beyond the ridge), one can solve numerically for the
steady-state equilibrium hillslope profiles predicted by
equation (10). Figure 2a shows the hillslope equilibrium
profile for fractional transport with degree of non-locality
a=1.5. Itis noted that the hillslope profile is parabolic
close to the ridge and transitions to a power law with an
exponent of ¢.

It is worth noting that under the Caputo form of the
fractional derivative (which assumes that the values of
h(x)=H,, for x<0), equ (10) can be solved

analytically. The analytical solution of equation (10) with

the boundary conditions (15) and h(x) = H,,, for x<0is
given as:
U a
h(x)=H (16)

_—*X
P Tl+a)K
where X is the horizontal distance from the ridgetop, and
H. s the elevation of the ridgetop. As shown in Figure

2(b), this solution is reached in the numerically evaluated
profile (which assumes h(x) =0 for x <0) only at a finite

distance downslope of the ridge when enough upslope
topographic distance exists for the non-local contribution to
substantially contribute to the sediment flux at a given
point. Hence overall, the steady-state hillslope equilibrium
profile is parabolic near the ridgetop and becomes, shortly
after, a power law profile with an exponent ¢ (given by
equation (16)). Further, we note that the steady-state
solution to the fractional diffusion equation predicts power
law relationships of local gradient and curvature with
downslope distance given by:

—Vh ~ x*?

top

17

VZh ~ x“? (18)
That is, the fractional flux law predicts that curvature
downslope of the ridge is not constant but decreases with
downslope distance in a manner dictated by the exponent



« (such a decrease has been documented, for example, in
field observations in Roering et al. [1999]). For « =2 the
non-local transport model reproduces the linear profile in
gradient and constant curvature with downslope distance, as
expected for linear diffusive transport, while values of o
between 1 and 2 give the flexibility of reproducing a suite
of observed hillslope profiles. In the next section, we
analyze field data from several real hillslopes and show that
they are consistent with the non-local hypothesis of
sediment flux.

4. Observed hillslope profiles interpeted within the non-
local transport theory

The one-dimensional non-local theory presented here
applies to hillslope profiles in which transport is assumed to
be only along that profile, i.e., a one-dimensional
approximation. Hillslopes, however, typically have
significant contour (planform) curvature (i.e. ridges and
hollows) and at steady state such curvature can
accommodate the increasing soil production that must be
carried downslope such that a single profile along the
hillslope can be straight even in the case of linear flux-
dependent transport and spatially constant erosion rates.
Only a few detailed studies of hillslope form and process
have been reported on hillslopes without significant
planform curvature. Here we re-examine three well-known
study sites (one clearly lacking planform curvature) and
interpret them within the proposed non-local flux theory.

Roering et al. [1999] motivate their work on non-
linear flux laws by reporting hillslope profiles in the
Oregon Coast Range that clearly deviate from parabolic
shape or constant curvature. Their study site experiences
large scale disturbances due to massive tree throw mounds
(Heimsath et al, 1999), mammal burrowing and periodic
fire (Roering and Gerber, 2005) and there is evidence for
approximate steady state with considerable local variation
over timescales of hillslope soil adjustment and develoment
(Roering, et al., 1999; Heimsath et al., 2001; Reneau and
Dietrich, 1991). One of their profiles is shown in Figure
3(a) and the log-log plot of elevation fall versus horizontal
distance (Fig. 3b) suggests a slope of 1.3 for distances
beyond 10 m downslope of the ridgetop and a slope of 2
close to the ridge (only 3 points are shown in Fig 3b at
distance 0 to 10 m, but the slope of 2 is supported by more
points obtained from the interpolated profile shown by the
dashed line in Fig. 3a). This profile is consistent with the
non-local flux hypothesis and suggests that the non-local
transport model proposed herein might be an alternative to
the non-linear model of Roering et al. [1999]. The
conceptual bases of these two models are fundamentally
different as they hypothesize different mechanisms of
erosion and transport. This profile will be further analyzed
in the next section.

In their seminal paper on the geomorphology and
forest ecology of the Shenandoah River area of Virginia,
Hack and Goodlett [1960] report the result of plotting fall

against distance for both their intensely surveyed study site
and for a broad survey of 27 hillslopes in the Appalchians
in Maryland and Virginia. They propose that the many
regularities of the landforms and soils in the studied regions
suggest steady-state landscape adjustment. Ignoring the
data points close to the divide, they report log-log linear
profiles with a slope of 1.23 for the survey site and values
ranging from close to 1 up to 1.7 for Maryland and
Virginia. It is not clear how the broad survey data were
collected (in the field versus from available topographic
maps), nor whether they avoided slopes with planform
curvature, but it is worth noting that the profiles do not
include data points near the divide. They conclude that
steeper hillslopes are generally straight (& values close to
1) and gentle ones more curved (« values closer to 2).
Within our theory, this would suggest non-local transport
on steeper hillslopes and local transport (linear diffusion)
on gentle slopes. Hack and Goodlett’s [1960] describe soil
transport as being driven by “growing roots, burrowing
animals, falling raindrops, frost, tree blowdowns and the
like” (p. 58). These processes would create a wide range of
transport distances for a given slope. Specific localities and
erosion rates for the hillslope profiles are not reported, so
we must consider this suggestion as only a possibility, not
an established condition.

McKean et al. [1993] selected a hillslope transect
with minimal planform curvature in the grasslands east of
San Francisco, CA underlain by marine shales and
documented soil transport rates using *°Be concentrations in
the clay-rich soils (Figure 4). From analysis of three soil
pits within the first 35 m of hillslope length (from the
ridge) they found evidence for a linear flux law and
quantified the diffusive rate constant K (i.e. equation 1).
The soil transport occurs by seasonal creep of the high-
plastic clay with biogenic transport being of some
importance near the divide. Soil thickness varies inversely
with curvature, consistent with a balance between soil
production and linear transport [Yoo et al., 2005; 2006].
The thickness is about 40 cm near the ridge and then
increases downslope. Boundary conditions (channel
incision rate and history) strongly influence hillslope
profiles and at this study site the hillslope terminates in a
broad, aggraded valley, which has led to a break in slope at
the base of the hillslope and progressive thickening of soil
towards the valley axis [Yoo et al., 2005]. Both Yoo et al.,
2005 and McKean et al. 1993 suggest that the upper
smoothly convex hillslope could be at approximate steady
state erosion, that is, the effect of stabilization of the lower
boundary has not reached to the divide.

We used the survey data collected by McKean et al.
[1993] to construct the longitudinal profile reported in
Figure 4a. By plotting on a log-log scale the elevation fall
versus horizontal distance from the ridge (Figure 4b) we
observe a slope of ~ 1.8 from a distance of 8 m from the
ridgetop up to approximately 25 m downslope; in the first 8
m from the ridgetop one would expect a parabolic profile
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(slope of 2). The hillslope rapidly flattens upslope from 8
m and the available survey data do not provide adequate
constraint on the profile shape. The gentle hillslope
gradient and high clay content (which favors creep) and the
dry, grassy, relatively low biota mantle on the convex
hilltop all would favor an almost local transport, and the
slope value of 1.8 extending for the first 25 m is consistent
with this expectation. Downslope of 50 m to the lowest
portion of the hillslope surveyed the slope of the power
law plot of elevation against distance is ~ 1.2. This
transition is not consistent with the non-local flux law of
a =1.8discussed above; rather the bottom part of the
hillslope is interpreted as experiencing a change from net
erosion to progressive soil accumulation (due to lower
boundary conditions) and field observations support this
interpretation. This example illustrates that the non-local
flux theory can also be used as a diagnostic tool for
inferring process from form and further motivate data
collection to test alternative hypotheses.

5. Nonlocal versus nonlinear flux: Same behavior for
different reasons
5.1. Nonlinear transport model as an emulator of
super-diffusivity

Deviation from purely diffusive behavior in many
hillslopes has prompted the development of more complex
transport laws which have a nonlinear dependence on
topographic gradient. A review of several of these laws can
be found in Dietrich et al. [2003]. For example, for soil
mantled hillslopes, Roering et al. [1999] proposed the
following flux equation [see also Andrews and Buckman,
1987; Howard, 1994]:

=K—th (19)
1-(Vhl/s,)

where ( is the sediment flux calculated at a point via the

!
S

non-linear flux law, K is the diffusivity coefficient and S,

is called the “critical gradient”. It is noted that the above
equation imitates a super-diffusive behavior, that is, close
to linear diffusion at low slopes and accelerated diffusion at
high slopes. Although this can be directly seen from (19),
it is interesting to see it from a different perspective. By
substituting (19) in (2) and performing a Taylor series
expansion we obtain;
2
D kv +Kv—2h(|Vh|)2 +o.
a S
The second term in the RHS of (20) shows that the
nonlinear transport law of (19) captures the super-diffusive
behavior at high slopes by enhancing the regular diffusion
with the addition of a term that has an explicit non-linear
dependence on gradient. The gradient in the above
equation is “local”. We propose that such super-diffusive
behavior in steep hillslopes can be addressed using non-
local transport laws, which are linear (i.e., they involve

(20)

only linear combinations of local gradients) but take into
account that disturbances contributing to sediment flux at a
point of interest have an origin far upslope of that point. It
is interesting to note that the proposed non-local flux law
gives rise to a non-linear dependence of sediment flux on
the local gradient at any point (this will be presented in the
next section) but for reasons different than the explicit
quadratic dependence of flux on local gradient as in
equation (20).

5.2. Nonlocality gives rise to a nonlinear dependence of
flux on local gradient

We use the Roering et al. [1999] hillslope profile
from the Oregon Coast Range to illustrate the computation
of the sediment flux from the nonlocal transport model of
(8) and compare it to those of the linear (1) and nonlinear
(19) models. In order to have a continuous set of elevation
data points over the domain of interest, the observations
were interpolated using a spline as shown in Figure 3a with
dashed lines.

The computation of the fractional flux was
performed on a discrete grid of size AX by the Grinwald-
Letnikov discrete approximation of the fractional integral
operator given as [Grinwald, 1967; Podlubny, 1999]:

X/ Ax
VeIh(x) = 129{Vh(x)} = lim (Ax)H%%Vh(xMx) (21)
It is noted that writing the fractional flux as a fractional
integral of the local slopes (first equality in the above
equation) is enabled by use of the Caputo definition of the
fractional derivative (equation 11b).

The parameters chosen for the three flux laws
(linear, non-linear and non-local) are

K =0.0015m°/yr, S . =14, «a=15

K™ =0.0007m” / yr. The model parameters for the

non-linear flux law are chosen from the ones calibrated for
Oregon Coast Range in Roering et al., [1999]. For the non-

local flux law, « is set to 1.5 and K is chosen such that
all the three flux laws show a similar increase in sediment
flux with slope at lower gradients. This is done in order to
study the effect of the three flux laws at the higher
gradients. Figure 5 shows the sediment flux computed
using the three different flux laws. The sediment flux
computed from the non-local transport law (8) shows a
similar behavior as the non-linear, local transport law (equ.
19), with enhanced diffusion at higher gradients. Hence, a
non-linear relationship between sediment flux and local
gradient can also arise from a non-local, linear flux model.
It is emphasized that in a real hillslope, the parameters K

for the non-linear model and K for the non-local model are
obtained via calibration; the unfamiliar units of K’
(L*/T) are not an issue and simply reflect that the
quantity (K't)"“ maintains the units of length (length
scale of diffusion) in analogy to the quantity (Kt)"*for

and
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standard diffusion [e.g., see Benson, 1998].

