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ABSTRACT 
 
 
In many geomorphic transport systems, the time and length scales of motion vary widely: 

particles can be trapped for both short and long periods of time and they can travel large 

or small distances in very short intervals of time.  To model such systems we need fresh 

conceptual and mathematical formalisms.  The goal of this collection of papers is to 

challenge existing thinking in geomorphic transport by putting forward new ideas and 

theories for environmental fluxes, from particle transport in a single stream, to landslide 

debris mobilization, sediment and water transport on hillslopes, dynamic transport on 

river networks, and interpretation of sedimentary deposits over geologic time.  Advanced 

stochastic theories of transport are proposed, the notion of non-local flux is introduced, 

and fractional advection-diffusion equations are explored as possible models of 

geomorphic transport.     

 
 



1.  INTRODUCTION 

 

In November, 2007 a working group meeting entitled Stochastic Transport and Emergent 

Scaling on the Earth’s Surface (STRESS) was convened in Lake Tahoe, Nevada.  Its 

scope was to bring together geomorphologists, hydrologists, mathematicians, and 

physicists with the goal of rethinking the mathematical treatment of transport processes 

on the Earth’s surface.  The specific questions asked were: (1) How can we reconcile 

observed patterns and organization (from sand dunes, to landslides, sedimentary deposits, 

hillslope profiles, and sediment transport in rivers) with theories and dynamical models 

that can reproduce these patterns?  (2) Are geomorphic transport laws based on the notion 

of a locally derived flux limited in some fundamental sense, and is the notion of a non-

local flux (flux determined by conditions at some distance from the point of interest) a 

physically viable alternative?  (3) How can we relate micro- and macro-scale dynamics in 

stochastic transport theories and in predictive models?    

 

The papers in this special issue provide some insight into these questions.  They stretch 

the envelope of geomorphic modeling by introducing new mathematical theories and 

models of transport, providing new explanations of old data, and posing alternative 

hypotheses to explain process from form.  They also open new questions for future 

research.   

 

2.  CHALLENGING OLD THEORIES: THE NOTION OF NON-LOCALITY  

 

Current geomorphic transport laws for landscape evolution are formulated as partial 

differential equations framed around approximations of the physics of advection and 

diffusion/dispersion: in particular, assumptions are made that facilitate the integration of 

processes from micro-scales in time and space to geomorphic model scales.  Such 

assumptions are inconsistent with transport processes in which significant contributions 

to the total flux come from events across a broad span of magnitude and frequency. 

 



For example, the advection-dispersion equation (ADE) is based on the classical definition 

of divergence of a vector field.  The classical notion of divergence maintains that as an 

arbitrary control volume shrinks, the ratio of total surface flux to volume must converge 

to a single value.  However, if a considerable fraction of the total sediment flux during 

the period of observation arises from a flux of particles from far upstream, then the 

classical divergence theorem fails.  Instead, a divergence associated with a finite volume, 

and defined as the ratio of total flux to volume, is more appropriate.  However, by 

increasing the arbitrary volume a greater heterogeneity in the medium properties and in 

the physical processes contributing to transport is sampled, and the degree of resulting 

variability is bound to depend on scale.  Thus, the ratio of total flux to volume does not 

remain constant but varies with the size of the volume.  As a result, the classical diffusion 

equation is no longer self-contained with a closed-form solution at all scales.  Within the 

limits of classical theory, the best that can be done is to assume that the total flux to 

volume ratio is constant within small ranges of scales, allowing one to talk about an 

``effective'' scale-dependent dispersion coefficient.  Another approach is to depart 

altogether from the classical theory.  

 

Recently, the physics of advection and dispersion has evolved beyond describing 

classical phenomena to include materials that exhibit variability from large to very small 

scales, power-law velocity distributions, chaotic dynamics, and slow reactive transport 

(e.g., see the review paper of Schumer et al. [2009], this issue).  Fractional calculus 

treatments of advection and diffusion/dispersion capture non-classical behavior in a 

simple and elegant form.  For example, changing the second derivative in the diffusion 

equation to a fractional derivative of order less than two yields a model for 

superdiffusion, in which particles spread faster than the classical diffusion equation 

predicts.  Changing the first order time derivative in that same equation to a fractional 

derivative of order less than one models subdiffusion.  Superdiffusive models are 

connected with power-law particle jump lengths; subdiffusive models emerge from 

power-law waiting times between jumps.   

 



Several techniques have been proposed in the subsurface transport literature to tackle the 

problem of scale-dependent dispersivity which arises for similar reasons, namely, the 

presence of inhomogeneities at all scales and the wide range of length and time scales of 

motion [see discussion and references in Schumer et al, 2009, this issue] . The treatment 

of surface transport faces similar challenges, i.e., time and scale-dependent flux statistics, 

presence of heterogeneities at all scales, scale-invariance and power-law spectra of 

landscapes (in analogy with fractal porous media in the subsurface), and yet geomorphic 

flux laws that can accommodate such behavior are not available.  The contributions in 

this issue are a step in this direction.   

 

 

3.  NEW THEORIES AND NEW PERSPECTIVES     

 

The contributions in this volume can be broadly classified as addressing the following 

three geomorphic transport problems:  (a) bedload transport in rivers (Ganti et al.,  

Bradley et al., Ancey, McElroy et al., and Hill et al.); (b) transport on hillslopes 

(Foufoula-Georgiou et al., Tucker and Bradley, Furbish et al, a,b, Harman et al., and 

Stark & Guzzetti); and (c) transport in erosional-depositional systems and river networks 

(Voller and Paola, Zaliapin et al., and Schumer and Jerolmack).  A summary of these 

developments is presented below.   

 

3.1.  Bedload transport in rivers 

 

Despite considerable research over the past several decades, the problem of accurate 

estimation of bedload sediment transport in rivers remains unsolved.  One of the main 

challenges lies in the fact that the motions of individual particles happen at random, 

rendering the process of transport a stochastic process.  Along these lines, contributions 

in this issue relate to the development of new stochastic discrete or continuous 

formulations of transport that can explicitly account for stochastic behaviors such as large 

variations in particle displacement and long times spent in immobile phase.  



Ganti et al. reconsider the problem of tracer dispersal in rivers and argue that long 

leading tails in tracer concentration are to be expected in certain cases where the step 

length distribution of particle movements is heavy tailed [see also Stark et al, 2009].  

Starting with an active layer formulation of the probabilistic Exner equation they show 

that the continuum equation describing the tracer concentration in this case takes the form 

of a fractional advection-dispersion equation.  By identifying the probabilistic Exner 

equation as a forward Kolmogorov equation, they also propose a stochastic model 

describing the evolution of tracer concentration and show that the classical (normal) and 

fractional (anomalous) advection-diffusion equations arise as long-time asymptotic 

solutions of this stochastic model.  More data are needed to fully verify such a model 

based on particle-scale and macro-scale statistics.    

 

Bradley et al. revisit a 50-year old tracer experiment in which the tracer plume exhibits 

behavior not possible to be explained with classical transport models, namely, 

anomalously high fraction of tracers in the downstream tail of the distribution, a decrease 

of detected tracer mass over time and enhanced particle retention near the source.  They 

propose a fractional advection-dispersion equation and a two-phase transport model 

(which partitions mass into detectable mobile and undetectable immobile phases) and 

show an impressive agreement with observations.   

 

McElroy et al. note that the movement of bed material associated with bed deformation is 

not accounted for in standard methods of calculating sediment flux and propose a 

framework for calculating that portion of the flux in sandy bed rivers (which they term 

deformation flux).  They note differences between laboratory and real river systems in the 

statistics of the bed deformation rates and define normalized metrics for comparing 

systems of different size.  They also note the time-dependence (power-law scaling) of the 

deformation flux in sand-bed rivers, not explainable by classical theories of advection-

dispersion, motivating the exploration of fractional dispersion models that can explain 

such scaling behavior.       

 



Ancey examines the influence of randomness in bed sediment flux on the initial genesis 

of bedforms, and shows how strong fluctuations in flux can arise even in the absence of 

heavy-tailed probability distributions of stream-bed sediment exchange.  A Markovian, 

birth-death process model of sediment entrainment is developed and cast into a stochastic 

form of the Exner equation.  In the large number limit, he shows that the model admits a 

Fokker-Planck representation, simplifying subsequent analysis.  Derivations of the 

stochastically varying number of particles in motion and of the coupled bed height are 

provided, allowing prediction of the scaling of the variance of model bed topography 

with time. 

 

Hill et al. consider the problem of modeling bedload transport in gravel bed rivers which 

exhibit a broad range of particle sizes.  Based on a series of carefully controlled flume 

experiments, they document an exponential distribution of the travel time of entrained 

particles of a given size, with the parameter of the distribution (mean travel distance) 

depending on both particle size and shear stress.  In real settings, the convolution of the 

distributions of travel distances and particle sizes is shown to yield a power law 

distribution, which requires re-consideration of standard diffusion models and 

introduction of superdiffusive models of transport.   

 

3.2. Transport on hillslopes 

Sediment transport on hillslopes forms an area of active research both theoretical and 

experimental.  Typical models available to date include standard diffusive models which 

consider a linear or nonlinear formulation of flux based on local slope or other local 

attributes such as soil depth.  The contributions in this issue address some important 

elements of hillslope transport related to stochasticity in the diffusion coefficient to 

incorporate rain splash effects or dependence on soil thickness, extension to a non-local 

flux formulation (in a discrete or continuous framework) to incorporate large scales of 

particle motion,  reformulation of the kinematic wave equation for hillslope subsurface 

transport, and a stochastic theory for landslide-driven erosion.    

 



Stark and Guzetti present a physically-based stochastic theory for landslide-driven 

erosion.  The proposed model describes a simplified process of rupture propagation, slope 

failure and debris mobilization, and it reproduces the probability distributions observed 

for landslide source areas and volumes, including their power-law tail scaling.  The peak 

(rollover) and tail scaling of the distributions are explained in terms of the relative 

importance of cohesion over friction in setting slope stability, allowing thus for a physical 

interpretation.  Numerical experiments validate the analytical results and document the 

sensitivity of the model to parameterization.  The interplay of river incision and hillslope 

steepening in adjusting the landslide magnitude-frequency is interpreted in physical and 

statistical terms.    

 

Furbish et al. [2009a] revisit the problem of soil grain transport by rain splash and 

formulate it as a stochastic advection-dispersion process.  One of their innovations rests 

on the explicit separation of the grain activity probability (determined by the rain storm 

intensity and soil properties at weather time scales) from the physics of the grain motions.  

They perform rain-splash experiments to confirm that gradients in raindrop intensity are 

as important as gradients in grain concentration and surface slope in affecting overall 

transport.  Their result points to the importance of the ecological behavior of desert 

shrubs as “resource islands” (temporary storage zones of soil derived from areas 

surrounding the shrubs) and the implication that this behavior can have for land-surface 

evolution modeling.  The proposed formulation provides a general framework for 

transport and dispersal of any soil material moveable by rainsplash, including nutrients, 

seeds and soil-borne pathogens.    

 

Furbish et al [2009b] probe the physical justification of the linear slope-dependent 

transport formulation.  Balancing the particle fluxes that tend to loft a soil with the 

gravitationally driven particle settling, they show how a slope-dependent transport 

relation emerges with, however, a statistical description of the diffusion-like coefficient.  

This coefficient involves the active soil thickness as a fundamental length scale that 

provides the minimum length scale over which measurement of the surface slope is 

meaningful.  This in turn implies that the diffusion-like linear slope-dependent model 



(soil flux proportional to the depth-slope product) is applicable at scales larger than the 

disturbance scales producing the transport.  The formulation is consistent with 

observations of topographic profiles of hillslopes evolving by soil creep and by transport 

associated with biomechanical mixing.  However, the theory does not explain the 

nonlinear flux-slope relations observed in many systems.   

 

Tucker and Bradley are concerned with transport on hillslopes exhibiting a broad 

distribution of grain-motion length scales.  They examine, in a simple discrete particle-

based model, relations between grain-motion dynamics, bulk transport rates, and hillslope 

morphology, and they illustrate conditions under which standard local-gradient theory is 

not appropriate.  They show that a nonlinear relationship between flux and local gradient 

emerges from their discrete model formulation at steep slopes and make a preliminary 

exploration of continuum generalizations based on a probabilistic form of the Exner 

equation.   They provide insightful discussion on the notion of non-local flux 

computation and how high-probability, long-distance particle motions violate the 

assumption embedded in many commonly used local gradient-based geomorphic 

transport laws, calling for extensions.    

 

Foufoula-Georgiou et al. propose a non-local formulation of sediment flux on hillslopes 

to account for the wide range of particle displacement lengths related to disturbance 

processes.  This formulation computes flux at a point not only as a function of local 

topographic attributes, such as slope, but also as a function of topography upslope of the 

point of interest.  They show that such a formulation leads to a continuum constitutive 

law that takes the form of fractional diffusion.  The model predicts a hillslope equilibrium 

profile that is parabolic in shape very close to the ridge top and becomes power law 

downslope, with an exponent equal to the non-locality model parameter.  Furthermore, 

they show that a nonlinear relationship between sediment flux and local gradient emerges 

from this linear non-local model and that the model reproduces, with a single parameter, 

the natural variability of sediment flux found in real landscapes.     

 



Harman et al. revisit the problem of subsurface transport in hillslopes with heterogeneous 

conductivity fields.  They argue that, in such cases, variations in the down-slope velocity 

of impulses induce a non-piston type flow response (piston response would arise from 

impulses starting at different locations but moving at a constant speed).  Assuming heavy 

tails in the velocity distribution of those impulses, they invoke the notion of 

subordination (replacing real time with a random time representing the time that impulses 

spend in motion). As a result they recast the standard kinematic wave equation into a 

subordinated kinematic wave equation appropriate for modeling flow response in 

heterogeneous hillslopes.  They evaluate their model under different degrees of 

heterogeneity and link the statistical parameters of the heterogeneous random fields and 

the parameters of the subordinator, implying that the subordinator can eventually be 

parameterized by physical measurements of hillslope properties.    

 

 

3.3. Transport in erosional-depositional systems and river networks  

 

Zaliapin et al. aim to develop simple theories of dynamic transport on river networks.  

They introduce the concept of a “dynamic tree” to describe transport of fluxes on a 

topological static tree representing the river network.  They show that the corresponding 

dynamic trees exhibit self-similarity, albeit with different parameters than the underlying 

static trees, providing thus the possibility of developing process-specific dynamic scaling 

frameworks.  They also report a “phase transition” in the dynamics of river networks 

indicating a time (or equivalently length) scale at which the connectivity of the system 

reaches a critical point, i.e., the system acts as a single cluster.  Analysis of three real 

river networks indicates a possible universality and points to the need for further analysis 

to understand how this framework can be used for stochastic flux propagation and for 

scaling of dynamic processes operating on river networks.   

 

Schumer and Jerolmack,  provide a novel interpretation of the field-documented 

observation that sediment deposition rate decreases as a power law function of the 

measurement interval.  They argue that this phenomenon is the result of the heavy tailed 



distribution of non-deposition periods and use limit theory and Continuous Time Random 

Walk (CTRW) models to estimate the actual average deposition rate from observations of 

the surface location over time.  Their analysis highlights that caution has to be exercised 

in attributing observed changes in accumulation rates through time to real changes in the 

rates of erosion and deposition.  The consequences of these finding for interpreting the 

stratigraphic record in terms of climate variability are important.    

 

Voller and Paola, put forth the observation that laboratory experiments of aggrading 

rivers, driven by subsidence or base-level rise, display profiles that deviate from those 

expected from standard diffusion models.  They propose a fractional diffusion model 

which accounts for non-Fickian sediment transport in systems where the length scale of 

significant sediment extraction is comparable to the scale range of the channel-pattern 

behavior.  They point out that these length scales seem well separated in natural systems 

but not in laboratory systems.  This distinction may explain discrepancies between 

laboratory and natural system profiles and has implications for modeling. 

 

 

4. CLOSING REMARKS AND OPEN PROBLEMS 

 

The 15 papers in this volume present new ideas for modeling transport on the Earth’s 

surface from tracer and bedload transport in rivers, to hillslope transport, to the 

complexities of mixed erosional/depositional systems, and to transport along the whole 

river network.  They explore stochastic formulations that account for the deformation of 

bedforms as they contribute to sediment flux, the erosional impact of spatially and 

temporally variable raindrops as they contribute to the ecology and geomorphology of 

hillslopes, theories for explaining the power law distributions of landslide areas and 

volumes, and theories that take into account the broad range of scales participating in 

transport.  Several papers revisit old data sets and show that predictions from generalized 

transport laws agree with observations more closely than predictions based on classical 

theories. A few papers attempt to make connections between micro-scale (particle-scale) 

dynamics and macro-scale statistics and note that parameters of the macro-scale models 



can be resolved from physical observables as opposed to empirical fitting.  Emphasis is 

placed on parsimonious parameterizations, that is, on models that can explain the 

observed structure and variability with few parameters.  The idea of non-locality in flux 

computation is discussed in several papers and fractional advection-dispersion 

formulations or discrete space-time models are proposed.    

 

Several open problems have emerged from the research presented in these papers.  First, 

the physical motivation of non-local transport laws and the data needed to more directly 

estimate model parameters and discriminate between local and non-local hypotheses are 

areas of future study.  Also, stochastic formulations that invoke particle-scale statistics 

explicitly or implicitly require new kinds of data, such as statistics of particle movement, 

to be tested and validated.  The same applies to models that consider bedform 

deformation as a diffusion problem. The idea of extending well known transport models 

via time-subordination is compelling and awaits more exploration: such an approach will 

have application in the modeling of environmental fluxes in which “time in motion” 

rather than “clock time” is relevant and where time can therefore be treated as a random 

variable.  The exploration of Continuum Time Random Walk (CTRW) models as discrete 

counterparts of continuum formulations has to be further studied, and extensions of those 

models to two dimensions awaits development.   

 

A problem with all local geomorphic transport laws is that they yield scale-dependent 

sediment flux since the local slope and curvature are scale (resolution)-dependent.  As 

such, closures are needed to incorporate the effect of sub-grid scale variability and render 

the model coefficients scale-independent [e.g., see Passalacqua et al., 2007].  An open 

problem for future research is to examine whether non-local transport models naturally 

overcome the problem of scale-dependence, as this becomes an issue of increasing 

concern with the availability of high resolution topographic data.   