5.3. Non-locality and upslope “region of influence”

The non-local transport law differs from any local
transport law (linear or nonlinear) in that in the former, the
sediment flux contribution to a given point on the hillslope
is computed from a weighted average of the topographic
gradients upslope of that point. Therefore, unlike the local
transport laws, the non-local transport law has a “memory”
of the upslope topography. Although the power law kernel
g(l) of the non-local integral flux (equation 7) implies

lack of characteristic scale over which the averaged
gradient is computed, we take the liberty below to introduce
a cut-off scale in order to illustrate this upslope influence
effect. Specifically, we introduce a physically tangible
measure of non-locality for the computation of sediment

flux by defining an influence length, L, as the distance
upslope from a given point, beyond which the contribution
of the sediment flux is less than 10% of the total, ie., L,
is defined by the equation:

K*LJ' g(hHVh(x - I)dl ~ 0.9¢ (),

l<a<?2 (22)
where g(l) ~ 1°°* are the weights given to the gradients

uplsope and q: is the non-local flux calculated by (8). The

cutoff of 10% is chosen here arbitrarily to illustrate the
behavior of non-local flux and it can be chosen to be lower
or higher depending on the problem at hand.

The influence length was calculated for the Roering
et al. [1999] profile from equation (22) for three different
values of ¢ and is shown in Figure 6. The degree of non-
locality increases with a decrease in « , i.e., the closer the
value of « is to 1.0 the more non-local the transport is

compared to a value of o closer to 2. As expected, a
higher degree of non-locality results in a larger value of L

as seen in Fig. 6. For a =2, equation (25) is not
applicable for computation of the influence length. In this
case, the step lengths have a thin-tailed distribution whose
characteristic scale (standard deviation) can be used to
define the influence length.

6. Non-locality naturally reproduces spatial variability
of sediment flux

In the previous sections, all the flux laws were
discussed in the context of a single hillslope profile.
However, even in a small hillslope, there exists
considerable variability in the form of hillslope profiles
which results in a considerable variability in the observed
sediment flux. This flux variability was documented in
Roering et al. [1999] for the MR1 basin of Oregon Coast
Range. They computed the sediment flux using:

a

qs — U &_

p. b

where U is the constant rock uplift rate, p, and p are

(23)

bulk densities of rock and sediment respectively, and a /b
is the drainage area per unit contour length, and compared it
against the flux computed from their non-linear transport
model. Figure 7 (reproduced from Roering et al. [1999])
shows the spread of the computed sediment flux as a
function of gradient. Notice that for a given gradient, say
for a gradient of 0.8 there is an order of magnitude
variability in the computed flux. To describe this
variability with the non-linear law, equation (19), the
calibrated parameters of the model had to vary

considerably: K =0.0015m*/yr to 0.0045m*/yr
and S, =1.0 to 1.4 as reported in Roering et al. [1999].

We note that S, is a calibration parameter which was

attached a physical meaning of a critical slope and was
related to the angle of repose in Roering et al., [1999]; later
in Roering and Gerber [2005] it was proposed that K
increased and S, decreased in response to forest fire.

Here we pose the hypothesis that a non-local
transport model can capture the observed variability of
sediment flux within a given hillslope by a single or very
narrow range of parameters, unlike any local transport law.
To test the hypothesis, we generated a set of hillslope
profiles using different cubic polynomials (see Figure 8) to
imitate the natural variability of hillslope profiles within a
small basin. Along those profiles the sediment flux was
computed using the non-local, linear flux model (equation
8) and local, non-linear flux model (equation 19). Figure 9
shows the computed sediment flux as a function of the local
gradient. The non-local transport law with a single set of

parameters K" and « produces a variability of sediment
flux for a given gradient comparable to that observed in real
hillslopes (Fig. 8). However, the local transport law cannot
reproduce this variability with a single set of parameters K
and S, but requires a considerable range of parameters as
indicated by the envelope curves in Fig. 9. This is simply
because two points with the same local slope would result
in the same flux from any local transport law but different
fluxes from a non-local law, due to different upslope
topography. Having the need for such a wide range of
parameters to reproduce the sediment flux variabilty in a
small hillslope makes physical interpretation of those
parameters difficult. Apart from the upslope hillslope
profile variability considered here, there are other factors
contributing to the sediment flux/ local gradient variability,
such as, for example, the dependence of K on soil depth
[e.g., Roering, 2008].

7. Probability distribution of particle displacement and
fractional transport
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Sediment transport on hillslopes can be thought of as
disturbance driven, in which soil is mobilized en masse or
as individual particles. A single disturbance event may
move the mobilized sediment a considerable distance (e.g.
raveling after a fire). Disturbed piles of sediment (e.g. tree
throw mounds) will create sustained local areas of elevated
flux—and increased downslope delivery. For simplicity we
can think of event-based transport as a kind of “hopping”
process, where the sediment moves downslope in a series of
steps resulting from local disturbances. Here a single hop
can be thought of as the distance covered by a grain of
sediment from where disturbance has displaced it into an
active flux state to where it comes to transient rest (until
next disturbance). It can also be thought of as a package of
sediment made significantly more active due to local
mounding and exposure, say during a tree throw, which
results in rapid flux compared to what would happen under
mean slope conditions. As discussed in the introduction,
many processes generate slope-dependent transport and
operate over a wide range of distances. These processes
may result in a heavy-tailed PDF of the sediment “hops” or
displacement distance (see also Tucker and Bradley, in this
volume), which means that there is a relatively small but
significant possibility that sediment grains will move a
great distance downslope in a single hop. In other words,
these distances do not have a characteristic length scale and
may assume values comparable to the size of the hillslope
itself.

If the PDF of hopping distances were thin tailed,
e.g., Gaussian or exponential with an e-folding distance
small relative to the size of the hillslope, then the
continuum equation describing the evolution of the
hillslope would be the diffusion equation [Feller, 1971; see
also Schumer et al., 2009 this issue]. However, if the
probability distribution of hopping distances is broad-tailed
as argued above, then a faster than linear diffusion is
expected. It turns out that, since a sum of broad-tailed
PDFs results in an ¢« -stable distribution for the hopping
process [Feller, 1971], then the governing equation of
elevation change consistent with this distribution is the
fractional diffusion equation (9) [Meerschaert et al., 1999;
2001; Schumer et al, this issue]. That is, the corresponding
macroscopic process of sediment transport can be described

using a modified diffusion equation where the \% operator

is replaced with a non-local operator V“. The degree of
non-locality is governed by the order of differentiation, ¢ .
The lower the value of « , the greater is the degree of non-
locality. This is a manifestation of the fact that an o -
stable PDF has a heavier tail for lower values of « .

8. Locality and scale-dependence of computed flux

In this section we discuss some preliminary ideas
related to the potential of non-local transport laws to
circumvent the problem of scale dependence of sediment
flux computations. We start with the classical divergence

theorem and elementary control volume which is of little
use when there is no characteristic scale in particle
displacement distances. Then, we allude to the fact that
local transport laws suffer from scale dependencies which
would require closures [e.g., see Passalacqua et al., 2006]
and which can be naturally taken care of by the nonlocal
transport laws.

The advection-dispersion equation (ADE) is based
on the classical definition of divergence of a vector field.
The divergence is defined as the ratio of total flux through a
closed surface to the volume enclosed by the surface when
the volume shrinks to zero [e.g., Schey, 1992; see also
Benson, 1998, for an exposition relevant to subsurface
transport]:

.1
V-q, =\I/|g(1)\7_|‘squ -ndS (24)

where Qg is a vector field, Vis an arbitrary volume

enclosed by surface S, and 77is a unit normal vector.
Implicit in this equation is that the limit of the integral
exists, i.e., the vector ( exists and is smoothas V. — 0.

The classical notion of divergence maintains that,
as an arbitrary control volume V shrinks to zero, the ratio
of total surface flux to volume must converge to a single
value. However, when a heavy-tailed distribution of
displacement lengths exists, this notion of convergence is
challenged. In fact, due to the lack of a characteristic scale
of the displacement distances, no convergence is
guaranteed when the size of the control volume changes.
As a result, the classical diffusion equation is no longer
self-contained with a closed-form solution at all scales. To
adopt the classical theory, the best approximation that can
be done is to assume that the total flux to volume ratio can
be assumed piece-wise constant within small ranges of
scales, allowing one to talk about an “effective” scale-
dependent dispersion coefficient [e.g., see Benson, 1998].
Several techniques have been proposed in the subsurface
transport literature to tackle the problem of scale-dependent
dispersivity. These vary from small perturbation
approaches and effective parameterizations [e.g., Gelhar
and Axness, 1983; Dagan, 1997], to power law dependence
of Don scale [e.g., Su, 1995], to volume statistical
averaging [e.g., Cushman, 1991, 1997] and to fractional
advection dispersion equations (fADE) [e.g., Benson, 1998;
Benson et al., 2000b; Bauemer et al., 2001; Schumer et al.,
2001; 2009 this issue].

Any sediment transport law that directly involves a
“local” gradient or curvature in the computation of flux,
will be scale-dependent as gradients and curvatures depend
on the scale at which they are computed [e.g., see
Lashermes et al., 2007]. For example, this was
demonstrated in Passalacqua et al. [2006] using a local
non-linear flux law (a Langevin model which has square



dependence on local slope). In that study, the development
of a closure term, akin to the Large Eddy Simulation (LES)
turbulence closures, was proposed to handle this scale-
dependence and the closure term was shown to have a
power-law dependence on scale (grid size). The proposed
non-local fractional diffusive model has in principle the
ability to remove this scale-dependency as it is free of any
“representative” or “control volume” concept and the
power-law integration of local gradients (see equation (21))
eliminates the need for the aforementioned power-law
closure [e.g., see discussion in Foufoula-Georgiou et al,
2008]. This issue requires further study.

9. Discussion and Conclusions

Most geomorphic transport laws proposed to date are
local in character, i.e., they express the sediment flux or
erosion at a point as a function of the elevation gradient,
contributing drainage area, or other geomorphic quantities
at that point only. For the case of soil-mantled landscapes,
it is reasonable to propose that disturbance processes
inducing transport have widely varying transport distances
and this gives rise to a non-locality of sediment transport,
as proposed here. As summarized below, we see several
advantages to the non-local transport law.

(1) The proposed non-local transport model with boundary
conditions of zero-slope at the ridgetop and constant
elevation at the ridge bottom predicts a steady-state profile
which is parabolic very close to the ridgetop and changes,
after a short distance downslope to a power law with
exponent equal to the parameter « (order of differentiation)
in the fractional transport law. This prediction is supported
by data in three study sites and provides useful insight for
one of the sites which may still experience transition from
net erosion to soil accumulation.

(2) The non-local linear model gives rise to a non-linear
relationship between the sediment flux at a point and the
local slope. Hence, non-locality of sediment flux is an
alternative hypothesis that can explain the observed
hillslope profiles and the non-linear flux dependence on
slope.

(3) In a practical implementation of a local sediment flux
law (linear or nonlinear), the “local” slope is always
assigned a “scale” over which some smoothing or
averaging is done, without however a theory as to how to
select this scale. The non-local flux law is scale-free (it
lacks a characteristic scale of upstream particle
displacement distance); rather it uses a “power-law
weighted average slope” stating that upslope hillslope
gradients matter to local flux, but with diminishing
influence as a function of upslope distance.

(4) The proposed non-local model produces significant
variability of sediment flux for a given local slope, as it

explicitly takes into account variations in upslope

topography. In this case, transport parameters, such as K",
can remain constant, and retain, perhaps, a stronger
physical meaning while reproducing the variability
observed in real hillslopes.

(5) The non-local model has the potential to eliminate
scale-dependency. The usefulness of non-local fractional
models to address issues of scale-dependence in subsurface
transport (e.g., scale-dependent dispersivity in porous
media with multiple scales of heterogeneity) has been
amply demonstrated and needs to be explored for similar
problems on the Earth’s surface.