 

Theories for the transport of fluxes on river networks where the heterogeneity of the input 

(e.g., spatially variable precipitation which dynamically changes over time, or discrete 

fluxes that are injected at only a portion of the nodes of the network) await further 



development such that scaling relations incorporating both the topology of the network 

and the dynamics of the driving process are considered.  Finally, models for transport in 

erosional/depositional systems that capture the large range of scales of motion, and the 

use of these models for the interpretation of the stratigraphic record (e.g., apparent scale-

dependent erosion rate), require new data to be rigorously tested and validated.  The 

outcomes could  have important implications for deciphering climate variability from 

stratigraphy.     
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On the influence of gravel bed dynamics on velocity power
spectra
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Abstract. A series of flume experiments were conducted to study the effect of bedform
dynamics on the flow over a gravel bed comprised of a wide distribution of grain sizes.
Instantaneous high-frequency streamwise flow velocities were sampled using ADV at a
frequency of 200 Hz, while the simultaneous bed elevations were sampled using sonar
transducers at a frequency of 0.2 Hz for a duration of 20 hours. Spectral analysis of the
measured velocity fluctuations reveals the existence of two distinct power-law scaling regimes.
At high frequencies, an inertial subrange of turbulence with ∼ −5/3 Kolmogorov scal-
ing is observed. At low frequencies, another scaling regime with spectral slope of about
−1.1 is found. We interpret this range as the signature of the evolving multi-scale bed
topography on the near-bed velocity fluctuations. The two scaling ranges are separated
by a spectral gap, i.e., a range of intermediate scales with no additional energy contri-
bution. The high-frequency limit of the spectral gap corresponds to the integral scale
of turbulence. The low-frequency end of the gap corresponds to the scale of the small-
est bedforms identified by the velocity sensor, which depends on the position of the sen-
sor. Our results also show that the temporal scales of the largest bedforms can be po-
tentially identified from spectral analysis of low resolution velocity measurements col-
lected near the channel bed.

1. Introduction

Measurement of turbulent flow structures in a gravel-
bedded environment has received considerable attention in
the past few decades; yet, there is still debate about the ori-
gin and development of these flow structures and, in turn,
their influence on the bed surface itself [Wiberg and Smith,
1991; Dinehart, 1992; Robert et al., 1992; Buffin-Bélanger
and Roy, 1998; Lacey and Roy, 2007; Hardy et al., 2009]. It
has been suggested that the initiation of gravel movement
is strongly influenced by large transient coherent flow struc-
tures with time scales of about 1-10 seconds which are super-
imposed on the more random small-scale turbulence [Drake
et al., 1988; Kirkbride, 1993; Kirkbride and McLelland, 1994;
Kirkbride and Fergusson, 1995; Lamarre and Roy, 2005].
Over a rough boundary, such as in a gravel-bedded channel,
friction created by individual gravel particles or clusters of
particles (i.e., microtopography as well as bedforms) retards
the flow velocity, but the effect diminishes with increasing
height above the bed [Lacey and Roy, 2007, 2008]. This
surface roughness creates near-bed turbulence which is re-
sponsible for entrainment of particles predominately linked
to sweeps, bursts and larger coherent structures [Robert et
al., 1992; Best, 1993; Robert et al., 1993; Lamarre and Roy,
2005; Schmeeckle et al., 2007; Hardy et al., 2009]. These
large-scale coherent flow structures are a key component of
turbulent boundary layers and scale with the flow depth, h
[Roy et al., 2004]. In a mobile gravel bed the size of these
macro-turbulent flow structures is found to scale with h in
the vertical direction and 2 to 12 times h in the horizontal
direction [Shvidchenko and Pender, 2001; Roy et al., 2004].
The downstream motion of these flow structures may cause
quasiperiodic fluctuations of the local flow velocity compo-
nents and could lead to the development of troughs and

Copyright 2009 by the American Geophysical Union.
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ridges on the mobile bed, inducing bed particle destabiliza-
tion (sediment transport). Imamoto and Ishigaki [1986a, b]
investigated the turbulent flow structure over smooth and
rough immobile beds and detected the existence of upwelling
and downwelling circular fluid motion over the entire flow
depth. They found that both the lateral and the longitu-
dinal integral scale of fluid motion was about 2h. Yalin
[1992] hypothesized that the macro-turbulent structures are
closely linked to the bursting phenomena in boundary lay-
ers and do not originate in their full size (∼h). According
to Yalin [1992] turbulent eddies are generated near the bed
surface as a result of bursts with sizes much smaller than
h, then grow until their size becomes approximately equal
to h; they are then destroyed, prompting the generation of
new smaller eddies, and so on. The complete cycle of the
eddies’ formation, evolution, and destruction occurs over a
distance of ∼6h.

In spite of the important role that these macro-turbulent
structures could play in the dynamics of rivers, there is no
model that relates the interaction of turbulent flow struc-
tures to bed topography and sediment transport. This is
partly due to the unavailability of long reliable records of
turbulent data sampled at high-resolution and partly due
to the presence of complex bed topography varying spa-
tially and temporally in a gravel-bedded channel [Paiement-
Paradis et al., 2003; Marquis and Roy, 2006]. In particular,
little is known about how the relatively slow evolution of
moving multi-scale topography can affect the scaling prop-
erties (e.g., spectral density) of the velocity field at different
positions in the flow. For instance, Dinehart [1999] associ-
ated the presence of large-scale/low-frequency fluctuations
of velocity, obtained from long velocity records, to migrating
bedforms in gravel bed rivers. In a previous study [Dine-
hart, 1989] documented the passage of bedforms at periods
ranging from 2 to 5 min that corresponds with velocity fluc-
tuations. In a recent study Nikora [2008] suggested that
the currently used three-range spectral model (production
range, inertial subrange and dissipation range) for gravel

1
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bed rivers should be further refined by adding an additional
range, leading to a model that consists of four ranges of
scales with different spectral behavior and should be tested
with field and experimental observations. However, to re-
solve the potential differences in velocity spectra, for ex-
ample, between fixed and weakly mobile gravel beds, much
longer velocity records would be required [Nikora and Gor-
ing, 2000].

Unlike the situation in river flows, a considerable amount
of work has been performed in atmospheric boundary layer
flows towards characterizing and isolating the signature of
relatively slow (synoptic scale, mesoscale) variability from
that of the turbulence (for examples, see Van Der Hoven
[1957]; Fiedler and Panofsky [1970]; Smedman-Högström
and Högström [1975]). In a classical work Van Der Hoven
[1957] showed a marked spectral gap between mesoscale
(synoptic) and microscale (turbulent) flow variability in the
analysis of large-range spectrum of horizontal wind velocity.
Since then, several investigators have confirmed the exis-
tence of a spectral gap in the spectra of horizontal wind
velocity over land. Hess and Clarke [1973] also showed a
tendency for a gap in the spectra of wind velocity measured
at different heights between the surface layer and free atmo-
sphere.

In this paper we use simultaneous high resolution long
time series of bed elevations and velocity fluctuations along
with longitudinal transects of bed profile measured over a
gravel-bedded experimental channel to quantify the multi-
scale variability of both flow structures and bed structures.
Our results show the signature of bed structures on the near-
bed velocity fluctuations and point to the potential of using
relatively low frequency measurements of velocity in the field
to detect time scale of bed topography in real rivers.

2. Experimental setup and data analyzed

Experiments were conducted in the Main Channel facil-
ity at St. Anthony Falls Laboratory, University of Min-
nesota. These experiments were the follow-up of previous
experiments conducted in spring of 2006 known as Stream-
Lab06 [Wilcock et al., 2008]. StreamLab06 was an 11 month
multidisciplinary laboratory channel study focused on var-
ious aspects of ecogeomorphology in gravel bed streams.
Five separate projects were conducted as part of Stream-
Lab06, while all the studies shared the same sediment and
general experimental configuration. The extensive data set
collected in these experiments includes hydraulic conditions
(discharge, water slope, bed slope, depth average velocity,
and flow field), morphological conditions (bed topography,
bar locations and shapes, photo images of the bed), sedi-
ment transport characterization (continuous sediment flux,
recirculation grain size information), water chemistry (tem-
perature, dissolved oxygen, nutrient concentrations) and bi-
ological conditions (heterotrophic respiration, biomass ac-
cumulation, nutrient processing rates). For the experiments
presented here (which we call Streamlab08), we focus on flow
field and spatio-temporal bed topography for the discharges
of 2000 l/s and 2800 l/s.

The Main Channel is a 55 m long, 2.74 m wide channel
with a maximum depth of 1.8 m and maximum discharge ca-
pacity of 8000 l/s (Figure 1). It is a partially sediment recir-
culating channel while the water flows through the channel
without recirculation. The sediment recirculation system is
capable of entraining and recirculating particles up to 76
mm in size. The recirculation system’s intake is in the bed
trap below the weigh-pan system, where a horizontal auger,
driven by a variable-speed motor, spans the full width of
the channel. The rotating auger conveys sediments accumu-
lated from weigh-pan dumps toward an outlet recessed in

the right side of the flume and into the recirculation-pump
(dredging-pump) intake. The recirculation auger speed was
adjusted manually every 30 mins to maintain a constant el-
evation of sediment in the auger hopper and to continuously
transport sediment through the recirculation pipe. This pro-
cedure avoided sending large pulses of sediment through the
pipe each time a weigh-pan dumped. Intake of the water in
the channel was directly from the Mississippi River.

The bed of the channel was composed of a mixture of
gravel (median particle size diameter, d50 = 11.3 mm) and
sand (median particle size diameter, d50 = 1 mm). It is flu-
vial in nature. A total of 15% sand was added to the gravel.
The final grain size distribution obtained after mixing the
sediments had a d50 = 7.7 mm, d16 = 2.2 mm and d84 =
21.2 mm. The mean specific density of sediment of all size
fractions was ∼ 2.65. The thickness of the bed at the start
of the run was approximately 0.45 m. Figure 2 shows the
patches of bed surface obtained at the end of the run for a
discharge of 2000 l/s (Figure 2, left) and for 2800 l/s (Figure
2, right).

Prior to data collection a constant water discharge, Q,
was fed into the channel to achieve quasi-dynamic equi-
librium in transport and slope adjustment for both water
surface and bed. Sediment transport rates were measured
simultaneously during the entire course of the run. Deter-
mination of the dynamic equilibrium state was evaluated by
checking the stability of the 60 min average total sediment
flux at the downstream end of the test section. Using the
pan accumulation data, the acquisition software computed
a 60 min mean of sediment flux in all five pans. Dynamic
equilibrium was reached when variation in this value became
negligible. In other words, when the average of the previous
60 min of instantaneous flux values computed from the pan
data stabilized, we determined the channel to be in dynamic
equilibrium and proceeded with formal data collection and
sampling. After attaining equilibrium, experiments ran for
approximately 20 hrs. (More details about the experimental
setup can be found in Singh et al. [2008, 2009]).

The data presented here are the velocity fluctuations (in
the flow direction), simultaneous temporal bed elevation col-
lected at the downstream end, and the longitudinal transects
of bed profile, measured along the centerline of the chan-
nel. The continuous velocity fluctuations were measured
using Acoustic Doppler Velocitimeter (ADV) at an approx-
imate distance of 15 cm above the mean bed level. Relative
heights, the ratio between Dp (distance of velocity probe
from mean bed level) and D (average depth of flow), were
computed to be 0.23 and 0.29 for the discharge of 2000 l/s
and 2800 l/s respectively (see Table 1). NortekV ectrino+

ADV was used for this study. The ADV was mounted 20
cm upstream of the centrally located bed sonar (sonar 3, see
Figure 3) and could measure 3D water velocity with a sam-
pling frequency of 200 Hz, and a precision of +/- 1 mm/s.

For the bed elevation measurements, submersible sonar
transducers of 2.5 cm diameter were deployed 0.3 m (on an
average) below the water surface. These sonar transducers
were mounted to the end of rigid 1.5-cm steel tubes and di-
rected perpendicular to the bed. The transducers collected
continuous temporal bed elevation information upstream of
each weigh-pan. The sampling interval of bed elevation
measurements was 5 sec with a vertical precision of 1 mm.
Figure 1 and Figure 3 (schematic) show the setup of ADV
and the sonar placed at the downstream end of the channel.
Measurements were taken over a range of discharges corre-
sponding to different bed shear stresses. Bed shear stress
is often characterized in terms of the dimensionless Shields
stress, τ∗

b . For steady, uniform flow it may be approximated
as

τ∗
b =

hRS

Rd50
, (1)
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where hR and S are the hydraulic radius and channel slope,
respectively, and R = 1.65 is the relative submerged density
of silica. Here we report the data collected at discharges
of 2000 l/s and 2800 l/s corresponding to Shields stress
of 0.058 and 0.099 respectively (for details about the hy-
draulic conditions see Table 1). (Note that for computing
Reynolds number and Froude number, kinematic viscosity of
water (ν), and acceleration due to gravity (g), were taken as
1×10−6m2/s, and 9.81 m/s2 respectively). Critical Shields
stress (τ∗

c ) was assumed to be 0.03 as suggested by Buff-
ington and Montgomery [1997] and references therein. Fig-
ures 4a and 4c show the time series of velocity fluctuations
(top) and the corresponding bed elevations (bottom) for dis-
charges of 2000 l/s and 2800 l/s, respectively, collected for
the duration of 20 hrs.

For the longitudinal bed profiles a three-axis position-
able data acquisition (DAQ) carriage was used. This DAQ
was designed, fabricated, and installed at St. Anthony Falls
Laboratory. The DAQ carriage was capable of traversing
the entire 55 x 2.74 meter test section and could position
probes to within 1 mm in all three axes. Streamwise travel
speeds of DAQ could be set up to 2 m/s. The DAQ carriage
was controlled by a backbone computer that also served as
the master time clock for all data collection in the study.

Because the data were collected in the fall, there were
some leaves floating in the channel which might have re-
sulted in spikes in the velocity and bed elevation data. Even
though the amount of spurious spikes in the data (0.81 per-
cent for 2000 l/s and 0.79 percent for 2800 l/s) was found to
be very small, these were removed as part of the data treat-
ment for erroneous measurements using the methodology
described in Parsheh et al. [2009]. Parsheh et al. [2009] used
modified version of the Universal Phase-Space-Thresholding
technique proposed by [Goring and Nikora, 2002] for detect-
ing the spikes and subsequently replacing them by the last
valid data points with Sample-and-Hold technique [Adrian
and Yao, 1987].

3. Spectral analysis results

Power spectral density (hereafter PSD) is a commonly
used tool to measure the distribution of energy (variance)
in the signal across frequencies (or scales). In other words, it
shows at which scales the contribution to the signal variance
are strong and at which scales contribution to the signal vari-
ance are weak. For a signal X(t), the power spectral density
is given by

Φ(ω) =
1

2π

∫ ∞

−∞
R(τ)e−iωτdτ (2)

where R(τ) is the autocorrelation function defined as

R(τ) =
E[(X(t) − μ)(X(t + τ) − μ)]

σ2
, (3)

τ is the time lag, μ and σ are the mean and standard de-
viation of the signal respectively, and ω is the frequency. A
simple way to estimate PSD is by taking the fast Fourier
transform (FFT) of the signal [Stoica and Moses, 1997;
Lacey and Roy, 2007]. In our case, the signal X(t) is the
flow velocity or the bed elevation in the streamwise direc-
tion. Special emphasis is placed here on identifying spectral
scaling regimes, i.e., ranges of scales over which log-log lin-
earity is observed in the power spectral density. (Note that
the units for the velocity spectrum is quantity2/frequency,
i.e., m2/s).

The power spectrum of the velocity fluctuations (mea-
sured at 200 Hz) at a discharge of 2000 l/s is shown in Fig-
ure 5a. Two clear scaling ranges can be observed, separated
by a spectral gap. For relatively small scales (high frequen-
cies) in the range of 0.1 sec to 0.5 sec, the slope of the PSD

(power spectral density) is ∼ −5/3, which corresponds to
the inertial subrange of turbulence. A second scaling range
is observed for scales between 2 min and 55 min, for which
the slope of PSD is ∼ −1.05. The range of observed spectral
gap is from 10 sec to 2 min (see Table2). The scales from
high frequency end of the spectral gap which also coincides
with the integral scale of the turbulence (see the following
section for discussion about ∼ −1 spectral slope) to the low
frequency end of the inertial subrange shows a spectral slope
∼ −1. Figure 5b shows the PSD of the bed elevation (mea-
sured at sampling intervals of 5 sec). A clear scaling is also
found in the elevation field, with a PSD slope of ∼ −1.94 for
the scales of 15 sec to 42 min (Table 2). Figures 6a and 6b
show the power spectral density of the velocity fluctuations
(measured at 200 Hz) and the bed elevations (measured at
0.2 Hz), respectively, for the discharge of 2800 l/s. The
second scaling range (low frequency regime) in the PSD of
velocity fluctuations at the discharge of 2800 l/s is shifted
towards higher frequencies and is from 35 sec to 28 min with
a spectral slope ∼ −1.15 (Figure 6a). Temporal bed eleva-
tions for the same discharge show a scaling range of 15 sec
to 28 min with a spectral slope of −2.1 (Figure 6b). Figures
7a and 8a show the spatial bed transects for the discharge
of 2000 l/s and 2800 l/s respectively, measured along the
centerline of the channel. The spectral slopes of spatial bed
elevations are similar to those of temporal bed elevations as
can be seen by comparison of Figures 5b, 7b, and Figures
6b, 8b.

4. Interpretation of the results and discussion

Power spectral densities of streamwise velocity have been
studied extensively in the case of wall-bounded turbulent
flows over flat homogeneous surfaces (e.g., Perry et al.
[1986]; Katul et al. [1995]; Porté-Agel et al. [2000]). In
those flows, three scaling subranges have been identified.
At low frequencies, a scaling subrange often referred to as
the production subrange is found at scales larger than ap-
proximately 2πz (where z is the distance to the surface) and
smaller than the integral scale of the turbulence (on the or-
der of the depth of the flow in a channel). This range is
characterized by a −1 spectral slope [Kader and Yaglom,
1991; Katul et al., 1995]. At intermediate frequencies, an
inertial subrange with a −5/3 spectral slope [Kolmogorov,
1961] is observed. It is associated with eddy scales smaller
than approximately 2πz. The third scaling subrange is the
viscous subrange observed at smaller scales than the sur-
face roughness size where spectra decays much faster than
in the inertial subrange [Nezu and Nakagawa, 1993; Nikora
and Goring, 2000].

In the case of flow over bedforms, it is expected that the
turbulence will lead to similar scaling regimes as those found
in the velocity spectra calculated over flat surfaces. More
specifically, one would expect to find both an inertial sub-
range and a production subrange, even though the transition
scale between these two ranges and the slope of the produc-
tion subrange are likely to be affected by the presence of
the topography, which may cause eddy shedding effects [La-
pointe, 1992; Buffin-Bélanger and Roy, 1998; Hardy et al.,
2007].

In the hypothetical case of stationary bedforms, turbu-
lence is the only source of velocity fluctuations and, conse-
quently, no additional energy is introduced at scales larger
than the integral scale of the turbulence (on the order of the
flow depth in the channel). However, in the case of a mov-
ing bed, the evolution of the bedforms introduces additional
variability in the velocity field at the range of temporal scales
associated with that evolution. We set forth the hypothesis
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that this effect explains the existence of the second scaling
range (between 2 min and 55 min for the case of 2000 l/s,
and 0.5 min to 28 min for the case of 2800 l/s) in the power
spectrum of velocity, as shown in Figures 5a and 6a. Notice
that the largest scale in that range (∼ 55 min for 2000 l/s
and 28 min for 2800 l/s) corresponds to the integral scale
of the measured bed elevation field presented in Figures 5b
and 6b. This largest scale is the characteristic time scale at
which the largest bedforms move. Also notice that the sec-
ond scaling range in the velocity spectra (scaling range due
to bedform migration) shifts towards the higher frequencies,
right in PSD, (compare Figure 5a to Figure 6a) with an in-
crease in discharge, suggesting that the bedforms at higher
flow (2800 l/s) are moving faster than the bedforms in the
lower flow (2000 l/s). The clear signature of the large-scale
bedforms on the multi-scale variability of the velocity time
series as captured in its PSD suggests the potential of using
relatively low frequency velocity measurements near the bed
to detect the characteristic time scales associated with the
evolution of bed topography. The spectral analysis of our
velocity measurements also shows that this scaling range is
separated from the turbulence range by a spectral gap, i.e.,
a range of scales with virtually no additional contribution
to the velocity variance.

We hypothesize that the presence of a spectral gap is
due to the lack of physical processes which could support
the velocity fluctuations in this frequency range. A similar
spectral gap was reported in the seminal work of Van Der
Hoven [1957], who analyzed velocity time series collected in
the atmospheric boundary layer.(Note that in that study the
spectral density is plotted as ωS(ω), while in our work it is
S(ω)). In that flow, the gap separates the energy contribu-
tions associated with turbulence at the high frequencies from
those corresponding to relatively slower frequency mesoscale
and diurnal-cycle variability. The presence of this gap has
important practical implications since it allows to separate
the contribution of the turbulence from that of mesoscale
motions to the total kinetic energy and fluxes. Similarly,
the presence of the spectral gap in channel flows with mov-
ing bedforms should be considered when using velocity time
series to study turbulent transport in these flows.

The high frequency end of the spectral gap coincides with
the integral scale of the turbulence, i.e., the scale of the
largest turbulent eddies present in the flow. (Note that in-
tegral sale of turbulence is computed via visual inspection
from the figure of velocity spectra.) In Figures 5a and 6a,
that integral scale is found at a frequency of approximately
0.1 Hz for both flow discharges under consideration. The
low frequency end of the spectral gap is associated with the
characteristic time scale of the smallest bedform structures
that can be identified by the velocity sensor. From Figures
5a and 6a, that limit corresponds to frequencies of approx-
imately 0.01 Hz and 0.02 Hz, for the 2000 l/s and 2800 l/s
cases, respectively. This contrasts with the approximately
0.1 Hz associated with the relatively fast evolution of the
smallest bedform structures, as shown in the spectral den-
sity of bed elevation (Figures 5b and 6b).

It is important to note that the size of the smallest fea-
tures detected by the velocity sensor and, as a result, the
width of the spectral gap, should depend on the distance
from the sensor to the bed. This is consistent with results
from a previous study of the multiscale wavelet correlation
between surface shear stress and velocity in a flat turbulent
boundary layer [Venugopal et al., 2003]. That study showed
that turbulent eddies of vertical size smaller than the dis-
tance to the surface z (and horizontal size smaller than 2πz)
that affect the surface shear stress do not produce a signa-
ture on the velocity measured at height z. With that in
mind, here we speculate that the larger the distance between
the velocity sensor and the surface, the larger the spectral
gap. In general, the width of the spectral gap Δgap could
be expressed as:

�gap = f(k, τ∗
b ), (4)

where, k =
Dp

σb
, Dp is the distance from the probe to the

mean bed level, and σb is the standard deviation of the
temporal bed elevation (note that in our case, for both
discharges, the ratio k is constant and close to 5). In
the limiting case of a deep flow (flow depth much larger
than bedform variability), if the velocity sensor is placed
far enough from the bed surface, above the blending height
(level above which the effect of the bed surface heterogeneity
cannot be detected), the spectral gap would not exist. Fu-
ture research will investigate this issue through comparison
of spectra from measurements collected at different distances
from the bed surface and, consequently, different k ratios.

Bed elevation fields and their evolution are found to share
important similarities with other natural surfaces such as
landscapes. Landscapes present multiscale self-similar prop-
erties through a wide range of scales (see Vening Meinesz
[1951]; Newman and Turcotte [1990]; Pelletier [1999]; Pas-
salacqua et al. [2006] and references therein). In fact, Pas-
salacqua et al. [2006] documented that landscapes also share
important similarities with turbulence since both systems
exhibit scale invariance (self-similarity) over a wide range of
scales and their behavior can be described using comparable
dynamic equations. This similarity can be seen, for exam-
ple, in the behavior of power spectra of the landscapes which
exhibit a log-log scaling range with a slope of approximately
−2. Here also, we observe a slope of ∼ −2 in power spec-
tra of bed elevations for both the discharges of 2000 l/s and
2800 l/s (Figure 5b and 6b). Furthermore, Singh et al. [2009]
have shown the multi-scale behavior of bed elevations (bed
topography) for different flow conditions in a gravel-bedded
environment. In that study, they quantified the slope of
the second order structure function 2H (which is related to
slope of the PSD with a relation β = 2H +1, where β is the
slope of PSD, and H is the Hurst exponent), and found that
it is similar to the slope obtained here in the PSD of bed
elevation fluctuations (Figure 5b and Figure 6b). In the case
of bedforms in gravel-bedded channels little is known about
the scaling properties of bed surfaces [Nikora et al., 1998;
Marion et al., 2003; Nikora and Walsh, 2004]. For instance
Nikora et al. [1998] characterized gravel bed roughness using
second order structure functions. They found that the bed
elevation distribution in laboratory flumes (unworked beds)
and in natural gravel-bed streams (water-worked beds) was
close to Gaussian although the latter was skewed positively.
They also observed that the scaling exponent (Hurst expo-
nent) H = 0.79 for natural beds was significantly higher
than that of unworked beds, H = 0.5. A similar analysis
was performed in [Aberle and Nikora, 2006].

Spectral densities of the time series (Figures 5b and 6b)
and of spatial transects (Figures 7b and 8b) of bed eleva-
tions are not independent of each other. Both have a clear
scaling range with slope of approximately −2, expanding
over a similar range of scales (about two decades). The spa-
tial spectra of bed elevation saturate at the same scale for
both flow conditions (see Figures 7b and 8b, and Table 2).
That scale is about 10 m and it can be interpreted as the
integral scale, i.e., the characteristic scale of the largest bed
forms. The temporal scales associated with these bed forms
are approximately 55 min and 28 min for the 2000 l/s and
2800 l/s flows, respectively (Figures 5 and 6). Considering
these integral spatial and temporal scales, it is possible to
determine a characteristic travel speed of the largest bed-
forms. This advection velocity is approximately 14 m/hour
and 22 m/hour for the 2000 l/s and 2800 l/s discharges,
respectively.
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Comparison of spectral densities of flow velocity and bed
elevation measurements shows that relatively low-resolution
velocity measurements collected near the channel bed can
be used to estimate the travel time of the largest bedforms.
This application can potentially be used in the field; though
it would require a long time series of river flow velocities
[Soulsby, 1980; Nikora and Goring, 2000].

Two major priorities for further research are suggested by
this work. First, a better understanding is needed of what
controls the slope of low frequency velocity fluctuations in
the PSD, and how it is related to the slope of PSD of tempo-
ral bed elevations and flow conditions. Second, the quantifi-
cation of the dependence of length scale of the spectral gap
on the Shields stress, depth-wise position of velocity mea-
surements, and grain size distribution of the bed material
should be undertaken. In order to meet these objectives, fu-
ture work will be focused on the behavior of spectral density
of velocity measured at different positions along the depth
of the flow as a function of varying Shields stress and grain
size distribution.

5. Conclusions

This paper investigates the behavior of power spectral
density of flow velocity and bed elevation time series mea-
sured in a large-scale experimental channel under two flow
conditions. The power spectral density of the velocity shows
two distinct power-law scaling regimes. At high frequencies,
an inertial subrange with ∼ −5/3 Kolmogorov scaling is
observed. It is associated with turbulent eddy motions of
sizes smaller than the distance from the velocity sensor to
the gravel bed. For slightly larger eddy scales, up to the
integral scale of the flow, the effect of the bed leads to a
reduction in the slope of the velocity spectrum. At lower
frequencies, another scaling range with spectral slope of ap-
proximately −1.1 is found. This range is associated with the
relatively slow evolution of the multiscale bed topography.
At intermediate scales, a clear spectral gap, i.e., a range of
scales with no additional energy contribution, separates the
turbulence and bed evolution spectral ranges. The high fre-
quency limit of the spectral gap corresponds to the integral
scale of the turbulence. The low-frequency end of the gap
corresponds to the scale of the smallest bedforms identified
by the velocity sensor, and it is expected to depend on mea-
surement location and bed variability. Our results also show
that the temporal scales of the largest bedforms can be po-
tentially identified from spectral analysis of low resolution
velocity measurements collected near the channel bed.
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tion of Power Spectra of Acoustic-Doppler Velocimetry Data
Contaminated with Intermittent Spikes, J. Hydraul. Engg.. (In
Review)
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Table 1: Hydraulic conditions and characteristics of temporal series of bed elevation 

 

Table 2: Characteristics of power spectrum for velocity, temporal bed elevations and spatial bed 
elevations. 

Qw       
(l/s) Velocity v(t) Temporal-bed 

elevation h(t) 
Spatial-bed 

elevation h(x) 

  
dynamic 

slope 
scaling 
regime 

spectral 
gap 

spectral 
slope 

scaling 
regime 

spectral 
slope 

scaling 
regime 

2000 -1.05 
2 min - 
55 min 

10 sec - 
2 min -1.94 

15 sec - 
42 min -1.87 

10 cm – 
10 m 

2800 -1.15 
35 sec - 
28 min 

6 sec – 
35 sec -2.1 

15 sec - 
28 min -2.06 

15 cm - 
10 m 

               
 

Qw (l/s) D(m) v 
(m/sec) Sw  hR 

(m) 

Shields 
stress 
(�*b)  

Re Fr 
T mean 
(oC) 

Dp 
(cm) 

�b 
(mm) k 

                      
2000 0.55 1.18 0.0019 0.39 0.058 646640 0.51 23.5 12.59 23.95 5.3 
2800 0.64 1.55 0.0029 0.44 0.099 992000 0.62 16.23 19.17 38.65 5.0 

                      
 
where,  

  

  Qw = water discharge for the run 
  D  = average depth of flow in test section 
  v   = average  flow velocity  
  hR = hydraulic radius  
  Sw = water surface slope 
  �*b = dimensionless Shields stress (computed using hydraulic radius) 

Re = Reynolds number (kinematic viscosity of water, � = 1X10-6 m2/sec) 
Fr = Froude number 

  Tmean = mean water temperature.  
  Dp  = distance of the velocity probe from mean bed level 
� � �b = standard deviation of temporal bed elevation series 
   k  = ratio between Dp and �b  
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Figure 1. Experimental channel facility at St. Anthony
Falls Laboratory, University of Minnesota showing the
locations of ADV and the sonar at the downstream end
of the channel. A total of seven submersible sonars were
deployed. In this study the data collected from the ADV
and the sonar (located 15 cm downstream of ADV) along
the centerline of the channel (see also schematic in Figure
3) are used. The direction of the flow is from bottom to
the top of the figure.
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Figure 2. Photograph of bed surface at the end of the
flow for the discharges of 2000 l/s (left), and 2800 l/s
(right). The direction of flow in both cases is from the
top to the bottom of the figures.

0.55 m 0.55 m 0.55 m 0.55 m0.55 m

Pan 1 Pan 2 Pan 3 Pan 4 Pan 5

0.95 m
Sonar 1 Sonar 2 Sonar 4 Sonar 5Sonar 3

20

1.2 m

Q
ADV

20 cm

Q

Sonar 7 Sonar 6

55 m

B = 2 75 mB = 2.75 m

Figure 3. Schematic of experimental setup showing the
locations of sonars (used for measuring temporal bed el-
evation) and the ADV (used for measuring velocity fluc-
tuations) at the downstream end of the channel. Note
that the solid dots represent the measurement locations
of temporal bed elevations (h(t)) and velocity (v(t)) used
in this study. The dash line represents the centerline of
the channel.
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Figure 4. Time series of velocity (top) and bed elevation
(bottom) measured at the downstream end of the channel
for flow discharges of 2000 l/s (left) and 2800 l/s (right)
over a duration 300 mins. The middle panels show a
blown-up image of the velocity series shown in the top
panels for a duration 0.2 mins. The flow velocity was
measured at a frequency of 200 Hz (sampling interval,
Δt = 0.005 sec) and the bed elevations were sampled at
a frequency 0.2 Hz (sampling interval, Δt = 5 sec). In
the case of bed elevation (bottom panel), it can be seen
that short fluctuations are superimposed on larger ones.
This suggests that small bedforms (small dunes, ripples
or bedload sheets) are propagated over larger dunes.
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Figure 5. Power spectral density of a) velocity fluc-
tuations and, b) corresponding bed elevations for a dis-
charge of 2000 l/s. In the velocity spectrum, scaling at
small scales is due to turbulence while at larger scales it
is modulated by bed topography.
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Figure 6. Power spectral density of a) velocity fluctua-
tions and, b) corresponding bed elevation for a discharge
of 2800 l/s. In the velocity spectrum, scaling at small
scales is due to turbulence while at larger scales it is
modulated by bed topography.
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Figure 7. a) Longitudinal transect of bed profile eleva-
tions at a resolution of 10mm and, b)its power spectral
density for a discharge of 2000 l/s. Note that similar
spectral slopes are observed in both temporal bed eleva-
tion and spatial bed elevation series (compare with Fig.
5b).
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Figure 8. a) Longitudinal transect of bed elevations
sampled at a resolution of 10mm and, b)its power spec-
tral density for a discharge of 2800 l/s. Note that similar
spectral slopes are observed in both temporal bed eleva-
tion and spatial bed elevation series (compare with Fig.
6b).
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Abstract. This study is motivated by problems related to environmental transport on
river networks. We establish statistical properties of a flow along a directed branching
network and suggest its compact parameterization. The downstream network transport
is treated as a particular case of nearest-neighbor hierarchical aggregation with respect
to the metric induced by the branching structure of the river network. We describe the
static geometric structure of a drainage network by a tree, referred to as the static tree,
and introduce an associated dynamic tree that describes the transport along the static
tree. It is well known that the static branching structure of river networks can be de-
scribed by self-similar trees; we demonstrate that the corresponding dynamic trees are
also self-similar, albeit with different self-similarity parameters. We report an unexpected
phase transition in the dynamics of three river networks, one from California and two
from Italy, demonstrate the universal features of this transition, and seek to interpret
it in hydrological terms.

1. Introduction and motivation

The topology of river networks has been extensively stud-
ied over the past decades using the suite of quantitative
methods developed in the pioneering works of Horton [1945],
Strahler [1957], Shreve [1966], and Tokunaga [1978]. These
authors found that the geometry of real river networks
can be closely approximated by so-called self-similar trees
(SSTs). Such trees can be completely specified by a small
number of parameters; this specification facilitates the de-
velopment of similarity metrics and scaling theories within
and across river networks. As a result, stream-ordering
schemes and statistical self-similarity concepts have been
explored to a considerable extent [see Jarvis and Wolden-
berg, 1984; Rodriguez-Iturbe et al., 1992; Peckham, 1995;
Rodriguez-Iturbe and Rinaldo, 1997; Sposito, 1998; Peckham
and Gupta, 1999; Veitzer and Gupta, 2000; Dodds and Roth-
man, 2000; and references therein].

The connection between river network topology and the
hydrologic response of a basin has also been extensively
studied; see, for instance, the early work of Surkan [1969],
Kirkby [1976], and Rodriguez-Iturbe and Valdes [1979], while
Gupta and Mesa [1988], and Rodriguez-Iturbe and Rinaldo
[1997] review the later developments. Apart from stream-
flow, the river network is also known to structure other
processes operating on it, such as sediment bedload, grain
size, nutrients, riparian vegetation, and the food web struc-
ture of aquatic organisms [e.g., Sklar et al., 2006; Benda
et al., 2004a,b; Kiffney et al., 2006; Lowe et al., 2006;
Muneepeerakut et al., 2006; Power and Dietrich, 2002; Rice
and Church, 1998; Rice et al., 2006; Stewart-Koster et al.,

Copyright 2009 by the American Geophysical Union.
0148-0227/09/$9.00

2007; Wohl et al., 2007]. The impact of such processes is
of great interest from environmental, economic, and societal
points of view.

The development of a systematic framework within which
to study dynamical processes on river networks remains of
considerable theoretical and practical interest in hydrology,
geomorphology, and river ecology. In this paper, we propose
a new way of studying dynamical processes that operate on
directed trees, which are commonly used to model river net-
works. Specifically, we introduce the concept of a “dynamic
tree,” which describes the directed transport along the links
of a “static tree” that has a given topology and link-length
distribution, as well as other space- and time-dependent at-
tributes.

This dynamic tree is likely to have a different hierarchy
and topology than the static one. For instance, some of the
static-tree branches might be completely cut off, either due
to a blockage that prevents transport along these branches
or due to the absence of conditions that favor sediment or
nutrient generation for downstream transport. In this and
other cases, the structure of the dynamic tree will differ from
that of the static one, and this difference might affect the
scaling of fluxes that participate in defining the envirody-
namics on the network of interest. In general, a static tree of
a given Horton-Strahler order [Horton, 1945; Strahler, 1957]
could become a dynamic tree of a lesser or higher order,
depending on the dynamics acting on the tree.

The purpose of this paper is to study the dynamic topol-
ogy of directed trees, starting with several simple cases, first
synthetic and then realistic. We work here with downstream
fluxes, oriented from the sources to the outlet, and with
time-continuous transport. The possibility of reverse (up-
stream) motion, as in tidal systems or in association with
the movements of biota, and discontinuous transport is left
for future work. We focus on a dynamic hierarchy built on
the concept of “connectivity”: once two streams are con-
nected, they both influence the downstream dynamics. In

1
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other words, a dynamic node of order 2 is created only when
the fluxes from both order-1 streams do reach the connecting
node. Such considerations will result in a different ordering
of the dynamic tree than of the static one. Moreover, the
newly created dynamic tree will be time-oriented, a property
that is absent in conventional static trees. Alternatively, one
might keep track of traveled distance, rather than time: the
two are equivalent if the flow velocity is constant along all
the branches, which we will assume in the present paper, for
simplicity’s sake.