We consider this paper as the beginning of a
dialogue on concepts of non-locality and collective
behavior as they relate to transport on the earth’s surface.
Important questions arise as to how these concepts can
most concisely be expressed in or incorporated into new
classes of geomorphic transport laws and also how non-
locality can be directly verified from observations.
Together with several other papers in this issue, a new
direction of thinking emerges which shows promise for
better understanding of cause and effect in landscape
processes and landscape evolution models.
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Figure 1: Cartoon illustrating processes such as gopher mounds, tree throws and wood blockage which contribute to
sediment transport on a hillslope. Owing to the varied range of length scales of transport of these processes, the
number of sediment particles arriving at a given location downslope is influenced by a region of upslope
topography. This can be treated using the notion of a non-local flux (equation 8) which is computed by a weighted
average of upslope contributions.
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Figure 2: Steady-state hillslope equilibrium profile predicted from fractional diffusive transport (equation 8) with
a =1.5 and boundary conditions of zero slope at the ridge and zero elevation at the most downslope point. The
parameter of the model K “was chosen to be 1.0 m**/ yr and the rock uplift rate was set to unity [m/yr] (Note that

a different value of rock uplift rate would not change the shape of the profile but only its absolute elevation would
differ). (a) Profile shape; and (b) log-log plot of vertical drop from the ridge top versus downslope distance. Notice
the transition to a power law profile with exponent o =1.5 at a distance of approximately 3 m from the ridgetop
(arrow). ]
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Figure 3: (a) A hillslope profile in the Oregon Coast Range. Solid circles represent the observed data points
(reproduced from Roering et al., 1999) and the dashed line indicates a spline fit to the observations; (b) log-log plot
of the fall from the hilltop versus horizontal distance for the above profile. Notice the power law profile with
exponent 1.3 starting at a distance of 9 m from the ridgetop (arrow) consistent with a non-local transport law with

parameter o =1.3.
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Figure 4. (a) Longitudinal profile of a hillslope reproduced from the survey data collected by McKean et al. [1993].
(b) Log-log plot of the fall from the hilltop versus horizontal distance. Notice the power law regime with exponent
1.8 starting at approximately 8 m from the ridgetop until 25 m downslope. This profile is consistent with a non-
local flux hypothesis with exponent « =1.8. The abrupt transition to a slope of 1.2 on the lower portion of the
hillslope is indicative that this part is still experiencing changes from net erosion to progressive soil accumulation.
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Figure 5: Comparison of the three flux laws. The dashed line shows the sediment flux predicted by linear, local
flux law (equation (1)). The thick line shows the sediment flux predicted by the linear, non-local law (equation (8))

and the thin line shows the sediment flux predicted by local, non-linear (equation (19)). The parameters for q's are
chosen to be K = 0.0015 m? / yr and S, = 1.4 (from Roering et al. [1999]). The parameters for the calculation of
g, arechosentobe o =1.5and K~ =0.0007m"*/ yr.
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Figure 6: Plot showing the upslope influence length L, (see text for definition) as a function of local gradient and

degree of non-locality for the hillslope of Roering et al. [1999]. The dashed line indicates the distance to the
ridgetop, in other words, the maximum available distance to take part in the transport.

17



0.015 ;
1
- I
- !
s [
0.012 - ) AR H
2 !
. 2 I
!
— . * o, !
S N .7 ‘: I
;E 0.009 - o . !
£ SN !
X Eett AT /
= £ tapen e S0 .
E .t .'.\ ‘:' _‘ . '[! .
E 0,006 gt 2
3 A
0.003 Dk
K=0.0015; Sc=1.4
0.000 . . . . — t
0.0 0.2 0.4 06 0.8 10 12 14

' gradient

Figure 7: Figure reproduced from Roering et al. [1999] to illustrate the large natural variability of calculated
sediment flux (dots) even in a small hillslope (MR1 basin in Oregon Coast Range; sediment flux calculated using

equation (23)), and the wide range of fitted parameters K (m2 /yr) and S, that would be needed to reproduce the
observed variability under the assumption of a non-linear local transport law.
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Figure 8: Plot showing the suite of generated hillslope profiles to imitate the natural variability of profiles
(flowpaths perpendicular to contour lines) in a zero-order basin. The thick line indicates the profile reproduced from
Roering et al. [1999].

19



4x10
a5 /1’ 4
o K=000275,8,=125 " 8
E 25 £ 3
E
5 _.:_'é'é
E 1.5+ ",:— E g a _
'g -,—t 8 g g E B B
PRl % =) E_-‘
w ‘-_a‘ﬁ & g g g g—;_i—
1 e g EEE_,_S--W 1
05" -—*";.3-'_5‘ e |
_,-" —.‘ - 1;_ - ‘
o.ed-fE‘o::"_i-'j v | _ | . . . !
0 0.1 02 03 0.4 05 06 07 0.8

Local Gradient

Figure 9: Sediment flux computed on the suite of hillslope profiles (shown in Figure 8) using the linear, non-local
transport law (equation 8) with parameters & = 1.5 and K™ =0.0007m*/ yr (open circles). Note that while these
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lines).
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Abstract.

One way to study the mechanism of gravel bedload transport is to seed the

bed with marked gravel tracer particles within a chosen patch, and to follow the pat-
tern of migration and dispersal of particles from this patch. In this study, we invoke the
probabilistic Exner equation for sediment conservation of bed gravel, formulated in terms
of the difference between the rate of entrainment of gravel into motion and the rate of
deposition from motion. Assuming an active layer formulation, stochasticity in particle
motion is introduced by considering the step length (distance traveled by a particle once
entrained until it is deposited) as a random variable. For step lengths with a relatively
thin (e.g., exponential) tail, the above formulation leads to the standard advection-diffusion
equation for tracer dispersal. However, the complexity of rivers, characterized by a broad
distribution of particle sizes, and extreme flood events transporting bed material, can
give rise to a heavy tailed distribution of step lengths. This consideration leads to an
anomalous advection-diffusion equation involving fractional derivatives. By identifying
the probabilistic Exner equation as a forward Kolmogorov equation for the location of

a randomly selected tracer particle, a stochastic model describing the temporal evolu-
tion of the relative concentrations is developed. The normal and anomalous advection-
diffusion equations are revealed as its long-time asymptotic solution. Sample numerical
results illustrate the large differences that can arise in predicted tracer concentrations
under the normal and anomalous diffusion models. They highlight the need for inten-
sive data collection efforts to aid the selection of the appropriate model in real rivers.

1. Introduction

The stones that make up the bed of gravel-bed rivers
are transported as bedload during floods. During periods
of overall transport, each particle undergoes alternating pe-
riods of movement and rest. Movement consists of rolling,
sliding or saltation, which continues until a single step length
of motion is completed. The particle is at rest when it is de-
posited, either on the bed or deeper within the deposit. One
way to study the mechanism of bedload transport in gravel
bed rivers is to seed the bed with marked tracer particles
within some small area of the bed (patch), and to follow
the pattern of migration and dispersal of particles from that
patch [e.g., Hassan and Church, 1991; Church and Hassan,
1992; Wilcock, 1997; Ferguson and Wathen, 1998; Ferguson
and Hoey, 2002; Pyrce and Ashmore, 2003]. Tracers provide
a way of characterizing not only mean parameters pertain-
ing to transport, but also the stochasticity of particle motion
itself.

This stochasticity was first elaborated by Einstein [1937].
Einstein based his analysis on experimental observations of
painted tracer particles. He noted that: “The results demon-
strated clearly that even under the same experimental condi-
tions stones having essentially identical characteristics were
transported to widely varying distances - - - Consequently, it
seemed reasonable to approach the subject of particle move-
ment as a probability problem.” Einstein considered a parti-
cle that moves in discrete steps punctuated by periods of in-
activity. He quantified the problem in terms of the statistics
of step length and resting period (waiting time). FEinstein
[1942] went on to explain how these quantities enter into the
delineation of macroscopic relations of bedload transport

Copyright 2010 by the American Geophysical Union.
0148-0227/10/$9.00

(i-e., relations that represent averages over the stochastic-
ity of sediment motion). More specifically, Einstein [1942]
showed that the bedload transport rate is proportional to
the step length and inversely proportional to the resting pe-
riod. Following the seminal work of Einstein [1942], many
stochastic theories for sediment transport have been pro-
posed which account for the aforementioned stochasticity
(see for example, Finstein and El-Sammi [1949]; Paintal
[1971]; Nelson et al. [1995]; Cheng and Chiew [1998]; Lopez
and Garcia [2001]; Kleinhans and van Rijn [2002]; Cheng
[2004]; Cheng et al. [2004]; Charru et al. [2004], Ancey et al.
[2006, 2008]; Ancey [2009]; Furbish et al. [2009], Ganti et al.
[2009] and references therein).

Two macroscopic quantities that can be captured by
means of statistical analyses of tracer motion are the over-
all tendencies of ensembles of tracers to be advected down-
stream, and to disperse, or diffuse. (Various authors use
the terms “dispersion” or “diffusion” of tracers to describe
the same process: here we rather arbitrarily use the term
“diffusion”.) Both advection and diffusion are governed by
a wide range of factors.

Bedload particles may roll, slide or saltate over the bed.
In the case of grains of uniform size, mean saltation length
may be on the order of ten diameters [e.g., Ninio and Gar-
cia, 1998]; whereas mean step length may be on the or-
der of 100 grain diameters [Einstein, 1950; T'sujimoto, 1978;
Wong et al., 2007]. Finstein [1950] suggested that mean step
length can be approximated as a constant multiple of grain
diameters, whereas Wong et al. [2007] indicate a weak varia-
tion with Shields number, which is a proxy for flow strength.
Step length is known, however, to vary stochastically [e.g.,
Tsujimoto, 1978]. As illustrated below, this stochasticity is
one source of diffusion.

When a particle comes to rest, it may deposit so as to
be exposed at the bed surface, or it may become buried at
depth [e.g., Hassan and Church, 1994]. From a statistical
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point of view, deeper burial in general implies a longer rest-
ing time before exhumation and re-entrainment. This effect
can influence both diffusion and advection [Ferguson and
Hoey, 2002]. Most natural gravels consist of a mixture of
grain sizes, each of which undergoes steps and resting pe-
riods according to size-specific probabilities. For example,
Tsujimoto [1978] has shown that larger grains in a mix-
ture have longer step lengths, but also longer resting times.
As these different sizes move downstream, their motion is
affected by the presence of bedforms such as dunes [e.g.,
Blom et al., 2006], bars and bends associated with channel
meandering/braiding [e.g., Pyrce and Ashmore, 2003], and
large-scale variations in channel width. In addition, the bed
may be undergoing aggradation, which enhances the cap-
ture of bedload particles, or degradation, which causes the
exhumation of grains that have undergone long-term stor-
age [e.g., Ferguson and Hoey, 2002]. Grains can also en-
ter floodplain storage for long periods of time, and then be
exhumed as the channel migrates into the relevant deposit
[e.g., Bradley, 1970; Lauer and Parker, 2008a, b]. Again, all
these effects can influence the advection/diffusion of tracer
particles.

The macroscopic transport of grains undergoing steps and
rest periods governed by statistical laws can be most sim-
ply characterized in terms of the classical advection-diffusion
model, according to which the particles spread downstream
with a constant diffusivity. When step lengths and rest peri-
ods are governed by a multiplicity of mechanisms over a very
wide range of spatial and temporal scales, however, the ad-
vection/diffusion of tracer particles may no longer be charac-
terizable in terms of the classical model. It is widely known
in the groundwater literature that a multiplicity of scales
over which transport takes place can lead to “anomalous dif-
fusion”, for which the advection/diffusion equation can be
characterized by fractional derivatives [e.g., Benson, 1998;
Berkowitz et al., 2002; Cushman and Ginn, 2000; Schumer
et al., 2003].

Nikora et al. [2002] have studied the diffusion of bedload
particles using the measured motion of individual particles
in a canal as the basis for ensemble averaging. They ex-
tracted from their data various moments characterizing par-
ticle location as a function of time. They delineated three
ranges of temporal and spatial scales, each with different
regimes of diffusion: ballistic diffusion (at the scale of salta-
tion length), normal/anomalous diffusion (at a scale of step
length) and sub-diffusion (at global scale). Their study thus
represents a pioneering effort in the identification of anoma-
lous diffusion of bedload particles.