The static branching structure of river networks can be
described by self-similar trees, following Tokunaga [1978],
Peckham [1995], and Peckham and Gupta [1999], among oth-
ers. It is shown here, using three actual river networks,
that the corresponding dynamic trees are also self-similar,
although their properties differ systematically from those of
the corresponding static trees. We also demonstrate an un-
expected phase transition in the dynamics on river networks,
from a pattern of numerous disconnected fluxes initiated at
the network sources to a single connected flux. Finally, we
place our findings within the general framework of hierar-
chical aggregation and cluster dynamics. This framework
helps describe and understand such diverse phenomena as
population genetics, interacting particle systems in statisti-
cal mechanics, phylogeny, percolation, and extreme natural
hazards.

The paper is structured as follows. We review in Sec-
tion 2 the relevant concepts and main results in river net-
work topology, including the branching taxonomies of Hor-
ton [1945] and Strahler [1957] and of Tokunaga [1978]. Sec-
tion 3 introduces the concept of a dynamic tree that is asso-
ciated with a given static tree, by using two examples from
river transport. Hierarchical aggregation, including aggre-
gation in an abstract metric space, is introduced in Section
4. Section 5 describes the three river basins from Califor-
nia and Italy that we study here, as well as the static trees
that represent the stream networks of these basins. The re-
sults of the study are presented in Section 6. A summary
and discussion, as well as an outline of further work follow in
Section 7. Examples of hierarchical aggregation from several
fields of inquiry appear in Appendix A.

2. Network topology: Overview of concepts
and results

This section summarizes the main concepts used in the
topological analysis of river networks, as well as the key re-
sults of this analysis.

2.1. Branching-order taxonomies

In our study of river transport, a drainage network is rep-
resented by a tree T (see Fig. 1). In this representation, the
stream junctions correspond to tree nodes, the stream seg-
ments between junctions – to links or edges, the network’s
sources – to tree leaves, and the basin outlet – to the root of
the tree. A source link is a link attached to a stream head;
while an outlet link is the link attached to the basin outflow
node.

In many applications, there is a need to order the net-
work links or tree edges according to their importance in
forming the entire network. Horton [1945] developed a con-
venient way to order hierarchically organized river tribu-
taries; this method was later refined by Strahler [1957] and
further expanded by Tokunaga [1978]. Currently, the so-
called Horton-Strahler (HS) and Tokunaga ordering schemes
are standard tools of branching analysis, well beyond purely
hydrological applications.

Horton-Strahler ordering is performed in a hierarchical
fashion, from the sources to the outlet. Each source link in
a binary rooted tree is assigned an HS order r(source) = 1;

see Fig. 2(a). When two links with the same order r meet,
the link immediately downstream is assigned order r + 1;
when two links with different orders meet, the link immedi-
ately downstream is assigned the larger one of the two orders
[e.g., Horton, 1945; Strahler, 1957; Newman et al., 1997]. A
branch is defined as a union of connected links with the same
order. We will denote by Nr the total number of branches of
order r. Notice that each branch has linear structure: each
of its links can be connected to only one upstream and/or
one downstream link from the same branch. The order Ω
of a tree is the maximal order of its branches. An HS order
can also be assigned to the stream junctions (tree nodes);
in this case the order is the same as that of the immediate
downstream link.

Tokunaga indexing [Tokunaga, 1978; Peckham, 1995;
Newman et al., 1997] expands upon the Horton-Strahler or-
ders; it is illustrated in Fig. 2(b). This indexing catalogues
the merging points between branches of different order. A
first-order branch that merges with a second-order branch
is indexed by “12” and the total number of such branches
is denoted by N12. A first-order branch that merges with a
third-order branch is indexed by “13” and the total number
of such branches is N13, and so on. In general, Nij for j > i
denotes the total number of order-i branches that join an
order-j branch.

The Tokunaga index Tij is the number of branches of or-
der i that merge with a branch of order j, normalized by
the total number of branches of order j; in other words, Tij

is the average number of branches of order i < j per branch
of order j:

Tij =
Nij

Nj

. (1)

Merging of branches of different orders is referred to as
side branching. A complete tree is one where side branching
is absent. For incomplete trees, the side-branching indices
become increasingly important as they help define a tree’s
structure and may help specify distinct classes of trees.

For consistency, we denote the total number of order-i
branches that merge with other order-i branches by Nii and
notice that in a complete binary tree Nii = 2Ni+1. The
“diagonal” Tokunaga indices Tii thus satisfy:

Tii =
Nii

Ni+1
≡ 2.

The set {Tij : 1 ≤ i ≤ Ω−1, 1 ≤ j ≤ Ω} of Tokunaga indices
provides therewith a complete statistical description of the
branching structure of an order-Ω tree.

We also use in this study the following two link statistics:
the number of links within a given branch and the number
mi of sources upstream from a link i. The latter statistic
is also called a link’s magnitude [Shreve, 1966]; a branch’s
magnitude is the magnitude of its furthest downstream link.
The branch magnitude is coarsely proportional to the branch
drainage area, with the coefficient of proportionality equal
to the average drainage area for the stream sources. The av-
erage number of nodes and average magnitude of an order-r
branch are denoted by Cr and Mr respectively.

2.2. Self-similar trees and Horton laws

The concept of self-similarity provides a powerful tool
for describing and studying trees. A self-similar tree (SST)
is defined by the constraint that the value of each Tokunaga
index Tij depends only on the difference (j− i) between the
orders of respective branches. Accordingly, we define, for all
i,

Tk := Ti(i+k) for k = 1, 2, . . . . (2)

Tokunaga [1978] was probably the first to study SSTs;
he assumed also that the ratio of two consecutive branching
indices is constant:

Tk+1

Tk

= c, or Tk = a ck−1 for a, c > 0. (3)
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The SSTs that satisfy (3) are called Tokunaga trees.
Empirically, the average values of branching statistics for

observed river networks depend exponentially on the order
r, for large r and Ω. In particular, for the total number
Nr of branches of order r, the average magnitude Mr, and
the average number Cr of links within an order-r branch we
have:

Nr = N0 R
Ω−r
B , Mr = M0 R

r−1
M , Cr = C0 R

r
C (4)

for some positive constants N0,M0 and C0. Such relation-
ships are called Horton laws; the bases RB , RM , and RC of
the exponential relatonships are called stream ratios.

McConnell and Gupta [2008] showed that the first two of
the Horton laws (4) hold asymptotically, i.e. for r → ∞, in a
self-similar Tokunaga tree; they also proved that RB = RM .
Zaliapin [2009] demonstrated asymptotic validity of all the
laws in (4) and established the stream ratio inequality

RC < RB = RM , (5)

that had been conjectured by Peckham [1995]. In addition,
Zaliapin [2009] showed that the Horton laws may or may
not hold, under some additional assumptions on the Toku-
naga indices Tk, for self-similar trees that do not necessarily
satisfy condition (3).

3. Dynamic vs. static trees

The topological structure of a river network is well de-
scribed by a directed tree, which we denote by TS and call
the static tree. To describe the downstream transport on TS

we introduce the notion of a dynamic tree TD, which com-
bines the topological structure of TS with the correspond-
ing link-length values. The dynamic tree is introduced as
follows. Imagine that we inject a dye simultaneously into
all the sources of our river network TS, and the dye starts
propagating down the river, from the sources to the outlet,
with the same constant velocity along all the streams. The
influx of the dye is continuous and happens at a constant
rate. The tree TD describes the time-dependent history of
the mergings of the colored streams.

We consider below two detailed examples to further clar-
ify this concept, while restricting ourselves to the simplest
case of constant velocity along all the streams. Taking this
velocity to be unity allows one to interchange time and
length scales. We shall see that the dynamic tree TD is com-
pletely determined by the static tree TS and the set of time
delays �i necessary for the dye to propagate from a junction
i to the nearest downstream junction. These delays can be
proportional to the link lengths, as is the case in the present
study, or be determined by spatially or temporally variable
velocities. The latter extension is left for a future study.

3.1. Synthetic example

Figure 3 shows how to construct the dynamic tree for a
basin with four sources a, b, c, and d. The static tree for
this basin is a complete binary tree shown in the top right-
most panel. The same tree with the link lengths explicitly
displayed is shown in the top row of the panels; the top
leftmost panel indicates the values of these lengths.

The consecutive phases of construction of the dynamic
tree are shown in the bottom row of panels. At step 0 (the
leftmost top and bottom panels), all the links in the tree
are “empty” (dashed lines) and the dye is injected into the
sources a, b, c, and d. Accordingly, we have four discon-
nected clusters of colored flux; they correspond to four dis-
connected nodes in the lower left panel. We assume that
the dye is being continuously injected at all later times at a
constant rate. Each step in the figure is a snapshot of this

process after a unit time interval; recall that we use only
constant velocity in this paper and, without loss of general-
ity, this velocity equals unity.

At step 1 the dye has propagated a unit length along
each stream, which is depicted by solid lines in the top
panel. Since all four streams are disconnected so far, the dy-
namic tree still consists of four disconnected branches, each
of which corresponds to a colored stream of unit length. At
step 2 the streams a and b merge, and so the nodes a and b
are now connected into a single cluster in the dynamic tree.
Notice that the sources a and b are not directly connected
in the static tree; this connection reflects a property of the
dye’s downstream propagation.

At step 3 stream c reaches stream a. Since stream a by
that time is already merged with stream b, we say that the
stream c merges with the cluster of a and b; this is reflected
in the dynamic tree in the corresponding lower panel. Hence,
at step 3 there exist two connected clusters of the colored
flux: one cluster is formed by streams a, b, and c, while
stream d alone forms the second cluster. Finally, at step 4,
all the colored fluxes have merged. The conventional repre-
sentation of both static and dynamic trees, which does not
show the link lengths, is given in the two rightmost panels.

This example shows that the dynamic tree TD can be very
different from the corresponding static tree TS. We notice
in particular that in this example the static tree is a tree
with no side branching; it has the largest possible Horton-
Strahler order, Ω = 3, for a tree with four sources. At
the same time, the dynamic tree exhibits exhaustive side-
branching; accordingly, it has the smallest possible order,
Ω = 2, for a tree with four sources.

3.2. Data-based hydrologic example

We illustrate here the dynamic tree for an order-3 sub-
basin of the Upper Noyo basin. This basin is located in
Mendocino County, California, USA; it is described by Sklar
et al. [2006] and appears in Fig. 7(a) of Section 5, along
with an outline of the subbasin discussed in the present ex-
ample. The stream network for this subbasin is shown in
Fig. 4; its fifteen sources are marked by numbers 1 to 15
and fourteen stream junctions by letters a to n. The static
tree TS for this stream network is shown in Fig. 5(a); it has
the Horton-Strahler order Ω = 3.

The time-oriented dynamic tree TD is shown in Fig. 5(b)
against the distance traveled by the dye from each source (on
the ordinate). Notice that distance in Fig. 5(b) can also be
interpreted as time. The order of the dynamic tree is Ω = 4.
In this example (unlike the synthetic example of Fig. 3), the
dynamic tree shows a smaller degree of side-branching com-
pared to the static tree; this smaller degree yields a larger
HS order. We shall see in other realistic examples, further
below, that this seems to be the case for most actual river
networks. Three snapshots of the simulated dye propaga-
tion, at distances d = 20, 200 and 600 are shown in Fig. 6
to further illustrate the dynamic tree concept.

4. The dynamics of hierarchical aggregation

The consecutive merging of river streams discussed in the
previous section gives rise to a time-oriented dynamic tree.
Study of such trees calls for the development of a new math-
ematical framework: hierarchical aggregation is a promising
candidate for such a framework.

4.1. Hierarchical aggregation

Hierarchical aggregation studies how multiple individual
particles (molecules, species, individuals, etc.) merge (ag-
gregate, collide) with each other to form clusters in different
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physical, chemical, biological, or sociological settings [Albert
and Barabasi, 2002; Leyvraz, 2003; Wakeley, 2009]. In the
river transport setting, particles represent individual chan-
nel links, merging refers to the situation of two channels join-
ing downstream, and a cluster represents all the upstream
channels that jointly contribute to the flow at a given junc-
tion.

Formally, consider a process that starts at time t = 0 with
N individual particles (say the sources of a river network),
which can be considered as clusters of unit mass. As time
evolves (and as a substance propagates down the river net-
work) the clusters start to merge with one another, accord-
ing to a set of rules imposed by the dynamics of propagation,
thus forming consecutively larger clusters. If we assume that
only two clusters can merge at the same time, then the num-
ber of clusters decreases by one after each merging. The
process continues until all particles have merged into a sin-
gle cluster of mass N ; in our case, this would be when all
the nodes of the river network are parts of the same cluster,
i.e. when the whole system is connected.

The evolution of the above process can be described by
a time-oriented binary tree, whose leaves correspond to the
initial particles, the root to the final cluster of N particles,
and each internal node to an intermediate cluster. Among
the many instances of the above general aggregation scheme,
we mention population genetics [Wakeley, 2009], phyloge-
netic trees [Maher, 2002], percolation [Albert and Barabasi,
2002; Zaliapin et al., 2005], and billiards [Gabrielov et al.,
2008]; see Appendix A for details. Bertoin [2006] gives a
modern review of mathematical results related to aggrega-
tion.

An important role in aggregation studies is played by the
notion of cluster dynamics [Bogolyubov, 1960; Sinai, 1973].
This concept refers to a system that contains an infinite
number of interacting particles, which can be decomposed
into finite clusters that move independently of each other for
some random interval of time. After this time, the particle
interactions give rise to infinite-range correlations (meaning
that the mean cluster size becomes infinite, or an infinite
number of particles affects each other’s dynamics), although
the system can be decomposed into yet another set of finite
independent clusters, and so on.

Sinai [1973, 1974] developed a self-consistent mathemat-
ical formalism and proved the existence of cluster dynamics
for some particle systems in statistical mechanics. The ideas
of cluster dynamics have been applied to plasma physics,
economics, and the study of precursory patterns for extreme
events in geophysics [Rotwain et al., 1997; Molchan et al.,
1990; Keilis-Borok and Soloviev, 2003]. Recently, Gabrielov
et al. [2008] evaluated numerically the cluster dynamics of
elastic billiards, leading to the detection of what appear to
be the first genuine phase transitions and scaling phenom-
ena with time, rather than usual temperature T or density,
being the order parameter. Thus, a transition occurs and
scaling develops as time t approaches a critical value t∗,
rather than as the parameter T crosses a critical value T ∗.
As will be shown in Section 6.2, we report here a remarkably
similar and equally unexpected phase transition, with time
being the order parameter, in the cluster dynamics of a river
network.

4.2. Nearest-neighbor clustering

Hierarchical aggregation can be described in great gener-
ality by using the framework of nearest-neighbor clustering
in a metric space. Specifically, consider a finite set S with
distance d(a, b) for a, b ∈ S; the elements of the set will be
called points. The distance d(A,B) between two subsets of
points A = {ai}i=1,...,NA

and B = {bi}i=1,...,NB
from S is

defined as the shortest distance between the elements of the
sets:

d(A,B) = min
1≤i≤NA,1≤j≤NB

d(ai, bj).

Nearest-neighbor clustering is a process that combines
points from S into consecutively larger subsets, called clus-
ters, by connecting at each step the two nearest clusters; this
process can be described by the nearest-neighbor spanning
tree T. Specifically, consider N points c0i ∈ S, i = 1, . . . , N
with pairwise distances d0ij ≡ d(c0i , c

0
j ). These points, con-

sidered as clusters of unit mass (mi = 1), form N leaves of
the tree T. Each node in this tree is assigned a time mark,
thus producing a time-oriented tree; the leaves are assigned
the time mark t = 0. Recall that in this work we focus on
the constant-velocity transport and thus use the time and
distance interchangeably. Accordingly, one can talk about
a distance-oriented tree T with distance marks being equal
to the time marks. The first internal tree node is formed
at the time t1 = minij d0ij by merging two closest points c0i∗
and c0j∗ with (i∗, j∗) = argminij d

0
ij , where argminij f(i, j) is

defined as a pair (i∗, j∗) such that f(i∗, j∗) = minij f(i, j).
This merging creates a new cluster of two points, with a
mass of mi +mj = 2. Hence, at time t1, there exist N − 1
clusters: N − 2 clusters with unit mass and one cluster of
mass m = 2.

We can now reindex so as to work with clusters c1i ,
i = 1, . . . , N − 1; their total mass is

∑N−1
i=1 mi = N and

pairwise distances are d1ij ≡ d(c1i , c
1
j). The second internal

node of tree T is formed at time t2 = minij d1ij > t1 by
merging the two closest clusters from the set {c1i }i=1,...,N−1.
Thus, at time t2 we have N−2 clusters c2i such that their to-
tal mass is N and pairwise distances are d2ij ≡ d(c2i , c

2
j ). We

continue in the same fashion, so the k-th internal cluster, for
1 ≤ k ≤ N−2, is formed at time tk = minij dkij > tk−1, and
at that time we have (N − k) clusters cki , i = 1, . . . , N − k
with masses mi such that

∑N−k

i=1 mi = N . Finally, at time
tN−1 we create a single cluster of mass N that combines all
points c0i ; this cluster forms the root of the tree T.

Consider two nodes a and b from the nearest-neighbor
tree and let ta and tb be their time marks; recall that the
tree is time-oriented by the definition of the successive times
tk = minij dkij > tk−1 at which the cluster mergers occur.
The ancestors of a node are its parent, the parent of that
parent, and so on, all the way to the root. Clearly, the time
mark for an ancestor is larger than that of a descendant.
The nearest common ancestor p of nodes a and b is their
common ancestor with the minimal time mark tp.

The distance u(a, b) along the nearest-neighbor tree is de-
fined as the maximum of the values u(a, p) ≡ tp − ta and
u(b, p) ≡ tp − tb. This distance satisfies two of the usual
distance axioms, symmetry and strict positivity, but the tri-
angle inequality can be replaced by a more stringent one,
namely

u(a, b) ≤ max [u(a, c), u(c, b)],

which holds for any three nodes a, b and c. Such a dis-
tance function is called an ultrametric [Rammal et al., 1986;
Schikhof, 2007]. Ultrametric spaces have many peculiar
properties; for instance, one can rename any triplet a, b, c
of nodes in such a way that

u(a, c) = u(b, c).

These unusual properties give ultrametric spaces consider-
able flexibility in applications, and point sets connected via
nearest-neighbor clustering are a representative example of
such spaces.

In our river transport problem, the space S is the set of
all river sources. The distance d(a, b) between two sources is
defined as the time necessary for the corresponding fluxes in-
jected into these two sources to meet down the river path. If
the static river geometry is described by the tree TS (and we
assume, as previously stated, that fluxes move downstream
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continuously with unit speed) the distance d(a, b) between
two sources equals the maximal length along the tree to their
nearest common parent in TS. The nearest-neighbor span-
ning tree of hierarchical-aggregation theory thus becomes
what we called so far, in the context of river transport, the
dynamic tree TD.

As previously stated, this dynamic tree differs, in gen-
eral, from the static tree TS and depends not only on the
topology of the latter, but also on the actual length of the
links. The ultrametric distance u(a, b) equals the time nec-
essary for the above-mentioned fluxes to belong to the same
cluster or, equivalently, the time to establish a connected
colored path between sources a and b. If the velocities vary
in time or space, then the spanning tree TD will depend
on the specific dynamics of the processes operating on the
static tree.

To better understand transport on river networks, we elu-
cidate in the next sections the connection between the sta-
tistical properties of TS and those of TD by using three real
river networks.

5. River basin data

We have analyzed three river basins: Upper Noyo, Men-
docino County, California, USA (called here Noyo); Tirso,
Sardinia, Italy; and a part of the Brenta basin at the con-
fluence with the Grigno river, Trento, Italy (called here
Grigno). Information about the physiographic and geologic
characteristics of these basins can be found in Sklar et al.
[2006], Pinna et al. [2004], and Guzzetti et al. [2005], re-
spectively. In our analysis we used Digital Elevation Models
(DEMs) with regularly gridded pixel resolutions of 10 m for
the Noyo basin, 30 m for the Grigno basin, and 100 m for
the Tirso basin.

In an actual landscape, channels are initiated when the
area upstream suffices to create a sustainable source of
streamflow and this source imprints a permanent channel on
the terrain. Although these channels are typically detectable
by field observations, the extraction of the channel initiation
points, or “channel heads,” from DEMs has been a subject
of sustained effort [e.g., Montgomery and Dietrich, 1989;
Tarboton et al., 1991; Montgomery and Foufoula-Georgiou,
1993; Costa-Cabral and Burges, 1994; Giannoni et al., 2005;
Hancock and Evans, 2006].

In typical DEM analysis, channel heads are mapped
where the upstream area, or (area)×(typical slope), ex-
ceed a given threshold; the parameters of such relationships
are field-calibrated. More recently, the availability of high-
resolution, 1-m elevation data from LIght Detection and
Ranging (LIDAR) has initiated a new generation of method-
ologies for the automatic detection of channels as terrain
“features” [e.g., Lashermes et al., 2007; Passalacqua et al,
2009]. Given the available DEM resolution, and the fact that
the focus of this study is not the extraction of the most ac-
curate river network from the available DEMs, we adopted a
simple criterion for channel initiation as Ac = 100 pixels for
all three basins. This criterion is certain to miss the small-
est first order basins in the Tirso basin but the extracted
network, although clipped in its uppermost branches, still
has the right topology.

The extracted stream networks for the three river basins
(using the steepest gradient D8 algorithm) are shown in
Fig. 7. The corresponding dynamic stream networks were
then constructed for each basin, assuming a constant unit
speed of downstream propagation for the fluxes. We thus
analyzed two different kinds of trees, static and dynamic,
for each basin.

6. Branching characteristics of river networks

In this section we quantify similarities and differences be-
tween the branching topology of static and dynamic trees

and demonstrate a phase transition phenomenon in the dy-
namics of river networks.

6.1. Self-similarity indices

Figure 8 shows the distributions of the number Nr, aver-
age magnitude Mr, and the average number Cr of links for
branches of order r for the static trees (panels (a,b)) and
dynamic trees (panels (c,d)) of the three basins.

Despite the usual small-sample fluctuations, the figures
demonstrate a large degree of consistency among the branch-
ing indices. All branching statistics considered are closely
approximated by the Horton laws. Moreover, these results
suggest that the relationship (5) holds in all the cases con-
sidered herein.

We observe that the values of the stream ratios for static
trees are higher than the corresponding values for dynamic
trees. This means that the degree of side-branching (i.e., the
proportion of network branches that merge with branches of
a higher Horton-Strahler order) is larger for static trees than
for dynamic trees.

The only indices that deviate considerably from the Hor-
ton laws at higher orders are Cr (the average number of
nodes within an order-r branch) for the Noyo basin’s static
and dynamic trees; this discrepancy warrants further inves-
tigation. Apart from this point, we conclude that both types
of trees, dynamic and static, can be closely approximated by
Tokunaga SSTs; the characteristic indices, however, differ
from one type to the other.

6.2. Phase transition in dynamic trees

Does river network connectivity, in terms of elements of
the network participating in transport, exhibit a phase tran-
sition, with time being the order parameter, akin to those
found in other systems? Figure 9 shows the fractional mag-
nitudes mi/N of the branches in the dynamic trees as a
function of the distance d traveled by the dye. Recall that
this distance can also be interpreted as the time t when the
node was created by merging of upstream branches.

In all three panels we observe the following scenario: We
start at distance d = 0 (or time t = 0) with N branches
(clusters) of unit magnitude corresponding to the network
sources. As distance increases (time evolves), the number
of clusters decreases while their magnitudes become larger
and exhibit substantial variability. In particular, at small
distances the maximal magnitude increases exponentially
with distance; this growth is reflected by an approximately
linear form of an upper envelope of the points in the fig-
ures (envelope not shown). Furthermore, we notice that
at short distances (small times) the magnitude distribution
is “continuous,” i.e. it does not have significant gaps. At
some critical distance d∗ (time t∗), however, the distribu-
tion undergoes a marked qualitative change: a prominent
maximal cluster appears, such that its magnitude becomes
significantly larger than that of the second-largest cluster.
Moreover, while the magnitude of the largest cluster keeps
growing, the rest of the distribution is fading off and so, af-
ter some time, all clusters present at d = 0 merge with the
largest cluster. Still, at the critical distance d∗, the mag-
nitude of the largest cluster is just about 10% of the total
magnitude N of the system, and this is the case for all six
panels.

The magnitude distribution of the clusters was analyzed
for d varying from 0 to about 2 d∗, in both log-log and
semilogarithmic scales (not shown). Our analysis strongly
suggests that the magnitude distribution at smaller dis-
tances has an exponential tail, while at the critical distance
d∗ it becomes a power law. This observation is illustrated in
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Fig. 9, panels (b,d,f), which show the magnitude distribu-
tion, in log-log coordinates, at the critical distance d∗ and
at a shorter distance d ≈ d∗/2; those distances are indicated
by vertical lines in panels (a,c,e). Recall that, in a log-log
plot, power-law behavior shows up as a straight line, while
exponential behavior becomes a convex curve. This change
indicates that a phase transition occurs at the distance d∗.

This phase transition is further illustrated in Fig. 10,
which shows three snapshots of the dye propagating down
the Noyo basin. The distances traveled by the dye at these
snapshots are marked by vertical lines in Fig. 11; the largest
distance is chosen to be equal to the critical distance d∗ for
this basin. The figure shows the number of clusters (dot-
ted line) and the magnitude of the largest cluster for the
Noyo dynamic tree (solid line), as a function of downstream
propagation distance. One can easily see how unconnected
clusters suddenly merge together at the critical distance
d∗ ≈ 1000m. Importantly, the value of critical distance is in-
dependent of the basin order; hence such a merging happens
simultaneously at all the scales (basin orders), constituting
a phase transition.

7. Concluding remarks

7.1. Summary and discussion

In this study we have focused on the statistical description
of environmental transport on river networks. We have ap-
proached the problem by considering downstream transport
on such a network as a particular case of nearest-neighbor
hierarchical aggregation. The so-called ultrametric induced
by the branching structure of the river network provides the
distance function with respect to which the downstream flow
gives rise to clusters that decrease in number and increase
in size with time (see Figs. 10 and 11).

We have described the static topological structure of a
river network by the type of tree structure that goes back
to the pioneering studies of Horton [1945], Strahler [1957],
and Shreve [1966]; this structure has been referred to as a
static tree, to distinguish it from the associated dynamic tree
(Section 3, Figs. 3 and 5). The latter concept helps describe
downstream transport along the static tree.

We have studied the statistical properties of both static
and dynamic trees using the Horton-Strahler and Tokunaga
branching taxonomies. Using the DEM-extracted river net-
works in three river basins (Noyo, Grigno and Tirso) we
have shown that both static and dynamic trees can be
well approximated by Tokunaga self-similar trees (SSTs).
The Horton-Strahler and Tokunaga parameters of these two
types of trees differ significantly, though, for each of the
three basins (Section 6.1, Fig. 8). This difference supports
the relevance of the dynamic tree concept; its parameter val-
ues depict important properties of the envirodynamics on a
given river network that are not captured by the conven-
tional, static tree.

An important new result of this study is the phase transi-
tion we have found in river network dynamics in Section 6.2:
as one fills an empty river network through its sources, or
injects a dye at the sources of a water-filled one, the num-
ber of clusters of connected nodes decreases and the size
of the largest cluster increases, until a dominant cluster of
connected streams forms. During this process, the time-
dependent size distribution of the connected clusters changes
from an exponential to a power-law function as the critical
time approaches (Fig. 9).

This phenomenon, which may seem rather unexpected in
the present hydrological setting, can be better understood
within the framework of complex networks. This framework
has been explored in many natural and socio-economic set-
tings, ranging from the functioning of a cell to the organiza-
tion of the Internet [Albert and Barabasi, 2002; Dorogovtsev
and Mendes, 2002; Newman, 2003].

The mathematical theory of complex networks considers
a group of nodes that can be connected with each other

according to some problem-specific rules, thus forming a
graph. In the simplest case, the node connections are inde-
pendent of each other and can be specified by the probability
p that two randomly chosen nodes are connected. There ex-
ists a critical value pc such that, for p < pc, the network
consists of isolated clusters, while a single giant cluster ap-
pears as p crosses pc, and spans the entire network. The
same phenomenon is observed under more realistic rules of
node connectivity as well. The appearance of the giant clus-
ter is remarkably reminiscent of infinite-cluster formation in
percolation theory [Stauffer and Aharony, 1994].

Albert and Barabasi [2002] review parallels and differ-
ences between complex-network theory and percolation the-
ory. The book by Newman et al. [2006] collects the major
papers in complex network theory, while Barrat et al. [2008]
provide an introduction for a readership of physicists, and
Durrett [2007] gives a rigorous mathematical treatment of
the topic.

It readily follows from the analysis of Section 3 that trans-
port on river networks fits rather naturally the complex-
network paradigm. Formally, each stream source is repre-
sented by a node and two streams are considered to be con-
nected when their respective fluxes join downstream. This is
exactly the scheme we used to define a dynamic tree, with
the only difference that we have ignored the connections
between nodes within already formed clusters. This differ-
ence does not affect the process of cluster formation, so the
results of the complex-network theory do apply to enviro-
dynamics on river networks. From this point of view, the
rather sudden formation of the giant cluster and the cor-
responding transition of the cluster magnitude distribution
from exponential to power-law seems rather natural.

There is an important difference, though, between com-
plex networks in general and the dynamic trees considered
in this study. Our dynamic trees, unlike general networks,
are time-oriented, i.e., their nodes can be ordered in “time”
or with respect to a “downstream distance” parameter. The
ultrametric distance along such trees satisfies a stronger tri-
angle inequality than ordinary distance (see Section 4.2),
and thus induces interesting properties [e.g., Schikhof, 2007].
In fact, a set of points in a metric space with a traditional
distance d naturally forms an ultrametric tree according to
the nearest-neighbor clustering procedure described in Sec-
tion 4. As shown there, hierarchical aggregation via nearest-
neighbor clustering provides a common framework for many
apparently different processes (such as billiards, river trans-
port, and percolation) in the setting of ultrametric trees,
and thus may provide novel insights into these processes.

In percolation models, the cluster-size distribution at
phase transition is given by a power law whose index is a
function of the system’s dimension alone. In our three river
networks, this index differs from one network to another (see
Fig. 9, panels (b,d,f)). We notice that in the hierarchical
aggregation on dynamic trees, different clustering rules may
correspond to different effective “dimensions” of the system.
At the same time, it is known that the critical percolation
indices are universal for systems in high dimensions [Hara
and Slade, 1990] and trees are a simple model for infinite-
dimensional systems [Albert and Barabasi, 2002]. Thus, one
expects to see the same values of the critical indices when
working with percolation on a tree. From this perspective,
the fact that our critical exponents vary from basin to basin
still needs to be understood.

7.2. Further work

In this study we have considered only the simplest clus-
tering rules for river streams: two streams belong to the
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same cluster if there is a connected path from one stream
to another along the river network. This approach is pat-
terned after percolation studies and allows for a straight-
forward treatment. It may result, however, in a situation
when two streams belong to the same cluster despite the
fact that the respective fluxes are not mixed yet: think of
two short streams that merge with a spatially extended clus-
ter at about the same time. Formulating a physically more
appropriate set of clustering rules might yield more realistic
results for a wealth of transport problems related to river
networks.

So far, we have investigated only dynamic trees that have
the same set of sources as the corresponding static tree; do-
ing so is equivalent to injecting a flux through the sources
alone. We emphasize at this point that the present study for-
mulates merely a conceptual model, rather than attempting
to mimic the realistic dynamics of fluxes in river networks.
Indeed, actual precipitation or seepage from groundwater
corresponds to activating multiple internal nodes within the
network, not only its sources. Moreover, it might happen
that a flux of interest is injected exclusively into an internal
node, e.g., an industrial pollutant from a plant or nutrient
production from a local biotic activity. Such situations can
be modeled by considering a dynamic tree whose sources
sample the entire river network. More elaborate models
along these lines are also left to further study.

The flux-propagation model used in this paper is highly
idealized (constant speed) and it only allows for continuous
downstream transport, while real fluxes can violate both of
these assumptions. For instance, sediments can be routed in-
termittently, undergoing several periods of intervening stor-
age before arrival at points downstream. In addition, there
exist upstream extensions of surface flow into headwater val-
leys of zero-order. We notice also that the flux velocity may
depend on slope or other factors, thus violating our assump-
tion of constant transport velocity. These as well as other
extensions of the simple model considered herein can be in-
corporated, in principle, into our general framework. Do-
ing so certainly constitutes an interesting avenue for future
work. It remains, of course, to be seen whether or not any
of these potential extensions affect the main conceptual and
qualitative conclusions of this study.

To construct a richer theoretical framework for envirody-
namics on river networks one may also model the transport
along real and synthetic networks by using Boolean delay
equations (BDEs) [Dee and Ghil, 1984; Ghil and Mullhaupt,
1985]. In BDEs, the discrete state variables describe the
flux through the river branches; naturally, the rules for up-
dating these variables inherit the child-parent relationship
of the stream’s static tree. The parent variables are up-
dated based on the values of the children variables, after
delays that correspond to the time it takes the flux to prop-
agate from a child to its parent. Ghil et al. [2008] recently
reviewed BDEs and their applications to climate and earth-
quake modeling. We expect such models to shed further
light on the complex and important problems of transport
on river networks.
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Appendix A: Hierarchical aggregation and
cluster dynamics: Examples

Among the many instances of the general aggregation
scheme of Section 4, we mention here the following three.

Percolation: In the site percolation process on an L×L
lattice, the initial N = L2 particles correspond to the sites of
the lattice, while clusters correspond to connected patches
of occupied sites that are formed during the percolation pro-
cess [Albert and Barabasi, 2002; Zaliapin et al., 2005]. The
same scheme can be applied to bond percolation, as well as
to percolation on grids in higher dimensions.

Billiards: Elastic billiard on a rectangular table can be
used to model gas dynamics in two dimensions (2-D). Here
the initial particles are the N billiard balls (gas molecules)
at time t = 0. Each of the balls is assigned an initial posi-
tion and velocity. The clusters at time Δ are formed by balls
that have collided during the time interval [0,Δ] [Gabrielov
et al., 2008]. Formally, two balls are called Δ-neighbors if
they collided during the time interval [0, Δ]. Each connected
component of this neighbor relation is called a Δ-cluster.
Notice that within an arbitrary Δ-cluster each ball has col-
lided with at least one other ball during the time interval
[0, Δ]. In other words, a Δ-cluster is a group of balls that
have affected each other’s dynamics during the time interval
of duration Δ. The mass of each cluster is simply the total
number of balls within that cluster. Upon many collisions
of the balls, the whole system will be composed of clusters
of different sizes. As time evolves, the number of clusters
will decrease and their mass increase.

The same scheme can be applied to a system of particles
that interact according to some potential U(x). Bogolyubov
[1960] suggested that when the interaction of particles is re-
stricted to the near field, the system can be decomposed
into finite clusters so that during some random interval of
time, each cluster moves independently of other clusters as a
finite-dimensional dynamical system. After this time inter-
val, the system can be decomposed again into other dynami-
cally independent clusters and so on. This type of dynamics
is called cluster dynamics and Sinai [1974] showed analyt-
ically that it exists in a one-dimensional (1-D) system of
statistical mechanics. Numerical results of Gabrielov et al.
[2008] describe the presence and various properties of cluster
dynamics in a 2-D system of hard balls.

In the metric setup of Section 4.2 for the billiard dy-
namics, the space S is the set of N billiard balls and the
distance function d(a, b) equals the time before the first col-
lision of the balls a and b. Naturally, this distance depends
on the initial positions and velocities of the two balls a and
b, but it is also affected by the global billiard dynamics: our
two balls may be set to collide at a given time t∗ in the
absence of other balls, but may be hit by some other ball
at time t < t∗, thus postponing the collision. The ultra-
metric distance u(a, b) equals the time before both a and b
belong to the same dynamic cluster. It is readily seen that
u(a, b) ≤ d(a, b) since two balls do not have to collide to be
within the same cluster; yet a collision necessarily puts them
into the same cluster.

Phylogenetic trees: Probably the best-known appli-
cation of hierarchical aggregation is in constructing phy-
logenetic trees that describe the evolutionary relationships
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among biological species [Maher, 2002]. Here, a node cor-
responds to a set of species. Two species are connected if
they have a direct common ancestor; the link length from
a species to its direct ancestor equals the time it took to
develop the descendant species from that ancestor.
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Figure 1. Tree representation of a river network: (a)
hypothetical river network; and (b) its representation by
a binary tree. The network sources and the respective
tree leaves are marked by the same letters in both panels.
The figure also illustrates the terminology used in our
river transport study.

Figure 2. Example of (a) Horton-Strahler ordering, and
of (b) Tokunaga indexing of a static tree TS. Two order-
2 branches are depicted by heavy lines in both panels.
The Horton-Strahler orders refer, interchangeably, to the
stream junctions or to the immediate downstream links.
The Tokunaga indices refer to entire branches, and not
to individual links; these indices are shown next to the
last downstream junction on each branch.
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Figure 3. Constructing a dynamic tree TD. The initial
static tree TS and the final dynamic tree TD are shown
in the rightmost pair of panels. The dynamic tree re-
flects the propagation of a flux from the sources to the
outlet of the static tree, at a constant velocity. The top
row of panels shows the static tree at different steps of
this process; for visual convenience we explicitly show the
static tree’s link lengths. The bottom row shows the cor-
responding phases of the dynamic tree. The top leftmost
panel indicates the lengths of the links in the static tree;
each step in the figure takes one time unit, that is the flux
propagates one unit of length downstream. See Section
3.1 for details.