We develop here a theoretical model for the study of
anomalous diffusion of tracer particles moving as bedload.
The present model is not intended to be comprehensive, in
that it covers only a restricted set of phenomena that might
lead to anomalous diffusion. It is our desire, however, that
this first model should serve as an example illustrating the
pathway to more general models of anomalous diffusion.

The paper is structured as follows. In Section 2, a
straightforward formulation of the Exner equation for sedi-
ment conservation is presented which incorporates the prob-
ability density function (pdf) for step lengths, i.e., the dis-
tances traveled by particles once they are entrained to when
they are deposited again on the river bed. In Section 3 we
show that the assumption of step lengths having a distri-
bution with thin tails (e.g., exponential, normal, log-normal
distributions) leads to a classical advection-diffusion equa-
tion for tracer dispersal. However, in real rivers the com-
plexity resulting from broad distributions of particle sizes
and flood events can lead to a heavy tail in the pdf of
step lengths (arising, for example, from the combination of
an exponential distribution for step length conditional on
a particle size and a gamma distribution of particle sizes).
In Section 4, we show that this consideration leads to an
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anomalous advection-diffusion formulation which includes
fractional derivatives. That model was introduced earlier
in the context of other problems, such as groundwater dis-
persion. Section 5 shows how a heavy-tail step length distri-
bution can arise from a thin-tailed (exponential) pdf of step
length for particles of a given size, together with a thin-tailed
grain size distribution. In Section 6, we build a stochastic
model to describe the time evolution of the relative concen-
tration of the tracers in the active layer, and show that the
approximate solutions obtained in Sections 3 and 4 are long-
time asymptotic solutions of the derived model. Finally, in
section 7, numerical results are presented showing the dif-
ference between normal and anomalous advection-diffusion
of gravel tracer particles.

2. Formulation

The starting point for our analysis is the entrainment-
based one-dimensional Exner equation for sediment balance
[Tsugimoto, 1978; Parker et al., 2000; Garcia, 2008];

-2 20D ey - By )
where 77 denotes local mean bed elevation, ¢t denotes time, x
denotes the downstream co-ordinate, D} denotes the volume
rate per unit area of deposition of bedload particles onto the
bed, E; denotes the volume rate per unit area of entrain-
ment of bed particles into bedload, and A, is the porosity of
bed sediment. We assume that, once entrained, a particle
undergoes a step with length r before depositing. We further
assume that this step length is probabilistic, with a proba-
bility density fs(r) (pdf of step length). The deposition rate
of tracers Dy(x,t) is then given as:

Dy (z,t) = /:o Ey (x —1,t) fs(r)dr (2)

In the above formulation FEj is a macroscopically determined
parameter, which can be shown to vary inversely with the
mean resting time of a particle. The formulation thus in-
cludes the effect of stochasticity in step length, but not in
resting time.

A model formulation for tracers that simplifies the above-
mentioned model of entrainment and deposition is the active
layer formulation. According to this formulation, grains in
an active bed layer of thickness L, below the local mean bed
surface exchange directly with bedload grains. Grains below
the active layer, i.e., grains in the substrate, exchange with
the active layer only by means of bed aggradation (when ac-
tive layer grains are transferred to the substrate) and degra-
dation (when substrate grains are transferred to the active
layer). In such a model, substrate grains do not directly
exchange with the bedload grains.

Let fo(z,t) denote the fraction of tracer particles in the
active layer at any location x and time t. In addition, let
fi(z,t) denote the fraction of tracer particles in the sed-
iment that is exchanged across the interface between the
active layer and the substrate as the bed aggrades or de-
grades. The equation of mass conservation of tracers can
then be written as:

1 =Xp) (fj(x,t)% + La%) = DbT(x,t)—b;bc;(x,t)
3

where Epr denotes the volume entrainment rate of tracers

and Dyr denotes the corresponding deposition rate, which
are given as [Parker et al., 2000]:

EbT(1}7t) = Eb($7t)fa($7t) (4)
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and
Dyr(z,t) = /000 Ey(z —1,t) fa (x —7,t) fs(r)dr (5)

Here we exclude the complication induced by bedforms such
as dunes [e.g., Blom et al., 2006] by considering conditions of
lower regime plane-bed transport, such as those investigated
by Wong et al. [2007].

The fraction fr of tracers exchanged at the interface as
the mean bed elevation fluctuates can be expected to dif-
fer depending upon whether or not the bed is aggrading or
degrading. Hoey and Ferguson [1994] and Toro-Escobar et
al. [1996] have suggested forms for interfacial exchange frac-
tions which can be adapted to the problem of tracers. Here
we restrict consideration to the case for which the bed eleva-
tion is at equilibrium, so that Lq, Ep, 7 and the pdf fs(r) are
all constant in = and ¢. Under this condition, equations (3),
(4) and (5) reduce to:

L, afa, (z,t) —r,t) fs(r)dr — fa(z,t)

Ey / fo (@
(6)

The nature of the pattern of tracer diffusion predicted by
equation (6) depends on the nature of the pdf f(r) of step
lengths. As shown in the next sections, a thin-tailed pdf, i.e.,
one for which all moments of fs(r) exist, leads to a classical
Fickian advection-diffusion equation, while a heavy-tailed
pdf, i.e., one for which moments larger than a given order
do not exist, can lead to an anomalous advection-diffusion
equation.

(1=2p) =

3. Tracer transport with thin-tailed step
length distribution

In this section, we show that a thin-tailed pdf for the
step length distribution, fs(r), in equation (6) leads to a
classical Fickian (normal) advection-diffusion equation. For
simplicity, we assume the porosity to be zero, i.e., A\, = 0.
The simplest way to solve the integral equation (6) is to use
Fourier transforms, since the convolution becomes a prod-
uct in Fourier space. The Fourier transform of a function
fa(z,t) is given by:

fulk,t) = / T e f (1) da 7

Taking the Fourier transforms in equation (6) and manipu-
lating yields:

%% = (k) = 1) fulk,t) (8

Expanding the Fourier transform of fs(r) as Taylor series
gives:

fs()—l—zku1+ (ik)* a2 + - 9)

where p, = fr fs(r)dr denotes the nt" order moment of
the step length dlstrlbutlon. The above expansion is valid
provided that the moments p, exist and are finite, and the
series converges uniformly in a neighborhood of k = 0 [Pa-
poulis and Pillai, 2002]. Substituting equation (9) into (8)

we obtain:

Lo Ofa(k,t) :

o = tkpt + = (zk) w2 + fa(k,t) (10)
Recall that (ik)fo(k,t) is the Fourier transform of

Ofa(x,t)/0x. By making the approximation that higher or-
der terms can be neglected (which will be shown equivalent,
in Section 6, to considering a long-time asymptotic solu-
tion), and by setting v = p1 and 2Dg = pe, it follows by
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an inverse Fourier transform that the function fq(x,t) is the
approximate solution to the advection-diffusion equation:

&afa__ Ofa
E, ot Ox

0% fa
+ Dy 02 (11)

This is the standard form of the advection-diffusion equation
for tracer dispersal, and applies under equilibrium bedload
conditions where v and D4 can be considered constant. The
associated Green’s function, i.e., the solution to the above
equation with a pulse as the initial condition at ¢ = 0, is the
Gaussian distribution, which describes the tracer concen-
tration at any given time ¢ > 0. If the source is distributed
in space and/or time, the solution to equation (11) is the
convolution of the Green’s function with the source.

4. Tracer transport with heavy-tailed step
length distribution

As detailed in the next section, a heavy-tailed, power-
law distribution for step lengths in gravel bed rivers can
result from a thin-tailed pdf of step length for particles of
a given size, together with a thin-tailed pdf of grain sizes.
In this section, we develop a formalism that incorporates
heavy tails for the step length distribution in the proba-
bilistic Exner equation. In equation (6), consider fq(r) to
be a step length distribution with power-law decaying tail,
ie., fs(r) =~ Car~® ! for r > 0 sufficiently large, some
constant C' > 0, and some power law index 1 < a < 2.
In this case, the Fourier transform expansion (9) in terms
of statistical moments of fs(r) is not valid, as the integrals
pn = [ 7" fs(r)dr do not converge for n > 1 le.g., Lamperti,
1962]. Instead we may use a fractional Taylor expansion to
write [Odibat (md Shawagfeh, 2007; Wheatcraft and Meer-
schaert, 2008]:

fs(k) =1 —ikur + ca (1k)* + (12)
where ¢, is a constant that depends only on C' and «. Sub-
stituting back in equation (8) we obtain:

La0aBsl) _(Lipy 4 co (iR)* +--) fulkit)  (13)

Ey ot
This equation (13) can be understood in terms of frac-
tional derivatives. Fractional derivatives are close cousins
of their integer order counterparts. The fractional deriva-
tive 0% fa(x,t)/0x® can be defined simply as the function
whose Fourier transform is (ik)® fa(k,t). As in the normal
advection-diffusion case, we make an approximation by in-
cluding the first two terms in the expansion and neglecting
the higher order terms (shown equivalent in Appendix A to
a long-time asymptotic solution). Then by setting v = u1
and D4 = cq, it follows from (13) that the function fo(z,t)
is approximately the solution of the fractional advection-

diffusion equation:

Lodfa _ 0fa

v 8afa
E, Ot o ox

ox™

+ Dqg

(14)

Fractional advection-diffusion has been extensively used in
modeling the dispersal of tracers or pollutants in porous
media which exhibit multiple scales of variability, as in sub-
surface transport [e.g., Benson et al., 2000a, b; Berkowitz
et al., 2002] and pollutant transport in rivers [e.g., Deng
et al., 2005, 2006]. However, to the best of our knowledge,
its application has not yet been explored in the context
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of river transport, apart from a recent study which uses
fractional advection for transporting sediment in buffered
bedrock rivers [Stark et al., 2009].

In most natural rivers, the distribution of step lengths
holds in the near field, but eventually transport steps be-
come limited by river features (e.g., bars) that change the
intermediate and far field distributions. The application of
the governing equations (11) and (14) depends on the nat-
ural truncation of the step length distributions. If the trun-
cation occurs at a very small threshold, then the Central
Limit Theorem applies and a standard advection-diffusion
equation will be the governing equation for the fraction of
tracers in the active layer. However, if the truncation oc-
curs at a large threshold, then the distribution can still be
approximated by a power-law in the intermediate field and
the governing equation for the fraction of tracers in the ac-
tive layer is the fractional advection-diffusion equation. It
is worth noting that equation (14) is the governing equation
on scales where the power-law approximation of the step
length distribution is accurate. In the next section, we ex-
plain how a power-law distribution for step lengths could
emerge by combining a thin-tailed pdf of step length for
particles of a given size with a thin-tailed pdf of grain sizes.
Then in Section 6 we describe the stochastic model underly-
ing the probabilistic Exner equation (6), and we show how
equations (11) and (14) represent long-time asymptotic so-
lutions.

5. Transport of sediment mixtures

A generalization of equation (6) for a range of grain sizes
D can be expressed as follows. Let fqq(x,t, D) denote the
fraction of tracers in the active layer with grain size D, so
that,
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D [e.g., Nakagawa and Tsujimoto, 1976, 1980], i. e.,

P(R > r|D) =¢ "/#(P) (18)
where p-(D) is the mean step length as a function of grain
size D. If we let f denote the pdf of grain sizes, then the un-
conditional distribution of step length can be derived from:

P(R>7) = /Ooo e /rr D) £(DYdD. (19)

The resulting pdf for step length, relating to a mixture of
particle sizes, depends on both the mean step length p, (D)
for grains of size D, and the pdf of grain sizes.