Figure 4. Stream network for an order-3 subbasin of
the Noyo river, Mendocino County, California. The lo-
cation of this subbasin is shown in Fig. 7(a); sources are
marked by numbers (1 to 15), and stream merging points
by letters (a to n). The same marks are used in Fig. 5
below, which shows both the static and the dynamic tree
for this subbasin.
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Figure 5. The static and the dynamic tree for the Noyo
subbasin of Fig. 4. (a) Static tree TS, and (b) dynamic
tree TD. Letter and number markings are the same as in
Fig. 4.

Figure 6. Three snapshots of the evolution of the dy-
namic tree (heavy solid lines) on the static tree (light
solid lines) for the stream network of Fig. 4.
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(a) Noyo

N
1,000 meters

(b) Grigno

5,000 meters
N

(c) Tirso

N
10,000 meters

Figure 7. Stream networks of the three basins analyzed
in this study, shown as static trees; outlets are marked
by black dots. (a) Upper Noyo basin, Mendocino County,
California, USA; the outlet is located at 39∘26′ N, 123∘45′

W, and the order-3 subbasin of Figs. 4–6 is outlined by
a small, light rectangle in the panel’s lower-right (i.e.,
southeastern) corner. (b) A part of the Brenta basin, at
the confluence with the Grigno river (called here Grigno
basin), Trento, Italy; the outlet is located at 40∘00′04.96′′

N, 8∘49′59.26′′ E. (c) Tirso, Sardinia, Italy; the outlet is
located at 46∘00′28.40′′ N, 11∘38′21.55′′ E. See Section 5
for details of channel initiation.
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Figure 8. Branching statistics for the stream trees of
the Noyo, Grigno, and Tirso basins, shown in Fig. 7.
(a,c) Number Nr and average magnitude Mr for (a) the
three static, and (c) the three dynamic trees; and (b,d)
average number Cr of links within a branch for (b) static
and (d) dynamic trees.
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Figure 9. Phase transition in river network dynamics.
(a,c,e) Fractional branch magnitudes mi/N as a function
of the distance di traveled by the dye at the instant of
branch creation. (b,d,f) Distribution of branch magni-
tudes mi at the critical distance d∗ (circles) and at an
earlier time, given by d (squares), for the dynamic trees
of the three basins. Each of these panels shows two dis-
tributions, at distances d∗ and d < d∗, respectively; the
corresponding distances are depicted by vertical lines in
panels (a,c,e). The downward deviations from pure power
laws are due to the finite-size effect. (a,b) Noyo stream;
(c,d) Grigno stream; (e,f) Tirso stream.
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(a) d = 200m

(d) d = 200m

(b) d = 500m

(e) d = 500m

(c) d = 1000m

(f) d = 1000m

Figure 10. Transport down the Noyo stream net-
work. Three snapshots of flux propagation from the
stream sources to the outlet, at (a,d) d = 200 m; (b,e)
d = 500 m; and (c,f) d = 1000 m. Panels (a)–(c) show
the entire Noyo basin, while panels (d)–(f) zoom onto an
order-4 subbasin located in the basin’s southeastern part.
This order-4 subbasin encompasses the order-3 subbasin
shown in Figs. 4–6; its location is depicted by a light
rectangle in panel (c). See also Fig. 11.
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Figure 11. Cluster evolution for the Noyo basin down-
stream flux transport: number of clusters (dotted line)
and largest-cluster size (heavy solid line). Light vertical
lines correspond to the three snapshots in Fig. 10.
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ABSTRACT 
 
Hillslopes are typically shaped by varied processes which 
have a wide range of event-based downslope transport 
distances, some of the order of the hillslope length itself.  
We hypothesize that this can lead to a heavy-tailed 
distribution of displacement lengths for sediment particles. 
Here, we propose that such a behavior calls for a non-local 
computation of the sediment flux, where the sediment flux 
at a point is not strictly a function (linear or nonlinear) of 
the gradient at that point only but is an integral flux taking 
into account the upslope topography (convolution Fickian 
flux). We encapsulate this non-local behavior in a simple 
fractional diffusive model which involves fractional 
derivatives, with the order of differentiation (1  2 ) 
dictating the degree of non-locality (  2  corresponds to 
linear diffusion and strictly local dependence on slope).  
The model predicts an equilibrium hillslope profile which is 
parabolic close to the ridgetop and transits, at a short 
downslope distance, to a power law with an exponent equal 
to the parameter  of the fractional transport model.  
Hillslope profiles reported in previously studied locations 
support this prediction.  Furthermore, we show that the 
non-local transport model gives rise to a nonlinear 
dependency on local slope,  and that variable upslope 
topography leads to widely varying rates of sediment flux 
for a given local hillslope gradient.  Both of these results 
are consistent with available field data and suggest that 
non-linearity in hillslope flux relationships may arise in part 
from non-local transport effects in which displacement 
lengths increase with hillslope gradient. The proposed 
hypothesis of non-local transport implies that field studies 
and models of sediment fluxes should consider the size and 
displacement lengths of disturbance events that mobilize 
hillslope colluvium. 
 
1.  Introduction 

In absence of overland flow-driven or wind-driven 
transport, the movement of soil on landscapes requires 
some kind of disturbance (Figure 1). This disturbance arises 
in many ways—leading to a wide range of length scales of 
displacement.  In clay-rich soils mantling sloping 
landscapes, periodic wetting of the ground may cause 
swelling and downslope flow, but even as the soils remain 
wet, progressively increasing grain resistance may halt 
motion.  Drying and cracking then resets the contacts and 
allows another period of flow in the next wet season 

[Fleming and Johnson, 1975].  This cycle operates over 
some length scale of displacement.  Simple wetting 
expansion and drying collapse through a season can 
incrementally shift near surface soils short distances 
downslope [e.g., Kirkby, 1967].  Seasonal cycles of 
movement by ice-driven processes shift soils and during 
spring melt can give way as continuously moving 
solifluction lobes which may carry soil a considerable 
distance even on gentle slopes [e.g., Washburn, 1973].   
Biota work the soil at a wide range of scales, leading to 
dilation and displacement downslope. Insects and worms 
may cause minor local displacement but through their 
persistent and pervasive activity cause significant 
movement [e.g., Darwin, 1881].  Burrowing animals can 
make an extensive network of tunnels and push piles of dirt 
meters downslope.  The collapse of large trees may rotate 
and expose their root system and displace clumps of soil 
meters downslope [e.g. Norman et al., 1995; Gabet et al., 
2003].  The exposed, locally-steep, tree throw mound and 
the smaller annual burrow mounds are sites of accelerated 
rain splash, raveling and fine scale biotic disturbance.  In 
effect, the biotic roughening of the ground surface by the 
local mound formation leads to accelerated soil movement.  
On sufficiently steep granular soils, fire may suddenly 
remove particles stored behind fallen woody debris and 
unleash particles to ravel downslope [e.g., Roering and 
Gerber, 2005], sometimes tens of meters. Shallow 
landslides may also initiate, mobilize, and redeposit on 
hillslopes.  Soil movement, then, arises through the sum of 
stochastic processes, influenced by seasonal and biotic 
cycles, the integral of which is a net flux of soil which 
tends to increase with increasing hillslope gradient.  The 
individual particle step lengths resulting from disturbances 
will vary greatly. 

On gentle hillslopes there is field evidence [e.g., 
McKean et al., 1993] that the mean soil transport varies 
linearly with local gradient.  On steeper slopes, however, 
theory and limited observations suggest that transport 
increases non-linearly with slope [e.g., Roering et al., 
1999].  Increasing field and theoretical evidence indicates 
that flux also depends on active transport depth [Heimsath, 
et al., 1999; Roering, 2008, Furbish et al., in this volume].   
In particular, Furbish et al. [in this volume] show that a 
diffusivity-like coefficient which takes into account the 
local slope-depth product produces a sediment flux which 
varies linearly with local gradient. Both linear and non-
linear flux laws assume that transport depends on some 
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“local” slope, although we lack theory for what sets the 
length scale over which that slope should be determined.   
The disturbance by biota creates an irregular ground 
surface, with locally steep piles of loose soil that diffuse 
downslope across the mean slope (Figure 1).    Hence, the 
slope at any point may not represent the actively 
contributing slope-driving processes, and cannot account 
for travel distances resulting from disturbances. If we could 
monitor every particle on a hillslope where these 
disturbance-driven processes (often placed together under 
the term “creep”) occur, it is possible that long transport 
events occur with a finite, non-vanishing, non-
exponentially decaying probability such that the pdf of 
transport distances is heavy-tailed [e.g., Tucker and 
Bradley, 2009 this issue].  This conception of soil transport 
may not be well represented by a transport expression that 
relates flux to a “local” slope.  Moreover, the possibility of 
heavy-tailed particle travel histories makes selecting a 
meaningful mean slope for the application of such local 
laws problematic.  To date, empirical fitting procedures 
(reducing variance by increasing the length scale of 
averaging while trying to maintain local profile curvature) 
have been used for the estimation of the mean slope; 
common methods include polynomial fitting and Gaussian 
filtering (e.g., Roering et al., 1999; Lashermes et al., 2007)   

Here we propose an alternative formulation of 
sediment transport on hillslopes which relies on the notion 
of non-local computation of sediment flux, reflecting the 
fact that mass flux at a point on the hillslope is being 
influenced by disturbances well upslope and not simply 
linked to local slope (and soil depth).  Our analysis may 
also explain the variance in flux rate for a given local slope 
observed in some studies.  Our theory, although not derived 
from physical considerations (e.g. involving balances of 
forces and resistances), presents a general mathematical 
framework within which the upslope influences to the 
sediment flux at a given point can be cast into a continuum 
constitutive law for sediment transport.  Specifically, we 
propose a non-local formulation of transport laws which 
relies on an integral (non-Fickian) flux computation which 
explicitly takes into account the upslope topography from 
any point of interest.  The proposed non-local transport 
model includes linear-diffusive transport  as a special case. 

The paper is structured as follows. In section 2, we 
formulate the non-local constitutive law for sediment 
transport on hillslopes and in section 3 we derive its steady-
state equilibrium profile under appropriate boundary 
conditions.  In Section 4 we interpret observed hillslope 
profiles in the Oregon Coast Range, in the Appalachians of 
Maryland and Virginia, and east of San Francisco 
(California) within the non-local transport formulation.  In 
section 5 we compare the linear, non-linear and non-local 
transport models in several ways.  The most important 
result is that the linear non-local model gives rise to a non-
linear relationship between sediment flux and local slope, 
akin to that observed on steep slopes.  In section 6 we 

demonstrate that applying the non-local flux model to an 
ensemble of hillslope profiles produces significant 
variability of sediment flux for a given value of local slope 
as a result of variations in upslope topography.  In section 
7, we discuss the relationship between the shape of the 
probability density function of the sediment displacement 
lengths (which dictate the microscopic behavior of the 
transport process but which are typically not measured) and 
the parameter  of the non-local transport model (which 
describes the macroscopic properties of the transport).  In 
section 8 we present some preliminary thoughts as to the 
ability of the non-local transport formulations to 
circumvent the scale-dependence of sediment flux 
computed using local, non-linear models.  We conclude that 
our model shows the possibility that non-local sediment 
transport processes may be important on hillslopes and 
warrant more consideration both in field studies and 
theoretically.  Our model anticipates more process-based 
considerations that would account mechanistically for 
biotic disturbance and it suggests that models for transport 
and weathering of colluvial soils and geochronological 
analysis of particles on steep hillslopes should consider the 
possible effects of non-local transport.    
 
2.   A non-local constitutive law for hillslope sediment 
transport: Convolution Fickian flux  

The simplest sediment flux law, proposed by Culling 
[1960] in analogy to Fick's law of diffusion, expresses 
sediment flux as proportional to the topographic gradient:  

( ) ( )sq x K h x    (1) 
where ( )sq x  is sediment flux (volume per unit time per 

unit width: 3 / /L L T ) at location x (where x is distance 
from the ridgetop), K is the diffusivity coefficient ( 2 /L T
) and ( )h x  is the surface elevation with respect to a datum.  
It is easy to show  (e.g. Howard, 1994) that substituting (1) 
in the continuity (Exner) equation:  

  r
h
t

 rU  s qs (2) 

where s  and r  are the bulk densities of sediment and 
rock respectively and U is the rock uplift rate, results in the 
linear diffusion equation:  

                  
h
t

U K2h  (3) 

where we have assumed for simplicity that the bulk 
densities of rock and sediment are the same (which is 
almost never the case) and have ignored chemical erosion. 
(Note that equation (3) can also be derived using a moving 
coordinate system of erosion driven by diffusive transport 
in which the uplift term enters as a lower boundary 
condition.)  If the rate of surface erosion is approximately 
balanced by the rock uplift, i.e., dynamic equilibrium 
[Gilbert, 1909; Hack, 1960], then / 0h t    and the 
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steady-state 1D case can be written as:  

    
h
t

 0 
d2h
dx 2  

U
K

   (4) 

Integrating twice and imposing the boundary conditions: 

    

h(0)  Htop 
U
2K

L2

dh
dx x0

 0
 (5) 

such that h(L)  0 (river edge), the solution is given by: 

    2( ) =
2top
Uh x H x
K

  (6) 

for 0  x  L  [e.g. Koons, 1989].  Furthermore, the 
properties of the equilibrium hillslope profiles predicted by 
linear diffusion are: (a) linear increase of local slope with 
downslope distance, and (b) constant curvature along the 
hillslope profile. 

The underlying assumption of a classical diffusion 
equation is that the step lengths of sediment particles, 
defined as the distances traveled by the particles once 
entrained until they are deposited again on the surface, have 
a thin-tailed (e.g., exponential or Gaussian) distribution 
[e.g., Ganti et al., Schumer et al., in this volume].  
However, for the reasons discussed in the introduction, the 
distribution of step lengths of sediment particles may be 
heavy-tailed, i.e., they have a small but significant chance 
of traveling a large distance downslope.  In such cases, the 
sediment flux at a point x has a significant contribution 
from a large upslope distance and thus a local computation 
of flux, such as that of equ (1), is no longer appropriate. 
Recently, a particle-based model for sediment transport on 
hillslopes was developed based on a plausible set of rules 
capturing disturbance-driven transport processes and it was 
shown that a heavy-tailed step length distribution can 
emerge due to the interactions between these disturbances 
and microtopography [Tucker and Bradley, in this volume].  
Here, we develop a continuum constitutive model for such 
a behavior.  Specifically, we propose a notion of non-local 
sediment flux which takes into account the heavy-tails in 
step lengths of sediment particles by expressing the 
sediment flux at a given point as a weighted average of the 
upslope topographic attributes: 

qs
*(x)  K* g(l)h(x  l)dl

0

x

  (7) 

where qs
*(x)  is sediment flux (volume per unit time per 

unit width: 3 / /L L T ) at location x  (where x  is distance 
from the ridgetop), K* is the diffusivity coefficient, ( )h x  
is the topographic elevation at location x , and ( )g l  is a 
kernel performing a weighted average of local gradients 
upslope of the point of interest x  as they contribute to the 
sediment flux at the point x  (Figure 1) . This is a special 

case of the more general  convolution Fickian flux laws 
[Cushman, 1991, 1997].  It has been shown [Cushman and 
Ginn, 2000] that when the weighting function ( )g l  has no 
characteristic length scale, i.e., when ( )g l  decays as a 

power law with the lag l , g(l) ~ l2 , (5) takes the form 
of a fractional derivative:  

qs
*(x)  K*1h(x)  (8) 

where (1,2]  .  Substituting (8) in the continuity 
equation (2) and making the assumption that bulk densities 
of rock and sediment are equal, leads to a fractional 
diffusion equation:  

h
t

U K*h  (9) 

The order of differentiation,  , directly relates to the 
heaviness of the distribution of step lengths [Meerschaert et 
al., 1999, 2001; Schumer et al., 2001, Schumer et al., in this 
volume] and 1  2 implies a distribution of step 
lengths with a finite population mean but infinite 
population variance (sample variance that diverges unstably 
as the number of samples increases) [Lamperti, 1962],  
resulting in an accelerated diffusion (super-diffusion).  It is 
noted that for  =2, (8) becomes the standard Fickian flux 
(1), and (9) collapses to the linear diffusion equation (3).  

The concept of non-local transport, implemented via 
fractional derivatives or Continuous Time Randon Walk 
(CTRW) models, has been extensively used in other fields 
of study, such as subsurface transport [e.g., Benson et al., 
2000a; Berkowitz et al., 2002], transport of pollutants in 
rivers [Deng et al., 2005, 2006], hydrodynamics [e.g., 
Metzler and Compte, 2002], statistical mechanics [e.g., 
Bouchaud and Georges, 1990; Pekalski and Sznajd-Weron, 
1999; Sclesinger et al., 1995], molecular biology [e.g., 
Campos et al., 2005] and turbulence [e.g., Biler et al., 
1998; Woyczynski, 1998]. Recently, it has been used in 
geomorphology to encapsulate the non-locality of bed 
sediment transport along bedrock channels [Stark et al., 
2009] and to model the anomalous diffusion of tracer 
particles in gravel streams and sand- bed rivers [Ganti et al. 
2009; Bradley et al., 2009; in this volume].  A review of the 
application of partial fractional differential equations to the 
transport of solutes and sediment can be found in Schumer 
et al. [in this volume]. 
 