In this study we explore two distinct cases, one in which
ur(D) increases with grain size, and another for which p, (D)
decreases with grain size. The true dependence of mean step
length on grain size in sediment mixtures remains somewhat
ambiguous. In the case of uniform sediment, Nino and Gar-
cia [1998] found that grain saltation length decreases with
increasing grain size. One step length, however, typically
consists of around 10 saltation lengths. Hassan and Church
[1992] have studied the travel distance of size mixtures of
stones in gravel-bed rivers, and have found a marked ten-
dency for travel distance to decrease with increasing grain
size. This result must be qualified in light of the fact that
the distance traveled by a grain during a flood can be ex-
pected to be associated with multiple step lengths. This
qualification notwithstanding, the data suggest a range of
conditions under which the dependence between grain size
and mean travel distance can be approximated by the sim-
plified model:

fa(x,t :/ fad(z,t, D)dD 15
@8 = J, foal@t D) 15 n(D) = /D (20)
In addition, let F4, (D) denote the entrainment rate per unit
bed content of size D. The generalization of equation (6) is  where & is a constant. A lognormal pdf of grain sizes
then [e.g., Parker, 2008],

0 D JI) = e 2 (21)

a 7t7 o = e o
(1= 222D 0) ([ fuao = t.D) L 61D)  Fua ot )Lj Dov/ar
0

(16)
In the above formulation, the conditional pdf of step length
fs is specified as a function of grain size, but the thickness
of the active layer L, is taken to be a constant for all grain
sizes. The form corresponding to equation (6) is obtained
by integrating over all grain sizes,

(1—AP)LQW = Aw Ebu(D) <Aw flld(x_rvt7D) fS(

(17)
In general, Ey, and f,q can both be expected to vary signif-
icantly in D. Closure of equation (17) requires specification
of forms for Ey, and f,4 as functions of, among other param-
eters, grain size D. Such forms are available in the literature
[e.g., Tsujimoto, 1978].

The goal of the present analysis is, however, to study the
role of heavy-tailed pdfs for step lengths in driving the dif-
fusion of tracer particles. With this in mind, the problem is
simplified for the purposes of illustration to one in which fuq
varies in D but Fj,, does not. More specifically, by assuming
independence of grain size D on space-time location (z,t),
one can write foq(x,t, D) = fo(x,t)f(D). Then uncondi-
tioning f,(r|D) with the grain size pdf f(D) in equation (17)
is used to develop the Exner equation for a grain size mix-
ture. In the next subsection, we show that a heavy-tailed
pdf for step lengths in a mixture of particles can emerge,
under certain conditions, from two thin-tailed pdfs.

5.1. Power laws emerging from thin tails

A typical finding in sediment transport is that step
lengths r are exponentially distributed for a given grain size

was invoked by Wilcock and Southard [1989]; Garcia [2008];
Lanzoni and Tubino [1999]; Parker [2008], where p, o are the
mean and standard deviation of the sedimentological scale
¥ = InD. The overall (unconditional) step length distri-
bution can then be obtained, in principle, by substituting
equations (20) and (21) into equation (19) and computing
the integral. However, this integral is difficult to compute

7 My ticalty With £lbgdrmal form for f(D). Figure 1 shows

the grain size data ffom Wilcock and Southard [1989] along
with a lognormal fit, as well as an alternative gamma distri-
bution fit to the same data. The gamma pdf

Vl/

1(D) = e D e (—VD%)

with mean D, and shape parameter v provides a convenient
alternative to the lognormal distribution that makes it pos-
sible to analytically evaluate the integral (19). Following
the argument of Stark et al. [2009], we substitute equations
(20) and (22) into equation (19) and evaluate the integral
to obtain the unconditional probability distribution of step

length:
P(R>r)= (1 + <&) r)
VK

The above equation (23) represents a heavy-tailed power-
law pdf for the step length distribution arising from a thin-
tailed pdf of step length combined with a thin-tailed pdf of

(22)

(23)
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grain sizes. The distribution in equation (23) is known as
the Generalized Pareto, and its variance exists only when
the shape parameter v > 2 [Feller, 1971]. The Generalized
Pareto distribution also arises from exceedances over a fixed
high threshold, and has consequently been used in model-
ing extreme floods and other hydrological phenomena [e.g.,
Hosking and Wallace, 1987].

The relationship (20) between mean step length and grain
size may not be applicable in all situations. Depending upon
the grain size distribution and the flow conditions, large par-
ticles may roll over holes that trap smaller particles, so that
step length increases with grain size. Such a tendency has
been reported in the experiments of T'sujimoto [1978]. Also
Wong et al. [2007] observed that, in the case of uniform
sediment subject to the same bed shear stress, step length
increases with grain size. Such an increase in step length
does not directly translate into a higher bedload transport
rate for coarser grains, because the entrainment rate Ep,, (D)
in equation (17) may decline with increasing grain sizes. In
the present simplified analysis, where FEy,, is assumed to be
independent of grain size, the tendency for step length to
increase with grain size can be captured in terms of the fol-
lowing simple form:

ur(D) = kD (24)
where « is a constant.

If D has an inverse gamma pdf with mean D,, and shape
parameter v, also similar in shape to the lognormal,

1) = =D ety ()P )

then a change of variables y = 1/D in (19) leads to another

generalized Pareto:
1 . -
v—1)Dmk

]P(R>r):<1+<( (26)

as shown in Hill et al. [2009], so that again the step length
distribution averaged over all particle sizes has a heavy tail.

Note that in both cases considered above, whether mean
step length increases or decreases with grain size, a heavy-
tailed distribution for step lengths can emerge from a com-
bination of two thin-tailed distributions. The gamma and
inverse gamma distributions are used for particle sizes, as
opposed to the more typical log-normal distribution, in or-
der to derive analytically the heavy-tail pdf of the resulting
step length distribution for a mixture of grain sizes. The al-
ternative pdf assumption should be considered reasonable if
the reader accepts that the fitted log-normal and gamma dis-
tributions for the grain size data from Wilcock and Southard
[1989] in Figure 1 are practically indistinguishable. We has-
ten to emphasize, however, that the finding of a possible
heavy-tailed pdf for step length is by no means universal.
Many different choices of the grain size pdf f(D) would cer-
tainly lead to a thin-tailed pdf of step length. Our point
is simply that both thin-tail and heavy-tail models are rea-
sonable, and hence it becomes very important to investigate
the grain size distributions more exhaustively, to determine
which type of overall step length pdf applies in a given sit-
uation.

6. Stochastic model for gravel transport in
rivers

In this section, we develop a stochastic model to describe
the time evolution of the relative concentration of gravel
tracer particles in rivers. We derive an exact solution for
fa(z,t) and show that, in the long-time asymptotic limit,
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a thin tail for the step length distribution leads to clas-
sical advection-diffusion, whereas heavy tails for the step
length distribution leads to anomalous advection-diffusion.
We start by rewriting (6) in the equivalent form:

W = Ma(z,t) + A/OOO folz —rt)fs(r)dr  (27)

where A = F4 /L, is the rate at which particles are entrained.
The Fourier transform of the above equation is given by:

2elbl) _ Ntk (1 £.8)
ot

Equation (27) describes the time evolution of the pdf fo(z,t)
and can be regarded as a Kolmogorov forward equation for
some Markov process X (t), where X (t) represents the lo-
cation of a randomly selected gravel particle at time ¢t > 0
[see Feller, 1971]. In this context, fo(z,t) is the pdf of the
random variable X (¢). In this Markov process, the waiting
time between entrainments has an exponential distribution
with a rate parameter A, and the number of entrainment
events, N(t), by any time ¢t > 0 has a Poisson distribution
with mean At [Feller, 1971], i.e.,

(28)

ar ()"
n!

PIN(t) =n] = e (29)

Let Y,, denote the travel distance during the nt" entrain-
ment period. Since there are N(t¢) entrainment periods by
time ¢t > 0, the particle location at some time ¢ > 0 is given
by the random sum:

N(t)
X(t)=Yi+-+Yynuy = ZY"

i=1

(30)

This random sum is a compound Poisson process [e.g.,
Feller, 1971]. Its pdf can be derived directly from equa-
tion (28) whose point source solution is:
Jalk,t) = exp (=t (1= (1)) (31)
As aresult, the fraction of tracers in the active layer, fo(z,t),

can be obtained by taking the inverse Fourier transform of
(31) and is given by:

fa($7t) — 67>\t Z ()\n)n f:* (m)

oy (32)

n=0

where f7" (z) is the n-fold convolution of the density func-
tion fs(x) (recall that f2 () is the inverse Fourier transform
of fs(k)™), which is also the pdf of Y1 + --- +Y,,. One way
to understand this formula for f,(z,t) is that it randomizes
the density of the sum of the particle movements according
to the pdf of the number of jumps N(t). The random sum,
equation (30), is a special case of a continuous time ran-
dom walk (CTRW) [Montroll and Weiss, 1965; Scher and
Lax, 1973; Meerschaert and Scheffler, 2004]. It is impor-
tant to note that the connection of the probabilistic Exner
equation with CTRWs allows one to obtain the exact solu-
tion of equation (27) via simulation of the tracer particle
motion. For example, a forward Kolmogorov equation of a
Markov process can be solved by simulating a CTRW with
an exponential waiting time distribution and step length dis-
tribution fs(r) [e.g., Scalas et al., 2004; Fulger et al., 2008].
Even if the complete shape of the pdf of step lengths is not
known, the behavior of the stochastic process X (¢) is well
defined in the long-time limit as shown below.
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Consider the standardized particle location:

X(t) — )\ult
Vi )\,u,zt
This random process has a mean 0 and variance 1 at every

time ¢ > 0. An easy calculation shows that the pdf of Z(t)
has Fourier transform:

Z(t) = (33)

Ja

ik)\ult) (34)

<%t) eXp(m

Combining this equation with:
fulk,t) = exp (—At <k‘u s )) (35)

which is obtained by substituting equation (9) into equa-
tion (31) results in the Fourier transform of the pdf of Z(t)
taking the form:

1 (ik)? 1 (ik)®
exp <—)\t <—§%u2+gmug+...>> (36)

As t — o0, (36) tends to exp (—3k>) which is the Fourier
transform of a standard normal density. This shows that
Z(t) tends to a standard normal deviate, Z, for all large
t > 0. Substituting into equation (33) and solving, we see
that the long-time asymptotic solution for the particle loca-

tion is:

X(t) = Mt + /Aot Z (37)
By taking the Fourier transforms of the corresponding pdfs
we obtain:

fa(k,t) = exp <—)\u1t(ik) + %)\uzt(ik)z) (38)

which is the point source solution to the differential equa-
tion:

2at) o (i) + Ja?) Aah) 30

Inverting this Fourier transform yields the advection-
diffusion equation (11) with v = Au1 and 2Dg = Apue, as
in Section 3. In summary, equation (11) governs the asymp-
totic particle density in the long-time limit.

Now consider the case of a particle jump length density
with a heavy tail. A similar argument shows that equa-
tion (14) governs the asymptotic particle density in the long-
time limit, when the particle jump length density fs(r) has
a heavy tail with a power-law decay, i.e., fs(r) = Car *~!
for r > 0 sufficiently large, some constant C' > 0, and some
power law index 1 < a < 2 (see Appendix A for a detailed
proof). In this case, we note that the governing equation in
the long-time asymptotic limit for fa.(k,t) is given by:

Oalhst) (3 (i) + Aca(iR)™) Fulkt)

En (40)

Inverting the Fourier transform yields the fractional
advection-diffusion equation (14) with v = Au1 and Dg =
AcCa, as in Section 4. We remark that, while the derivation
in this section is new in the context of stone tracer disper-
sion, a similar approach was taken to derive the fractional
advection-diffusion equation for tracers in ground water, un-
der a different set of assumptions [Schumer et al., 2001]. The
next section provides a numerical demonstration to illustrate
how a source of tracers will disperse over time under normal
or anomalous diffusion.
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7. Tracer dispersal under normal and

anomalous diffusion

Consider a patch of tracers entrained instantaneously in
the flow at a location xo and initial time ¢o. This patch will
advect and diffuse on the gravel bed over time. It is useful to
track the time evolution of the fraction of tracers f.(z,t) in
the active layer at any location = and time ¢t. As was shown
in the previous sections, the probabilistic Exner equation
can be approximated at late time by a normal or anomalous
diffusion, equations (11) and (14) respectively, depending on
the pdf of step length. In this section we illustrate the time
evolution of a patch of tracers under normal and anomalous
advection-diffusion. We know from theory that the Green’s
function solution to the normal advection-diffusion equation
is the Gaussian distribution, and the Green’s function so-
lution to the fractional advection-diffusion is the a-stable
distribution [Benson et al., 2000b]. The a-stable distri-
butions are also known as Lévy distributions. Specifically,
in our case, the Green’s function solution to the fractional
advection-diffusion equation is an a-stable distribution with
a skewness parameter 3 = 1, owing to the fact that step
lengths are positive, so that the stable pdf has a heavy lead-
ing tail (see Appendix B for a description of stable distri-
butions). Figure ?? shows the evolution of fo(z,t) under
normal advection-diffusion from a pulse at ¢t = 0 and = = 0,
ie., fa(0,0) = 1. Figure ?? shows the evolution of fq(z,t)
under anomalous advection-diffusion with @ = 1.5 from a
pulse at z = 0. The a-stable densities in Figures 7?7 and ??
were simulated using the method of Nolan [1997]. In this hy-
pothetical experiment, we chose the parameter values of the
normal and anomalous diffusion equations to be unity, i.e.,
v =1m/day and Dy = 1 m®/day. Note that the units of the
diffusion coefficient, Dy, is [L®/T]. As can be seen by com-
paring Figures 7?7 and 7?7, anomalous advection-diffusion
predicts a faster spreading of tracers downstream (heavy
leading tails). For example, the leading tails of the frac-
tion of tracers at ¢ = 100 reaches a near-zero value at ~ 50
m downstream of its mean in normal advection-diffusion,
whereas it reaches this value at ~ 200 m downstream of its
mean in fractional advection-diffusion with o = 1.5. Note
that the mean of fq(x,t) in both cases is the same. It is
worth noting that both the Gaussian pdf, and the skewed
stable pdf, assign some extremely small but mathematically
nonzero probability to the interval left of the particle source,
while the probabilistic Exner equation assigns zero probabil-
ity to that interval. This illustrates the fact that both the
Gaussian and skewed stable pdfs are only approximations
to the relative concentration of tracer particles. However,
the probability assigned to to the interval left of the par-
ticle source is exceedingly small, since both the Gaussian
and skewed stable pdfs fall off at a super-exponential rate
on the left tail [Zolotarev, 1986], and this approximation is
perfectly reasonable in practice.

As seen in the previous section, under equilibrium bed-
load transport conditions, the long-time asymptotic solu-
tions of the probabilistic Exner equation converge to the nor-
mal and anomalous advection-diffusion equation depending
on the pdf of the step length. Therefore, long-time asymp-
totic solutions of the probabilistic Exner equation are the
Gaussian and a-stable distributions in the respective cases
of thin or heavy tailed pdfs for step length. In Figure 3
we compare the long-time asymptotic solutions for several
values of «, starting from o = 2 (Gaussian corresponding
to the solution of normal advection-diffusion equation) to
a = 1.1. One can easily see the marked difference in the
dispersal of tracers downstream in normal and anomalous
advection-diffusion. For example, after 500 days, only ~ 5%
of the tracers have been recovered at ~ 550 m in standard
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advection-diffusion, whereas ~ 8% and ~ 18% of tracers
are recovered at the same distance in fractional advection-
diffusion for a = 1.5 and a = 1.1, respectively. Note that
in the case of @ = 1.1 the gravel tracer particles are trans-
ported very long distances downstream when compared with
the normal advection-diffusion case (a = 2). Note that the
parameter o of the fractional advection-diffusion relates to
the heaviness of the tail of the pdf of particle step lengths,
in effect determining how far downstream the tracers dis-
perse from the source. In practice, the parameter a will
have to be estimated from observations which typically will
not be in the form of step lengths but in the form of “break-
through curves” or pdfs of particle concentration at a given
location downstream of the source. Tracer experiments in
a large experimental flume are currently under development
to document the possibility of faster-than-normal diffusion
of tracers and the estimation of the parameter .

8. Conclusions

In this work, a mathematical framework for the contin-
uum treatment of tracer particle dispersal in rivers has been
proposed, based on the probabilistic Exner equation. We
have shown that when the step length distribution is thin-
tailed, the governing equation for the tracer dispersal in the
long-time limit is given by the standard advection-diffusion
equation. However, the step length distributions can be
heavy-tailed with power-law decay arising from heterogene-
ity in grain sizes and other complexities in real gravel bed
rivers. It was shown that these heavy tails can be modeled
using fractional derivatives, akin to contaminant transport
in subsurface hydrology [e.g., Benson, 1998; Benson et al.,
2000a, b; Berkowitz et al., 2002]. For a simplified active layer
formulation, the probabilistic Exner equation was shown to
be governed by a Markov process that describes the tracer
dispersal problem. Further, it was shown that the classi-
cal (normal) advection-diffusion and fractional (anomalous)
advection-diffusion equations arise as long-time asymptotic
solutions of that stochastic model. A numerical example was
then provided to illustrate the profound effect of fractional
diffusion on the leading edge of the particle distribution.

The material presented here is intended to serve as an in-
troduction to the problem of anomalous diffusion in the con-
text of transport in gravel-bed rivers. The full power of the
techniques introduced here remains to be realized through
future research. For example, the innate variability of rivers
is such that the entrainment rate F and bed elevation n are
unlikely to be constant in « and t. This variability can lead
to long-term sequestration, and subsequent long-delayed ex-
humation of tracers. Parker et al. [2000] and Blom et al.
[2006] have shown how the fractional Exner equation (1)
can be generalized to a formulation that assigns a proba-
bilistic structure not only to step length, but also to the
probabilities of entrainment and deposition as continuously
varying functions of vertical position within the bed deposit.
These complications can lead to anomalous sub-diffusion, if
particle resting times have a heavy, power-law tail. A model
that can explain the deposition and exhumation of parti-
cles at arbitrary depth, including variability in entrainment
rate and bed elevation as well as grain size, has the poten-
tial to explain at least part of the tendency for a decrease
in advection velocity over time described by Ferguson and
Hoey [2002]. One possible approach to modeling anomalous
sub-diffusion caused by power law waiting times between
particle movements is by using fractional time derivatives,
as discussed in the paper of Schumer and Jerolmack [2009]
in this volume in the context of interpreting geological de-
position records. The anomalous advection-diffusion model
proposed herein, as well as further extensions to accommo-
date additional stochastic elements of transport as discussed
above, will require extensive experiments and data collec-
tion to directly verify the nature of the distribution of step
lenghts, waiting times and entrainment rates of particles in
order to select the most appropriate model for transport.
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Appendix A: Long-time asymptotics for
heavy-tailed distributions

The standardized particle location cannot be expressed us-
ing equation (33) when the step length distribution has a
heavy tail, because the second moment po of the distribu-
tion fs(r) does not exist, i.e., the population variance is
infinite while the sample variance diverges unstably as the
number of samples increases [Lamperti, 1962]. Instead, we
consider the normalized process:

X(t) — )\/th

S(t) = T (A1)
(Acat) =
The pdf of S(t) has the Fourier transform:
fa 47 t | exp M (A2)
(Acat) e (Acat) e

Substitution of equation (12) into equation (31) results in:

falk,t) = exp (=Xt (ikp1 — calik)® — da(ik)>™ +--+))
(A3)
which combined with (A2) gives the left-hand side of the
equation (A4) for the Fourier transform of the PDF of S(¢).
In the long-time limit, i.e., as ¢ — oo this tends to the limit
in the right-hand side below, i.e.,

exp <)\t ( GRS

Acat

(ik)Za o
da ()\Cat)2 + o )) P ((Zk) )
(A4)

since the higher order terms tend to zero as t — co. This

limit is the Fourier transform of a standard stable density,
and the limit argument is closely related to the convergence
criterion for compound Poisson random variables (see Chap-
ter 3 in Meerschaert and Scheffler [2001] for more details
and extensions). Hence, S(t) ~ S is standard stable for all
large ¢ > 0. Substituting into equation (A1) and solving,
we see that the long-time asymptotic approximation for the
particle location is:

Q=

X(t) = it + (Aeat)« S (A5)
Taking the Fourier transforms of the corresponding pdfs, we
obtain:

fa(k,t) = exp (—Au1t(ik) + Acat(ik)®) (A6)

This is the Fourier transform of f,(z,t) with the higher or-

der terms removed, as well as the point source solution to

the differential equation:
Ofa(k,t)

Wil o (<M (k) + Aca(ik)*) fu(k, 1)

5 (AT)

Inverting this Fourier transform results in the fractional
advection-diffusion equation (14).

Appendix B: Stable distributions

X, X1, Xo,...
with a common distribution Fs, then the distribution Fj is

are mutually independent random variables
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said to be stable if for each n € Z, there exists constants C,,
and 7, such that [e.g., Lamperti, 1962; Feller, 1971]:

SnLCoX + 1 (B1)

where S,, = X1+ Xo +--- 4+ X,, and 4 means identical in
distribution. In other words, stable distributions are aggre-
gation invariant up to a scale parameter, C,, and location

parameter, 7,,. The norming constant C,, is of the form na
for 0 < a < 2, where « is called the characteristic exponent
of the distribution Fs. The distribution Fs is said to be
strictly stable when r, = 0. Closed-form expressions of the
density functions of stable distributions exist for values of
equal to 2,1 and 0.5. In general, the stable pdf is defined
by its Fourier transform [see Stuart and Ord, 1987]:

plk) = {—idk — |k|* (1 + ifsgn(k) tan (”—2"‘))} (B2)

for 0 < @ < 2 and o # 1. In the above equation sgn(-)
denotes the signum function. The remaining parameters of
the distribution are the location parameter (—oo < § < 00),
scale parameter (y > 0) and the skewness parameter (—1 <
B < 1). The distribution is symmetric for § = 0 and is said
to be completely skewed for 6 = —1 and 8 = 1. For a = 2,
p(k) gives the Fourier transform of a Gaussian density with
mean ¢ and variance 2¢2. For the special case o = 1, the
Fourier transform is expressed in a slightly different way.
When o« = 1 and 8 = 0, the stable distribution is also called
a Cauchy distribution.

If a random variable X has an a-stable distribution, then
its theoretical statistical moments exist only up to order a.
The mean of the distribution exists when 1 < a < 2, but
when 0 < a < 1 both the mean and variance of the dis-
tribution are undefined. Thus, the Gaussian distribution is
the only stable distribution with finite mean and variance.
Stable distributions provide good approximations for spa-
tial rainfall fluctuations in convective storms [e.g., Kumar
and Foufoula-Georgiou, 1993], daily discharges in river flows
[e.g., Dodov and Foufoula-Georgiou, 2004], spatial snapshots
of tracer plumes in underground aquifers [e.g., Benson et al.,
2000a] and river flows [e.g., Deng et al., 2004].

Notation
x streamwise co-ordinate.
t time.
n local mean bed elevation.
t time.
v shape parameter of the gamma distribution.

Ap Dporosity.
Dy volume rate per unit area of deposition of
bedload particles.

Ep  volume rate per unit area of entrainment of
bedload particles.

fs(r) pdf of step lengths.
fs(r|D) pdf of step lengths conditioned on grain
size.
fa (z,t) fraction of tracer particles in the active
layer.
fr(z,t) fraction of the tracer particles in the sedi-

ment that is exchanged across the interface
between active layer and substrate.

L, thickness of the active layer.
Eyr  volume entrainment rate of tracers.
Dy volume deposition rate of tracers.
v advection velocity of tracers.
D, diffusivity of tracers.
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D grain-size.
arithmetic-mean of the grain-size distribution.
D, geometric mean of the grain-size distribution.
a tail index of the stable distribution and the
order of fractional differentiation.

ur(D) mean step length for grain-size D.
faa (x,t,D) fraction of tracers in the active layer with
grain-size D.
Eyy (D) entrainment rate per unit bed content of

grain-size D.