3. Equilibrium hillslope profiles for non-local transport 

In order to derive the equilibrium hillslope profile 
for the fractional diffusion equation (9) we note that under 
dynamic equilibrium, the steady state 1D equation can be 
written as: 

         
h
t

 0 
dh
dx

 
U
K*   (10) 

The two most commonly used definitions of a fractional 
derivative are the Riemann-Liouville and the Caputo forms 
[Miller and Ross, 1993].  These forms differ from each 
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other in that the Riemann-Liouville definition expresses the 
fractional derivative as an integer order differential of a 
fractional integral (equation 11a), whereas the Caputo 
definition expresses the fractional derivative as a fractional 
integral of an integer order derivative (equation 11b):  

  
dh
dx


dn

dxn Ix
nh(x)   (11a) 

  
dh
dx

 Ix
n dnh(x)

dxn









 (11b) 

where n  is an integer such that n 1    n  and 
Ix

n ()  is a fractional integration operator of order n  .  
This distinction is important in the case of boundary-valued 
and initial-valued problems as the Riemann-Liouville 
definition requires the calculation of the derivatives of the 
fractional integrals of the function at the initial value, 
whereas the Caputo definition only requires the calculation 
of initial values of the function and its integer derivatives 
[see Voller and Paola, in this issue for a detailed 
discussion].  It is further worth noting that the Caputo-
fractional derivative (equ 11b) of a constant is zero, and in 
this form a fractional integral and a fractional derivative are 
commutative, whereas the Riemann-Liouville fractional 
derivative (equ 11a) of a constant is a power law.  
Specifically, the  -order fractional integral of a constant c
is a power function: 

  { }
(1 )x

cI c x 



 

 (12) 

where {}xI  is the fractional integral operator of order  , 
c is a constant and ()  is the gamma function.  
Implementation of the fractional derivative on a finite 
domain 0 x L   with boundary conditions, requires 
defining the functional value ( )h x  beyond the left 
boundary, that is for 0x  .  In a boundary-valued problem, 
the Caputo-form of the fractional derivative assigns the 
values of the function (in this case h(x)) beyond the 
boundary to be equal to the value of the function at the 
boundary, i.e., it inherently assumes that h() up to 
h(0) are assigned the value of h(0)  Htop . This, 
however, is physically unreasonable as no sediment is 
supplied at the ridge from any point beyond the ridge.  In 
order to circumvent this issue we numerically evaluate the 
steady-state equilibrium hillslope profiles predicted by 
equation (10). 

A fractional derivative can be discretized using the 
one-shift Grünwald expansion [Meerschaert and Tadjeran, 
2004]: 

  
0

( ) 1 ( )
N

k
k

d h x g h x k x x
dx x



 


    
   (13) 

where gk  are the one-shift Grünwald weights, x  is the 
spatial step-size in the numerical implementation, N  is the 
number of node points upslope of the given point and 

1  2 is the order of differentiation. The Grünwald 
weights are given by the following expression [Grünwald, 
1967; Meerschaert and Tadjeran, 2004]: 

  ( )
( ) ( 1)k

kg
k



 


   

 (14) 

 
Imposing the boundary conditions: 

  

h(0)  Htop 
U

(1)K* L

dh
dx x0

 0
 (15) 

such that h(L)  0 at the river edge, and imposing an 
additional condition that  

( ) 0h x   for 0x    
(since there is no sediment supply to the domain from any 
point beyond the ridge), one can solve numerically for the 
steady-state equilibrium hillslope profiles predicted by 
equation (10).  Figure 2a shows the hillslope equilibrium 
profile for fractional transport with degree of non-locality 
 1.5.  It is noted that the hillslope profile is parabolic 
close to the ridge and transitions to a power law with an 
exponent of  .   
           It is worth noting that under the Caputo form of the 
fractional derivative (which assumes that the values of 
h(x)  Htop  for 0x  ), equ (10) can be solved 
analytically.  The analytical solution of equation (10) with 
the boundary conditions (15) and h(x)  Htop  for 0x   is 
given as: 

  h(x)  Htop 
U

 1 K* x  (16) 

where x  is the horizontal distance from the ridgetop, and

topH  is the elevation of the ridgetop.  As shown in Figure 
2(b), this solution is reached in the numerically evaluated 
profile (which assumes ( ) 0h x   for 0x  ) only at a finite 
distance downslope of the ridge when enough upslope 
topographic distance exists for the non-local contribution to 
substantially contribute to the sediment flux at a given 
point.  Hence overall, the steady-state hillslope equilibrium 
profile is parabolic near the ridgetop and becomes, shortly 
after, a power law profile with an exponent   (given by 
equation (16)).  Further, we note that the steady-state 
solution to the fractional diffusion equation predicts power 
law relationships of local gradient and curvature with 
downslope distance given by:   

h ~ x1  (17) 
  

   2h ~ x2  (18) 
That is, the fractional flux law predicts that curvature 
downslope of the ridge is not constant but decreases with 
downslope distance in a manner dictated by the exponent 



 5

 (such a decrease has been documented, for example, in 
field observations in Roering et al. [1999]).  For  =2 the 
non-local transport model reproduces the linear profile in 
gradient and constant curvature with downslope distance, as 
expected for linear diffusive transport, while values of 
between 1 and 2 give the flexibility of reproducing a suite 
of observed hillslope profiles.  In the next section, we 
analyze field data from several real hillslopes and show that 
they are consistent with the non-local hypothesis of 
sediment flux. 
 
4.  Observed hillslope profiles interpeted within the non-
local transport theory 

The one-dimensional non-local theory presented here 
applies to hillslope profiles in which transport is assumed to 
be only along that profile, i.e., a one-dimensional 
approximation.  Hillslopes, however, typically have 
significant contour (planform) curvature (i.e. ridges and 
hollows) and at steady state such curvature can 
accommodate the increasing soil production that must be 
carried downslope such that a single profile along the 
hillslope can be straight even in the case of linear flux-
dependent transport and spatially constant erosion rates.   
Only a few detailed studies of hillslope form and process 
have been reported on hillslopes without significant 
planform curvature.  Here we re-examine three well-known 
study sites (one clearly lacking planform curvature)  and 
interpret them within the proposed non-local flux theory.   

Roering et al. [1999] motivate their work on non-
linear flux laws by reporting hillslope profiles in the 
Oregon Coast Range that clearly deviate from parabolic 
shape or constant curvature.  Their study site experiences 
large scale disturbances due to massive tree throw mounds 
(Heimsath et al, 1999), mammal burrowing and periodic 
fire (Roering and Gerber, 2005) and there is evidence for 
approximate steady state with considerable local variation 
over timescales of hillslope soil adjustment and develoment 
(Roering, et al., 1999; Heimsath et al., 2001; Reneau and 
Dietrich, 1991).  One of their profiles is shown in Figure 
3(a) and the log-log plot of elevation fall versus horizontal 
distance (Fig. 3b) suggests a slope of 1.3 for distances 
beyond 10 m downslope of the ridgetop and a slope of 2 
close to the ridge (only 3 points are shown in Fig 3b at 
distance 0 to 10 m, but the slope of 2 is supported by more 
points obtained from the interpolated profile shown by the 
dashed line in Fig. 3a).  This profile is consistent with the 
non-local flux hypothesis and suggests that the non-local 
transport model proposed herein might be an alternative to 
the non-linear model of Roering et al. [1999].  The 
conceptual bases of these two models are fundamentally 
different as they hypothesize different mechanisms of 
erosion and transport.  This profile will be further analyzed 
in the next section.   

In their seminal paper on the geomorphology and 
forest ecology of the Shenandoah River area of Virginia, 
Hack and Goodlett [1960]  report the result of plotting fall 

against distance for both their intensely surveyed study site 
and for a broad survey of 27 hillslopes in the Appalchians 
in Maryland and Virginia.  They propose that the many 
regularities of the landforms and soils in the studied regions 
suggest steady-state landscape adjustment.  Ignoring the 
data points close to the divide, they report log-log linear 
profiles with a slope of 1.23 for the survey site and values 
ranging from close to 1 up to 1.7 for Maryland and 
Virginia.  It is not clear how the broad survey data were 
collected (in the field versus from available topographic 
maps), nor whether they avoided slopes with planform 
curvature, but it is worth noting that the profiles do not 
include data points near the divide.  They conclude that 
steeper hillslopes are generally straight ( values close to 
1) and gentle ones more curved ( values closer to 2).  
Within our theory, this would suggest non-local transport 
on steeper hillslopes and local transport (linear diffusion) 
on gentle slopes.  Hack and Goodlett’s [1960] describe soil 
transport as being driven by “growing roots, burrowing 
animals, falling raindrops, frost, tree blowdowns and the 
like” (p. 58).  These processes would create a wide range of 
transport distances for a given slope.  Specific localities and 
erosion rates for the hillslope profiles are not reported, so 
we must consider this suggestion as only a possibility, not 
an established condition.     

McKean et al. [1993] selected a hillslope transect 
with minimal planform curvature in the grasslands east of 
San Francisco, CA underlain by marine shales and 
documented soil transport rates using 10Be concentrations in 
the clay-rich soils (Figure 4).  From analysis of  three soil 
pits within the first  35 m of hillslope length (from the 
ridge) they found evidence for a linear flux law and 
quantified the diffusive rate constant K (i.e. equation 1).  
The soil transport occurs by seasonal creep of the high-
plastic clay with biogenic transport being of some 
importance near the divide.  Soil thickness varies inversely 
with curvature, consistent with a balance between soil 
production and linear transport [Yoo et al., 2005; 2006].  
The thickness is about 40 cm near the ridge and then 
increases downslope.   Boundary conditions (channel 
incision rate and history) strongly influence hillslope 
profiles and at this study site the hillslope terminates in a 
broad, aggraded valley, which has led to a break in slope at 
the base of the hillslope and progressive thickening of soil 
towards the valley axis [Yoo et al., 2005].  Both Yoo et al., 
2005 and McKean et al. 1993 suggest that the upper 
smoothly convex hillslope could be at approximate steady 
state erosion, that is, the effect of stabilization of the lower 
boundary has not reached to the divide.    

We used the survey data collected by McKean et al. 
[1993] to construct the longitudinal profile reported in 
Figure 4a.  By plotting on a log-log scale the elevation fall 
versus horizontal distance from the ridge (Figure 4b) we 
observe a slope of  1.8 from a distance of 8 m from the 
ridgetop up to approximately 25 m downslope; in the first 8 
m from the ridgetop one would expect a parabolic profile 
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(slope of 2).   The hillslope rapidly flattens upslope from 8 
m and the available survey data do not provide adequate 
constraint on the profile shape.  The gentle hillslope 
gradient and high clay content (which favors creep) and the 
dry, grassy, relatively low biota mantle on the convex 
hilltop all would favor an almost local transport,  and the 
slope value of 1.8  extending for the first 25 m is consistent 
with this expectation.  Downslope of 50 m to the lowest 
portion of the hillslope surveyed the  slope of the power 
law plot of elevation against distance is  1.2.  This 
transition is not consistent with the non-local flux law of

1.8  discussed above; rather the bottom part of the 
hillslope is interpreted as experiencing a change from net 
erosion to progressive soil accumulation (due to lower 
boundary conditions) and field observations support this 
interpretation.  This example illustrates that the non-local 
flux theory can also be used as a diagnostic tool for 
inferring process from form and further motivate data 
collection to test alternative hypotheses.   
 
5.  Nonlocal versus nonlinear flux: Same behavior for 
different reasons  
5.1.  Nonlinear transport model as an emulator of 
super-diffusivity 

Deviation from purely diffusive behavior in many 
hillslopes has prompted the development of more complex 
transport laws which have a nonlinear dependence on 
topographic gradient.  A review of several of these laws can 
be found in Dietrich et al. [2003].  For example, for soil 
mantled hillslopes, Roering et al. [1999] proposed the 
following flux equation [see also Andrews and Buckman, 
1987; Howard, 1994]:  

q s 
Kh

1 h /Sc 2
 (19) 

where q s  is the sediment flux calculated at a point via the 
non-linear flux law, K is the diffusivity coefficient and cS  
is called the “critical gradient”. It is noted that the above 
equation imitates a super-diffusive behavior, that is, close 
to linear diffusion at low slopes and accelerated diffusion at 
high slopes.  Although this can be directly seen from (19), 
it is interesting to see it from a different perspective.  By 
substituting (19) in (2) and performing a Taylor series 
expansion we obtain:  

           


h
t

 K2h K
2h
Sc

2 (h )2   (20) 

The second term in the RHS of (20) shows that the 
nonlinear transport law of (19) captures the super-diffusive 
behavior at high slopes by enhancing the regular diffusion 
with the addition of a term that has an explicit non-linear 
dependence on gradient.  The gradient in the above 
equation is “local”.  We propose that such super-diffusive 
behavior in steep hillslopes can be addressed using non-
local transport laws, which are linear (i.e., they involve 

only linear combinations of local gradients) but take into 
account that disturbances contributing to sediment flux at a 
point of interest have an origin far upslope of that point.  It 
is interesting to note that the proposed non-local flux law 
gives rise to a non-linear dependence of sediment flux on 
the local gradient at any point (this will be presented in the 
next section) but for reasons different than the explicit 
quadratic dependence of flux on local gradient as in 
equation (20).   
 
5.2.  Nonlocality gives rise to a nonlinear dependence of 
flux on local gradient  

We use the Roering et al. [1999] hillslope profile 
from the Oregon Coast Range to illustrate the computation 
of the sediment flux from the nonlocal transport model of 
(8) and compare it to those of the linear (1) and nonlinear 
(19) models.  In order to have a continuous set of elevation 
data points over the domain of interest, the observations 
were interpolated using a spline as shown in Figure 3a with 
dashed lines.  

The computation of the fractional flux was 
performed on a discrete grid of size x  by the Grünwald-
Letnikov discrete approximation of the fractional integral 
operator given as [Grünwald, 1967; Podlubny, 1999]:  

/
1 2 2

0 =0

(2 )( ) = { ( )} = ( ) ( )lim ! (2 )

x x

x
x k

kh x I h x x h x k x
k

   



  

 

  
     

   (21) 

It is noted that writing the fractional flux as a fractional 
integral of the local slopes (first equality in the above 
equation) is enabled by use of the Caputo definition of the 
fractional derivative (equation 11b).   

The parameters chosen for the three flux laws 
(linear, non-linear and non-local) are 

2= 0.0015 /K m yr , = 1.4cS , = 1.5  and 
* = 0.0007 /K m yr .  The model parameters for the 

non-linear flux law are chosen from the ones calibrated for 
Oregon Coast Range in Roering et al., [1999].  For the non-
local flux law,   is set to 1.5 and *K  is chosen such that 
all the three flux laws show a similar increase in sediment 
flux with slope at lower gradients.  This is done in order to 
study the effect of the three flux laws at the higher 
gradients. Figure 5 shows the sediment flux computed 
using the three different flux laws. The sediment flux 
computed from the non-local transport law (8) shows a 
similar behavior as the non-linear, local transport law (equ. 
19), with enhanced diffusion at higher gradients.  Hence, a 
non-linear relationship between sediment flux and local 
gradient can also arise from a non-local, linear flux model.  
It is emphasized that in a real hillslope, the parameters K  
for the non-linear model and K*for the non-local model are 
obtained via calibration; the unfamiliar units of K*  
(L /T) are not an issue and simply reflect that the 
quantity (K*t)1/  maintains the units of length (length 
scale of diffusion) in analogy to the quantity (Kt)1/ 2for 
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standard diffusion [e.g., see Benson, 1998].  
 
5.3.  Non-locality and upslope “region of influence” 

The non-local transport law differs from any local 
transport law (linear or nonlinear) in that in the former, the 
sediment flux contribution to a given point on the hillslope 
is computed from a weighted average of the topographic 
gradients upslope of that point.  Therefore, unlike the local 
transport laws, the non-local transport law has a “memory” 
of the upslope topography.  Although the power law kernel 

( )g l  of the non-local integral flux  (equation 7) implies 
lack of characteristic scale over which the averaged 
gradient is computed, we take the liberty below to introduce 
a cut-off scale in order to illustrate this upslope influence 
effect.  Specifically, we introduce a physically tangible 
measure of non-locality for the computation of sediment 
flux by defining an influence length, L , as the distance 
upslope from a given point, beyond which the contribution 
of the sediment flux is less than 10%  of the total, i.e., L  
is defined by the equation:  

K* g(l)h(x  l)dl  0.9qs
*(x)

0

L

 ,                   

1   2 (22) 
where  g(l) ~ l2  are the weights given to the gradients 

uplsope and *
sq  is the non-local flux calculated by (8).  The 

cutoff of 10%  is chosen here arbitrarily to illustrate the 
behavior of non-local flux and it can be chosen to be lower 
or higher depending on the problem at hand.    

The influence length was calculated for the Roering 
et al. [1999] profile from equation (22) for three different 
values of  and is shown in Figure 6.  The degree of non-
locality increases with a decrease in  , i.e., the closer the 
value of   is to 1.0 the more non-local the transport is 
compared to a value of   closer to 2 .  As expected, a 
higher degree of non-locality results in a larger value of L

as seen in Fig. 6.  For = 2 , equation (25) is not 
applicable for computation of the influence length. In this 
case, the step lengths have a thin-tailed distribution whose 
characteristic scale (standard deviation) can be used to 
define the influence length. 
  
6.  Non-locality naturally reproduces spatial variability 
of sediment flux 

In the previous sections, all the flux laws were 
discussed in the context of a single hillslope profile. 
However, even in a small hillslope, there exists 
considerable variability in the form of hillslope profiles 
which results in a considerable variability in the observed 
sediment flux.  This flux variability was documented in 
Roering et al. [1999] for the MR1 basin of Oregon Coast 
Range. They computed the sediment flux using:  

qs U r

s

a
b

 (23) 

where U  is the constant rock uplift rate, r  and s  are 

bulk densities of rock and sediment respectively, and /a b  
is the drainage area per unit contour length, and compared it 
against the flux computed from their non-linear transport 
model.  Figure 7 (reproduced from Roering et al. [1999]) 
shows the spread of the computed sediment flux as a 
function of gradient. Notice that for a given gradient, say 
for a gradient of 0.8  there is an order of magnitude 
variability in the computed flux.  To describe this 
variability with the non-linear law, equation (19), the 
calibrated parameters of the model had to vary 
considerably: 2= 0.0015 /K m yr  to 20.0045 /m yr  

and = 1.0cS  to 1.4  as reported in Roering et al. [1999]. 

We note that cS  is a calibration parameter which was 
attached a physical meaning of a critical slope and was 
related to the angle of repose in Roering et al., [1999]; later 
in Roering and Gerber [2005] it was proposed that K 
increased and Sc decreased in response to forest fire.   

Here we pose the hypothesis that a non-local 
transport model can capture the observed variability of 
sediment flux within a given hillslope by a single or very 
narrow range of parameters, unlike any local transport law.  
To test the hypothesis, we generated a set of hillslope 
profiles using different cubic polynomials (see Figure 8) to 
imitate the natural variability of hillslope profiles within a 
small basin. Along those profiles the sediment flux was 
computed using the non-local, linear flux model (equation 
8) and local, non-linear flux model (equation 19).  Figure 9 
shows the computed sediment flux as a function of the local 
gradient. The non-local transport law with a single set of 
parameters K*  and   produces a variability of sediment 
flux for a given gradient comparable to that observed in real 
hillslopes (Fig. 8).  However, the local transport law cannot 
reproduce this variability with a single set of parameters K
and Sc  but requires a considerable range of parameters as 
indicated by the envelope curves in Fig. 9.  This is simply 
because two points with the same local slope would result 
in the same flux from any local transport law but different 
fluxes from a non-local law, due to different upslope 
topography.  Having the need for such a wide range of 
parameters to reproduce the sediment flux variabilty in a 
small hillslope makes physical interpretation of those 
parameters difficult. Apart from the upslope hillslope 
profile variability considered here, there are other factors 
contributing to the sediment flux/ local gradient variability, 
such as, for example, the dependence of K  on soil depth 
[e.g., Roering, 2008].  
 