Acknowledgments. Funding for this research was provided
by the National Center for Earth-surface Dynamics (NCED) at
the University of Minnesota, a NSF Science and Technology Cen-
ter funded under agreement EAR-0120914, and by a collaborative
NSF grant EAR-0824084 and EAR-0823965, to EFG and MMM.
The authors would also like to thank NCED and “Water Cy-
cle Dynamics in a Changing Environment” hydrologic synthesis
project (University of Illinois, funded under agreement EAR -
0636043) for co-sponsoring the STRESS (Stochastic Transport
and Emerging Scaling on Earth’s Surface) working group meet-
ing (Lake Tahoe, November 2007). The authors would also like
to thank David Furbish for insightful discussions. Mike Church,
Colin Stark and three anonymous referees provided critical com-
ments which considerably improved the presentation of this work.
The first author acknowledges the support by an interdisciplinary
doctoral fellowship provided by the graduate school and the Insti-
tute on the Environment (IonE) at the University of Minnesota.
Computer resources were provided by the Minnesota Supercom-
puting Institute, Digital Technology Center, at the University of
Minnesota.

References

Ancey, C., T. Bohm, M. Jodeau, and P. Frey, Statistical descrip-
tion of sediment transport experiments, Phys. Rev. E, (74),
011302, 2006.

Ancey, C., A. C. Davidson, T. Bohm, M. Jodeau, and P. Frey,
Entrainment and motion of coarse particles in a shallow wa-
ter stream down a steep slope, J. Fluid Mech., (595), 83-114,
2008.

Ancey C., Stochastic approximation of the Exner equation under
lower-regime conditions, J. Geophys. Res., under review, 2009
(in this issue).

Benson, D. A., The fractional advection-dispersion equation: De-
velopment and application, Ph.D. thesis, University of Nevada,
Reno, 1998.

Benson, D. A.; S. W. Wheatcraft, and M. M. Meerschaert, Ap-
plication of a fractional advection-dispersion equation, Water
Resour. Res., 36(6), 1403-1412, 2000a.

Benson, D. A.; S. W. Wheatcraft, and M. M. Meerschaert, The
fractional-order governing equation of Lévy motion, Water Re-
sour. Res., 36(6), 1413-1423, 2000b.

Berkowitz, B., J. Klafter, R. Metzler, and H. Scher,
Physical pictures of transport in heterogeneous media:
Advection-dispersion, random-walk, and fractional deriva-
tive formulations, Water Resour. Res., 38(10), 1191,
doi:10.1029/2001WR001030, 2002.

Blom, A., G. Parker, J. S. Ribberink, and H. J. de Vriend, Ver-
tical sorting and the morphodynamics of bed-form-dominated
rivers: An equilibrium sorting model, J. Geophys. Res., 111,
16 p., 2006.

Bradley, W. C., Effect of weathering on abrasion of granitic
gravel, Colorado River, Texas., Geological Soc. of Am. Bull.,
81, 61 — 80, 1970.

Charru, F., H. Mouilleron, and O. Eiff, Erosion and deposition
of particles on a bed sheared by viscous flow, J. Fluid Mech.,
519, 55 — 80, 2004.

Cheng, N., and Y. Chiew, Pickup probability for sediment en-
trainment, J. Hydraul. Eng., 124(2), 232 — 235, 1998.

Cheng, N., Analysis of bedload transport in laminar flows, Adv.
Water Resour., 27, 937 — 942, 2004.



GANTI ET AL.: ANOMALOUS DIFFUSION AND TRACERS.

Cheng, N. S., T. Tang, and L. Zhu, Evaluation of bedload trans-
port subject to high sheer stress fluctuations, Water Resour.
Res., 40, W05601, doi:10.1029/2003WR003001, 2004.

Church, M., and M. A. Hassan, Size and distance of travel of
unconstrained clasts on a streambed, Water Resour. Res., 28,
299 — 303, 1992.

Cushman, J. H., and T. R. Ginn, Fractional advection-dispersion
equation: a classical mass balance with convolution-Fickian
flux, Water Resour. Res., 36, 3763 — 3766, 2000.

Deng, Z.-Q., V. P. Singh, and L. Bengtsson, Numerical solution
of fractional advection-dispersion equation, J. Hydraul. Eng.,
130(5), 422-431, 2004.

Deng, Z. Q., J. L. M. P. de Lima, and V. P. Singh,
Fractional Kinetic Model for First Flush of Stormwa-
ter Pollutants, J. Environ. Engineering, 131(2), 232-241,
DOI:10.1061/(ASCE)0733-9372(2005)131:2, 2005.

Deng, Z. Q., J. L. M. P. de Lima, M. I. P. de Lima,
and V. P. Singh, A fractional dispersion model for over-
land solute transport, Water Resour. Res., 42, WO03416,
doi:10.1029/2005WR004146, 2006.

Dodov, B., and E. Foufoula-Georgiou, Generalized hydraulic ge-
ometry: Derivations based on multiscaling formalism, Wa-
ter Resour. Res., 40, W06302, doi:10:10.1029/2003WR002082,
2004.

Einstein, H. A., Der Geschiebetrieb als Wahrscheinlichkeitsprob-
lem, in Mitteilung der Versuchsanstalt fiir Wasserbau an
der FEidgendssische Technische Hochschule Zirich, Verlag
Rascher, Zurich, Switzerland. (English translation, Sedimenta-
tion, edited by H. W. Shen, pp. C1 — C105, Colo. State Univ.,
Fort Collins)

Einstein, H. A., Formulas for the transportation of bed load,
Transactions, ASCE Paper No. 2140, 1942.

Einstein, H., and E. A. El-Sammi, Hydrodynamic forces on a
rough wall, Rev. Mod. Phys., 21, 520-524, 1949.

Einstein, H. A., The bed-load function for sediment transporta-
tion in open channel flows, Tech. Bull., 1026., Soil Conserv.
Serv., U. S. Dept. of Agric., Washington, D. C. 78 p., 1950.

Feller, W., An Introduction to Probability Theory and Its Appli-
cations, vol. 2, second ed., Wiley, New York, [1st edn. 1966],
1971.

Ferguson, R. I., and S. J. Wathen, Tracer-pebble movement along
a concave river profile: Virtual velocity in relation to grain size
and shear stress, Water Resour. Res., 34, 2031-2038, 1998.

Ferguson, R. I., and T. B. Hoey, Long-term slowdown of river
tracer pebbles: Generic models and implications for inter-
preting short-term tracer studies, Water Resour. Res., 38(8),
1142, 2002.

Fulger, D., E. Scalas, and G. Germano, Monte Carlo simulation of
uncoupled continuous-time random walks yielding a stochastic
solution of the space-time fractional diffusion equation, Phys.
Rev. E, 77, 021122, 2008.

Furbish, D. J., P. K. Haff, W. E. Dietrich, and A. M. Heim-
sath, Statistical description of slope-dependent soil transport
and diffusion-like coefficient, J. Geophys. Res., 114, FOOAO05,
doi:10.1029,/2009JF001267, 2009.

Ganti, V., A. Singh, P. Passalacqua, and E. Foufoula-Georgiou,
Subordinated Brownian motion model for sediment transport,
Phys. Rev. E, 80(1), 2009.

Garcia, M. H., Sedimentation Engineering Processes, Measure-
ments, Modeling and Practice, ASCE Manual No. 110, 1050
p-, 2008.

Hassan, M. A., and M. Church, Distance of movement of coarse
particles in gravel bed streams, Water Resour. Res., 27(4),
503-511, 1991.

Hassan, M. A., and M. Church, Size and distance of travel of un-
constrained clasts on a streambed, Water Resour. Res., 28(1),
299-303, 1992.

Hassan, M. A., and M. Church, Vertical mixing of coarse particles
in gravel bed rivers: A kinematic model, Water Resour. Res.,
30, 1173-1186, 1994.

Hill, K. M., L. DellAngelo, and M. M. Meerschaert, Particle size
dependence of the probability density distributions of travel
distances of gravel particles in bedload transport, J. Geophys.
Res., under review, 2009.

Hoey, T. B., and R. I. Ferguson, Numerical simulation of down-
stream fining by selective transport in gravel bed rivers: Model
development and illustration, Water Resour. Res., 30, 2251—
2260, 1994.

X-9

Hosking, J. R. M., and J. R. Wallace, Parameter and quantile esti-
mation for the generalized Pareto distribution, Technometrics,
29(3), 339-349, 1987.

Kleinhans, M. G., and L. C. van Rijn, Stochastic prediction of
sediment transport in sand-gravel bed rivers, J. Hydraul. Res.,
128(4), 412-425, 2002.

Kumar, P., and E. Foufoula-Georgiou, A multicomponent decom-
position of spatial rainfall fields, 2. Self-similarity in fluctua-
tions, Water Resour. Res., 29(8), 2533-2544, 1993.

Lamperti, J., Semi-stable stochastic processes, Trans. Am. Math.
Soc. 104, 62-78, 1962.

Lanzoni, S., and M. Tubino, Grain sorting and bar instability, J.
Flu. Mech. 393, 149-174, 1999.

Lauer, J. W., and G. Parker, Modeling framework for sediment
deposition, storage, and evacuation in the floodplain of a me-
andering river: Theory, Water Resour. Res. 44, W04425,
2008a.

Lauer, J. W., and G. Parker, Modeling framework for sediment
deposition, storage, and evacuation in the floodplain of a me-
andering river: Application to the Clark Fork River, Montana,
Water Resour. Res. 44, W08404, 2008b.

Lopez, F., and M. H. Garcia, Risk of sediment erosion and sus-
pension in turbulent flows, J. Hydraul. Res. 127(3), 231-235,
2001.

Meerschaert, M. M., and H. P. Scheffler, Limit Distributions for
Sums of Independent Random Vectors: Heavy Tails in Theory
and Practice, Wiley, New York, 2001.

Meerschaert, M. M., and H.P. Schefler, Limit theorems for con-
tinuous time random walks with infinite mean waiting times.
J. Applied Probab., 41, No. 3, 623-638, 2004.

Montroll, E. W.; and G.H. Weiss, Random walks on lattices. II.
J. Mathematical Phys. 6, 167-181, 1965.

Nakagawa, H., and T. Tsujimoto, On probabilistic characteris-
tics of motion of individual sediment particles on stream beds,
in Proceedings of the 2nd TAHR International Symposium on
Stochastic Hydraulics, pp. 293-316, Int. Assoc. of Hydraul.
Eng. and Res., Madrid, 1976.

Nakagawa, H., and T. Tsujimoto, Sand bed instability due to bed
load motion, J. Hydraul. Div. Am. Soc. Civ. Eng., 106(HY12),
2029-2051, 1980.

Nelson, J., R. L. Shreve, S. R. McLean, and T. G. Drake, Role of
near-bed turbulence structure in bed load transport and bed
form mechanics, Water Resour. Res., 31(8), 2071-2086, 1995.

Nikora, V., H. Habersack, T. Huber, and I. McEwan, On bed par-
ticle diffusion in gravel bed flows under weak bed load trans-
port, Water Resour. Res., 38(6), 1081, 2002.

Nino, Y., and M. Garcia, Experiments on saltation of sand in
water, J. Hydraulic Engg., 124(10), 1014-1025, 1998.

Nolan, J. P., Numerical calculation of stable densities and distri-
bution functions. Commun. Statist.-Stochastic Models, 13(4),
759-774, 1997.

Odibat, Z. M., and N. T. Shawagfeh, Generalized Taylor’s for-
mula, Appl. Math. Comput., 186, 286-293, 2007.

Paintal, A. S., A stochastic model for bed load transport, J. Hy-
draulic Res., 9(4), 527-554, 1971.

Papoulis, A., and S. Pillai, Probability, random variables and
stochastic processes, McGraw Hill, 2002.

Parker, G., C. Paola, and S. Leclair , Probabilistic Exner sed-
iment continuity equation for mixtures with no active layer,
Journal of Hydrualic Engg., 126(11), 818-826, 2000.

Parker, G., Transport of gravel and sediment mixtures, Chapter
3, Sedimentation Engineering Processes, Measurements, Mod-
eling and Practice, ASCE Manual and Reports on Engineering
Practice 110, M. Garcia, ed., 2008.

Podlubny, 1., Fractional Differential Equations, vol. 198, Aca-
demic Press, San Diego, 1999.

Pyrce, R. S., and P. E. Ashmore, Particle path length distribu-
tions in meandering gravel-bed streams: Results from physical
models, Earth Surf. Processes Landforms, 28, 951-966, 2003.

Scalas, E., R. Gorenflo, and F. Mainardi, Uncoupled continuous-
time random walks: Solution and limiting behavior of the mas-
ter equation, Phys. Rev. E, 69, 011107(1-8), 2004.

Scher, H. and M. Lax, Stochastic transport in a disordered solid.
I. Theory. Phys. Rev. B 7, 4491-4502, 1973.

Schumer R., D. A. Benson, M. M. Meerschaert and S. W.
Wheatcraft, Eulerian derivation of the fractional advection-
dispersion equation. J. Contaminant Hydrol., 48, 69—88, 2001.



X-10

Schumer R., D. A. Benson, M. M. Meerschaert and B. Baeumer,
Fractal mobile/immobile solute transport, Water Resour.
Res., 39(10), 1296-1307, 2003.

R. Schumer and D.J. Jerolmack, Real and apparent changes in
sediment deposition rates through time. Journal of Geophysi-
cal Research, in press, 2009.

Stark, C. P., E. Foufoula-Georgiou, and V. Ganti, A nonlocal the-
ory of sediment buffering and bedrock channel evolution, J.
Geophys. Res., 114, F01029, doi:10.1029/2008JF000981, 2009.

Stuart, A., and J. K. Ord, Kendall’s Advanced Theory of Statis-
tics, Vol. 1, Oxford University Press, New York, 1987.

Toro-Escobar, C. M., G. Parker and C. Paola, Transfer func-
tion for the deposition of poorly sorted gravel in response to
streambed aggradation, J. Hydraulic Res., 34 (1), 35-53, 1996.

Tsujimoto, T., Probabilistic model of the process of bedload
transport and its application to mobile-bed problems, Ph.D.
Thesis, Kyoto University, 174pp., 1978.

Wheatcraft, S. W., and M. M. Meerschaert, Fractional conserva-
tion of mass, Adv. Water Resour., 31, 1377-1381, 2008.

Wilcock, P. R., and J. B. Southard, Bed-load transport of a
mixed-size sediment: Fractional transport rates, bed forms,
and the development of a coarse bed-surface layer, Water Re-
sour. Res., 25(7), 1629-1641, 1989.

GANTI ET AL.: ANOMALOUS DIFFUSION AND TRACERS.

Wilcock, P. R., Entrainment, displacement and transport of
tracer gravels, FEarth Surf. Processes Landforms, 22, 1125—
1138, 1997.

Wong, M., G. Parker, P. DeVries, T. M. Brown, and S. J. Burges,
Experiments on dispersion of tracer stones under lower-regime
plane-bed equilibrium bed load transport, Water Resour. Res.,
43, W03440, doi:10.1029/2006WR005172, 2007.

Zolotarev, V. M., One-dimensional stable distributions, Transla-
tions of Mathematical Monographs, 65, American Mathemati-
cal Society, Providence, RI, 1986. Translated from Russian by
H. H. McFaden, Translation edited by Ben Silver.

E. Foufoula-Georgiou, and V. Ganti, St. Anthony Falls Labo-
ratory and National Center for Earth-surface Dynamics, Depart-
ment of Civil Engineering, University of Minnesota, 2 Third av-
enue SE, Minneapolis 55414, USA.

M. M. Meerschaert, Department of Statistics and Probability,
Michigan State University, East Lansing, MI, USA.

E. Viparelli, and G. Parker, Ven Te Chow Hydrosystems Labo-
ratory, Departments of Civil and Environmental Engineering and
Geology, University of Illinois, Urbana, Illinois, USA.



Percentage finer

100

90

80

70

60

50

40

30

20

10

GANTI ET AL.: ANOMALOUS DIFFUSION AND TRACERS.

2 3 4 5 6 7 8
Grain size (mm)

Figure 1. Plot showing fitted log-normal (dashed line)
and gamma (solid line) distributions, to a grain-size dis-
tribution (solid points) reproduced from Wilcock and
Southard [1989].
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Figure 2. Time evolution of the fraction of tracers in the
active layer, fo(z,t), by (a) normal advection-diffusion
(a =2), and (b) anomalous advection-diffusion with a =
1.5. Note that the advection term has been removed to
facilitate comparison of the dispersion of the tracers at
different times. The initial condition is a pulse at x = 0.
The solutions are obtained with parameters v = 1 m/day
and Dg = 1 m®/day. The times (in days) at which the
solutions are obtained are labeled in the figure.
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[11 A geometric framework for the automatic extraction of channels and channel
networks from high-resolution digital elevation data is introduced in this paper. The
proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both
to remove noise and to enhance features that are critical to the network extraction.
Following this preprocessing, channels are defined as curves of minimal effort, or
geodesics, where the effort is measured on the basis of fundamental geomorphological
characteristics such as flow accumulation area and isoheight contours curvature. The
merits of the proposed methodology, and especially the computational efficiency and
accurate localization of the extracted channels, are demonstrated using light detection and
ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in

northern California.
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1. Introduction

[2] The detection of channel networks and the localiza-
tion of channel heads from digital elevation (DEM) data are
fundamental to the accurate modeling of water, sediment,
and other environmental fluxes in a watershed. Several
methodologies to delineate channel heads and channel net-
works from DEMs have been proposed [e.g., Montgomery
and Dietrich, 1988; Tarboton et al., 1988, 1991; Montgomery
and Foufoula-Georgiou, 1993; Costa-Cabral and Burges,
1994; Giannoni et al., 2005; Hancock and Evans, 2006].
Channel heads typically are found in unchanneled valleys
and appear to occur where some erosion threshold has been
crossed (e.g., landsliding, overland flow incision through a
vegetated surface, seepage erosion, etc.) [e.g., Montgomery
and Dietrich, 1988; Dietrich et al., 1993]. Field data also
show that channel head location varies with a topographic
threshold that depends on drainage area and local valley
slope [e.g., Montgomery and Dietrich, 1988, 1989, 1992,
1994]. More recently, for example, McNamara et al. [2006]
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located channel heads in a small watershed in Thailand and
suggested that different channel initiation processes pro-
duced different slope-area relationships. Several studies
employ, instead, an assumption of constant critical support
area for determining the location of channel heads [e.g.,
O’Callaghan and Mark, 1984; Band, 1986; Mark, 1988;
Tarboton et al., 1989, 1991; McMaster, 2002], although
empirical support from field observations was not reported.
Other work has explored the localization of channel heads
by identifying valley heads as concave areas in DEMs
[Tribe, 1991, 1992].

[3] With the availability of high-resolution topographic
data obtained by airborne laser mapping, new methodolo-
gies have been proposed for the determination of the
locations and distribution of landslide activity [e.g.,
McKean and Roering, 2004; Glenn et al., 2006; Ardizzone
et al., 2007; C. Gangodagamage et al., Statistical signature of
deep-seated landslides, submitted to Journal of Geophysical
Research, 2009], the geomorphological mapping of glacial
landforms [Smith et al., 2006], numerical modeling of
shallow landslides [e.g., Dietrich et al., 2001; Tarolli and
Tarboton, 2006], computation of channel slope [Vianello et
al., 2009], identification of depositional features of alluvial
fans [Staley et al., 2006; Frankel and Dolan, 2007; Cavalli
and Marchi, 2008] and of channel bed morphology [Cavalli
et al., 2008], and the detection of hillslope-to-valley transi-
tion [Tarolli and Dalla Fontana, 2009].

[4] Light detection and ranging (lidar) data now permits
direct detection of channels, rather than estimation of likely
channel location based on topographic features (slope,
drainage area, or topographic curvature). Recently,
Lashermes et al. [2007] proposed a wavelet-based filtering
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methodology to extract channels and channel networks from
high-resolution topography that can be obtained from air-
borne lidar data. In the methodology of Lashermes et al.
[2007], multiscale analysis, i.e., going from fine to coarser
scales, was achieved via a convolution of the original
image with a Gaussian kernel at different scales. This is
equivalent to applying the heat equation on the image
going forward in time (e.g., see Braunmandl et al. [2003]
and later in this paper). Gaussian linear filtering, however,
smoothes small-scale structures at the same rate as it
smoothes larger-scale structures (actually some of the most
critical scales are smoothed even faster, which can be
shown following the theory of robust estimation). This
might not be desirable in DEM feature extraction as small-
scale structures, such as the crest of a ridge or channel
bank, should remain sharp during coarsening until the
whole ridge disappears. This problem of edge preservation
has prompted in image processing the introduction of
adaptive geometric filters which reduce smoothing at the
edges of features while applying Gaussian filtering to the
rest of the image.

[5] In this paper, a geometric framework which signif-
icantly advances the accurate and automatic extraction of
channel networks from lidar data is developed using such
scale-adaptive filtering. The first component of the frame-
work is the use of nonlinear geometric filtering (via
partial differential equations), instead of linear filtering
via wavelets, which naturally adapts to a given landscape
and facilitates the enhancement of features for further
processing. Early uses of nonlinear partial differential
equations for digital elevation maps appear in the work
of Braunmandl et al. [2003], Almansa et al. [2002], and
Solé et al. [2004]. The form of this filtering is such that
it behaves as linear diffusion at low-elevation gradients,
while it arrests diffusion as the gradients become large
(other features could be used to control the nonstationary
diffusion as well). It is noted that the nonlinear diffusion
term here employed refers to the filtering methodology in
image processing and not to the nonlinear erosion laws
[e.g., Kirkby, 1984, 1985; Andrews and Buckman, 1987,
Anderson and Humphrey, 1989; Anderson, 1994; Howard,
1994a, 1994b, 1997; Roering et al., 1999]. The second
key component of the proposed framework is the novel
formulation of the channel network extraction problem as
a geodesic energy minimization problem with a cost
function which is geomorphologically informed; that is,
it is defined in terms of local attributes of the landscape
such as upstream drainage area and isoheight contours
curvature. In other words, channels are defined as curves
of minimal effort. Such curves are derived from global
integration of local quantities and computed in optimal
linear complexity. This global integration methodology
makes the channel network extraction robust to noise and
data interruptions, contrary to what obtained with more
common forward marching approaches (e.g., following
steepest descent directions).

[6] This paper is organized as follows. Section 2 gives a
brief mathematical background on nonlinear diffusion,
geometric filtering, geodesics, and energy minimization
principles. In section 3 these techniques are applied to the
problem of channel network extraction and demonstrated in
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a real basin. Finally, section 4 presents concluding remarks
and challenges for future research.

2. Mathematical Background on the Proposed
Methodology

[7] This section presents the basic mathematical back-
ground that provides the foundation for the channel network
extraction geometric framework introduced in this paper.
First, the notion of nonlinear anisotropic filtering is intro-
duced. Next, the framework of geodesic computations is
presented. The channel extraction methodology presented
here has been released to the community as a toolbox called
GeoNet. The code is available for download at http://
software.nced.umn.edu/geonet/.

2.1. Nonlinear Diffusion and Geometric Filtering

[s] Let us denote by /o(x, y): R* — R the provided DEM
image, i.e., high-resolution digital elevation data. Typical of
any feature extraction methodology is the application of a
smoothing filter on the original data Ag(x, y) to remove
“noise” (observational noise or irregularities at scales
smaller than the scales of interest) and identify features as
entities that persist over a range of scales. This operation of
smoothing is also very important to make computations
such as derivatives mathematically well posed. A popular
smoothing filter is the Gaussian kernel, which, when applied
to Aig(x, y), results 