7.  Probability distribution of particle displacement and 
fractional transport 
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Sediment transport on hillslopes can be thought of as 
disturbance driven, in which soil is mobilized en masse or 
as individual particles.  A single disturbance event may 
move the mobilized sediment a considerable distance (e.g. 
raveling after a fire).  Disturbed piles of sediment (e.g. tree 
throw mounds) will create sustained local areas of elevated 
flux—and increased downslope delivery.  For simplicity we 
can think of event-based transport as a kind of “hopping” 
process, where the sediment moves downslope in a series of 
steps resulting from local disturbances.  Here a single hop 
can be thought of as the distance covered by a grain of 
sediment from where disturbance has displaced it into an 
active flux state to where it comes to transient rest (until 
next disturbance).  It can also be thought of as a package of 
sediment made significantly more active due to local 
mounding and exposure, say during a tree throw, which 
results in rapid flux compared to what would happen under 
mean slope conditions.  As discussed in the introduction, 
many processes generate slope-dependent transport and 
operate over a wide range of distances.  These processes 
may result in a heavy-tailed PDF of the sediment “hops” or 
displacement distance (see also Tucker and Bradley, in this 
volume), which means that there is a relatively small but 
significant possibility that sediment grains will move a 
great distance downslope in a single hop.  In other words, 
these distances do not have a characteristic length scale and 
may assume values comparable to the size of the hillslope 
itself.   

If the PDF of hopping distances were thin tailed, 
e.g., Gaussian or exponential with an e-folding distance 
small relative to the size of the hillslope, then the 
continuum equation describing the evolution of the 
hillslope would be the diffusion equation [Feller, 1971; see 
also Schumer et al., 2009 this issue]. However, if the 
probability distribution of hopping distances is broad-tailed 
as argued above, then a faster than linear diffusion is 
expected.  It turns out that, since a sum of broad-tailed 
PDFs results in an  -stable distribution for the hopping 
process [Feller, 1971], then the governing equation of 
elevation change consistent with this distribution is the 
fractional diffusion equation (9) [Meerschaert et al., 1999; 
2001; Schumer et al, this issue].  That is, the corresponding 
macroscopic process of sediment transport can be described 
using a modified diffusion equation where the 2  operator 
is replaced with a non-local operator  .  The degree of 
non-locality is governed by the order of differentiation,  .  
The lower the value of  , the greater is the degree of non-
locality.  This is a manifestation of the fact that an  -
stable PDF has a heavier tail for lower values of  .  
  
8.  Locality and scale-dependence of computed flux 

In this section we discuss some preliminary ideas 
related to the potential of non-local transport laws to 
circumvent the problem of scale dependence of sediment 
flux computations.  We start with the classical divergence 

theorem and elementary control volume which is of little 
use when there is no characteristic scale in particle 
displacement distances.  Then, we allude to the fact that 
local transport laws suffer from scale dependencies which 
would require closures [e.g., see Passalacqua et al., 2006] 
and which can be naturally taken care of by the nonlocal 
transport laws.   

The advection-dispersion equation (ADE) is based 
on the classical definition of divergence of a vector field.  
The divergence is defined as the ratio of total flux through a 
closed surface to the volume enclosed by the surface when 
the volume shrinks to zero [e.g., Schey, 1992; see also 
Benson, 1998, for an exposition relevant to subsurface 
transport]: 
 

        
0

1lims sV
S

q q dS
V




            (24) 

where sq is a vector field, V is an arbitrary volume 

enclosed by surface S , and  is a unit normal vector.  
Implicit in this equation is that the limit of the integral 
exists, i.e., the vector sq exists and is smooth as 0V  .   

The classical notion of divergence maintains that, 
as an arbitrary control volume V  shrinks to zero, the ratio 
of total surface flux to volume must converge to a single 
value.  However, when a heavy-tailed distribution of 
displacement lengths exists, this notion of convergence is 
challenged.   In fact, due to the lack of a characteristic scale 
of the displacement distances, no convergence is 
guaranteed when the size of the control volume changes.  
As a result, the classical diffusion equation is no longer 
self-contained with a closed-form solution at all scales.  To 
adopt the classical theory, the best approximation that can 
be done is to assume that the total flux to volume ratio can 
be assumed piece-wise constant within small ranges of 
scales, allowing one to talk about an “effective” scale-
dependent dispersion coefficient [e.g., see Benson, 1998].  
Several techniques have been proposed in the subsurface 
transport literature to tackle the problem of scale-dependent 
dispersivity.  These vary from small perturbation 
approaches and effective parameterizations [e.g., Gelhar 
and Axness, 1983; Dagan, 1997], to power law dependence 
of D on scale [e.g., Su, 1995], to volume statistical 
averaging [e.g., Cushman, 1991, 1997] and to fractional 
advection dispersion equations (fADE) [e.g., Benson, 1998; 
Benson et al., 2000b; Bauemer et al., 2001; Schumer et al., 
2001; 2009 this issue].   

Any sediment transport law that directly involves a 
“local” gradient or curvature in the computation of flux, 
will be scale-dependent as gradients and curvatures depend 
on the scale at which they are computed  [e.g., see 
Lashermes et al., 2007].  For example, this was 
demonstrated in Passalacqua et al. [2006] using a local 
non-linear flux law (a Langevin model which has square 
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dependence on local slope).  In that study, the development 
of a closure term, akin to the Large Eddy Simulation (LES) 
turbulence closures, was proposed to handle this scale-
dependence and the closure term was shown to have a 
power-law dependence on scale (grid size).  The proposed 
non-local fractional diffusive model has in principle the 
ability to remove this scale-dependency as it is free of any 
“representative” or “control volume” concept and the 
power-law integration of local gradients (see equation (21)) 
eliminates the need for the aforementioned power-law 
closure [e.g., see discussion in Foufoula-Georgiou et al, 
2008].  This issue requires further study. 
 
9.  Discussion and Conclusions 

Most geomorphic transport laws proposed to date are 
local in character, i.e., they express the sediment flux or 
erosion at a point as a function of the elevation gradient, 
contributing drainage area, or other geomorphic quantities 
at that point only.  For the case of soil-mantled landscapes, 
it is reasonable to propose that disturbance processes 
inducing transport have widely varying transport distances 
and this gives rise to a non-locality of sediment transport, 
as proposed here.  As summarized below, we see several 
advantages to the non-local transport law.  
  
(1)  The proposed non-local transport model with boundary 
conditions of zero-slope at the ridgetop and constant 
elevation at the ridge bottom predicts a steady-state profile 
which is parabolic very close to the ridgetop and changes, 
after a short distance downslope to a power law with 
exponent equal to the parameter  (order of differentiation) 
in the fractional transport law.   This prediction is supported 
by data in three study sites and provides useful insight for 
one of the sites which may still experience transition from 
net erosion to soil accumulation. 
 
(2) The non-local linear model gives rise to a non-linear 
relationship between the sediment flux at a point and the 
local slope.  Hence, non-locality of sediment flux is an 
alternative hypothesis that can explain the  observed 
hillslope profiles and the non-linear flux dependence on 
slope.   
 
(3)  In a practical implementation of a local sediment flux 
law (linear or nonlinear), the “local” slope is always 
assigned a “scale” over which some smoothing or 
averaging is done, without however a theory as to how to 
select this scale.  The non-local flux law is scale-free (it 
lacks a characteristic scale of upstream particle 
displacement distance);  rather it uses a “power-law 
weighted average slope” stating that upslope hillslope 
gradients matter to local flux, but with diminishing 
influence as a function of upslope distance.   
 
(4) The proposed non-local model produces significant 
variability of sediment flux for a given local slope, as it 

explicitly takes into account variations in upslope 
topography.  In this case, transport parameters, such as K* , 
can remain constant, and retain, perhaps, a stronger 
physical meaning while reproducing the variability 
observed in real hillslopes. 
 
(5) The non-local model has the potential to eliminate 
scale-dependency.  The usefulness of non-local fractional 
models to address issues of scale-dependence in subsurface 
transport (e.g., scale-dependent dispersivity in porous 
media with multiple scales of heterogeneity) has been 
amply demonstrated and needs to be explored for similar 
problems on the Earth’s surface.   
   

We consider this paper as the beginning of a 
dialogue on concepts of non-locality and collective 
behavior as they relate to transport on the earth’s surface.   
Important questions arise as to how these concepts can 
most concisely be expressed in or incorporated into new 
classes of geomorphic transport laws and also how non-
locality can be directly verified from observations.  
Together with several other papers in this issue, a new 
direction of thinking emerges which shows promise for 
better understanding of cause and effect in landscape 
processes and landscape evolution models.   
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Figure 1: Cartoon illustrating processes such as gopher mounds, tree throws and wood blockage which contribute to 
sediment transport on a hillslope. Owing to the varied range of length scales of transport of these processes, the 
number of sediment particles arriving at a given location downslope is influenced by a region of upslope 
topography. This can be treated using the notion of a non-local flux (equation 8) which is computed by a weighted 
average of upslope contributions. 
 



 13

 

 
Figure 2: Steady-state hillslope equilibrium profile predicted from fractional diffusive transport (equation 8) with 

�

 1.5 and boundary conditions of zero slope at the ridge and zero elevation at the most downslope point. The 
parameter of the model 

�

K*was chosen to be 1.0 m1.5 / yr  and the rock uplift rate was set to unity [m/yr] (Note that 
a different value of rock uplift rate would not change the shape of the profile but only its absolute elevation would 
differ). (a) Profile shape; and (b) log-log plot of vertical drop from the ridge top versus downslope distance. Notice 
the transition to a power law profile with exponent 

�

 1.5 at a distance of approximately 3 m from the ridgetop 
(arrow). 

(a) 

(b) 
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Figure 3:  (a) A hillslope profile in the Oregon Coast Range. Solid circles represent the observed data points 
(reproduced from Roering et al., 1999) and the dashed line indicates a spline fit to the observations; (b) log-log plot 
of the fall from the hilltop versus horizontal distance for the above profile. Notice the power law profile with 
exponent 1.3 starting at a distance of 9 m from the ridgetop (arrow) consistent with a non-local transport law with 
parameter 1.3  . 
   

(b)
( )

(a) 
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Figure 4. (a) Longitudinal profile of a hillslope reproduced from the survey data collected by McKean et al. [1993]. 
(b) Log-log plot of the fall from the hilltop versus horizontal distance. Notice the power law regime with exponent 
1.8 starting at approximately 8 m from the ridgetop until 25 m downslope.  This profile is consistent with a non-
local flux hypothesis with exponent 1.8  .  The abrupt transition to a slope of 1.2 on the lower portion of the 
hillslope is indicative that this part is still experiencing changes from net erosion to progressive soil accumulation.  

(a) 

(b) 
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Figure 5:  Comparison of the three flux laws. The dashed line shows the sediment flux predicted by linear, local 
flux law (equation (1)). The thick line shows the sediment flux predicted by the linear, non-local law (equation (8)) 
and the thin line shows the sediment flux predicted by local, non-linear (equation (19)). The parameters for '

sq are 

chosen to be K = 0.0015 2 /m yr  and cS  = 1.4 (from Roering et al. [1999]). The parameters for the calculation of 
*
sq  are chosen to be   = 1.5 and *K  = 0.0007 1.5 /m yr .  
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Figure 6:  Plot showing the upslope influence length L (see text for definition) as a function of local gradient and 
degree of non-locality for the hillslope of Roering et al. [1999]. The dashed line indicates the distance to the 
ridgetop, in other words, the maximum available distance to take part in the transport.  
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Figure 7: Figure reproduced from Roering et al. [1999] to illustrate the large natural variability of calculated 
sediment flux (dots) even in a small hillslope (MR1 basin in Oregon Coast Range; sediment flux calculated using 
equation (23)), and the wide range of fitted parameters K ( m2 / yr ) and Sc that would be needed to reproduce the 
observed variability under the assumption of a non-linear local transport law. 



 19

 
 

 
 
Figure 8: Plot showing the suite of generated hillslope profiles to imitate the natural variability of profiles 
(flowpaths perpendicular to contour lines) in a zero-order basin. The thick line indicates the profile reproduced from 
Roering et al. [1999]. 
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Figure 9: Sediment flux computed on the suite of hillslope profiles (shown in Figure 8) using the  linear, non-local 
transport law (equation 8) with parameters   = 1.5 and *K  = 0.0007 /m yr (open circles). Note that while these 
parameters are kept constant, a large variability of the sediment flux is produced due to the variability in the 
ensemble of profiles. In order to reproduce this variability with the non-linear transport law (equation 19), the range 
of fitted parameters required (concentrating on the higher gradients where the non-linear transport law is more 
pertinent – see also Fig. 8) is: K = 0.00195 2 /m yr  and cS  = 1.4, and K = 0.00275 2 /m yr  and cS  = 1.25 (broken 
lines).  
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Abstract. One way to study the mechanism of gravel bedload transport is to seed the
bed with marked gravel tracer particles within a chosen patch, and to follow the pat-
tern of migration and dispersal of particles from this patch. In this study, we invoke the
probabilistic Exner equation for sediment conservation of bed gravel, formulated in terms
of the difference between the rate of entrainment of gravel into motion and the rate of
deposition from motion. Assuming an active layer formulation, stochasticity in particle
motion is introduced by considering the step length (distance traveled by a particle once
entrained until it is deposited) as a random variable. For step lengths with a relatively
thin (e.g., exponential) tail, the above formulation leads to the standard advection-diffusion
equation for tracer dispersal. However, the complexity of rivers, characterized by a broad
distribution of particle sizes, and extreme flood events transporting bed material, can
give rise to a heavy tailed distribution of step lengths. This consideration leads to an
anomalous advection-diffusion equation involving fractional derivatives. By identifying
the probabilistic Exner equation as a forward Kolmogorov equation for the location of
a randomly selected tracer particle, a stochastic model describing the temporal evolu-
tion of the relative concentrations is developed. The normal and anomalous advection-
diffusion equations are revealed as its long-time asymptotic solution. Sample numerical
results illustrate the large differences that can arise in predicted tracer concentrations
under the normal and anomalous diffusion models. They highlight the need for inten-
sive data collection efforts to aid the selection of the appropriate model in real rivers.

1. Introduction

The stones that make up the bed of gravel-bed rivers
are transported as bedload during floods. During periods
of overall transport, each particle undergoes alternating pe-
riods of movement and rest. Movement consists of rolling,
sliding or saltation, which continues until a single step length
of motion is completed. The particle is at rest when it is de-
posited, either on the bed or deeper within the deposit. One
way to study the mechanism of bedload transport in gravel
bed rivers is to seed the bed with marked tracer particles
within some small area of the bed (patch), and to follow
the pattern of migration and dispersal of particles from that
patch [e.g., Hassan and Church, 1991; Church and Hassan,
1992; Wilcock , 1997; Ferguson and Wathen, 1998; Ferguson
and Hoey , 2002; Pyrce and Ashmore, 2003]. Tracers provide
a way of characterizing not only mean parameters pertain-
ing to transport, but also the stochasticity of particle motion
itself.

This stochasticity was first elaborated by Einstein [1937].
Einstein based his analysis on experimental observations of
painted tracer particles. He noted that: “The results demon-
strated clearly that even under the same experimental condi-
tions stones having essentially identical characteristics were
transported to widely varying distances · · · Consequently, it
seemed reasonable to approach the subject of particle move-
ment as a probability problem.” Einstein considered a parti-
cle that moves in discrete steps punctuated by periods of in-
activity. He quantified the problem in terms of the statistics
of step length and resting period (waiting time). Einstein
[1942] went on to explain how these quantities enter into the
delineation of macroscopic relations of bedload transport

Copyright 2010 by the American Geophysical Union.
0148-0227/10/$9.00

(i.e., relations that represent averages over the stochastic-
ity of sediment motion). More specifically, Einstein [1942]
showed that the bedload transport rate is proportional to
the step length and inversely proportional to the resting pe-
riod. Following the seminal work of Einstein [1942], many
stochastic theories for sediment transport have been pro-
posed which account for the aforementioned stochasticity
(see for example, Einstein and El-Sammi [1949]; Paintal
[1971]; Nelson et al. [1995]; Cheng and Chiew [1998]; Lopez
and Garcia [2001]; Kleinhans and van Rijn [2002]; Cheng
[2004]; Cheng et al. [2004]; Charru et al. [2004], Ancey et al.
[2006, 2008]; Ancey [2009]; Furbish et al. [2009],Ganti et al.
[2009] and references therein).

Two macroscopic quantities that can be captured by
means of statistical analyses of tracer motion are the over-
all tendencies of ensembles of tracers to be advected down-
stream, and to disperse, or diffuse. (Various authors use
the terms “dispersion” or “diffusion” of tracers to describe
the same process: here we rather arbitrarily use the term
“diffusion”.) Both advection and diffusion are governed by
a wide range of factors.

Bedload particles may roll, slide or saltate over the bed.
In the case of grains of uniform size, mean saltation length
may be on the order of ten diameters [e.g., Niño and Gar-
cia, 1998]; whereas mean step length may be on the or-
der of 100 grain diameters [Einstein, 1950; Tsujimoto, 1978;
Wong et al., 2007]. Einstein [1950] suggested that mean step
length can be approximated as a constant multiple of grain
diameters, whereas Wong et al. [2007] indicate a weak varia-
tion with Shields number, which is a proxy for flow strength.
Step length is known, however, to vary stochastically [e.g.,
Tsujimoto, 1978]. As illustrated below, this stochasticity is
one source of diffusion.

When a particle comes to rest, it may deposit so as to
be exposed at the bed surface, or it may become buried at
depth [e.g., Hassan and Church, 1994]. From a statistical

1
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point of view, deeper burial in general implies a longer rest-
ing time before exhumation and re-entrainment. This effect
can influence both diffusion and advection [Ferguson and
Hoey , 2002]. Most natural gravels consist of a mixture of
grain sizes, each of which undergoes steps and resting pe-
riods according to size-specific probabilities. For example,
Tsujimoto [1978] has shown that larger grains in a mix-
ture have longer step lengths, but also longer resting times.
As these different sizes move downstream, their motion is
affected by the presence of bedforms such as dunes [e.g.,
Blom et al., 2006], bars and bends associated with channel
meandering/braiding [e.g., Pyrce and Ashmore, 2003], and
large-scale variations in channel width. In addition, the bed
may be undergoing aggradation, which enhances the cap-
ture of bedload particles, or degradation, which causes the
exhumation of grains that have undergone long-term stor-
age [e.g., Ferguson and Hoey , 2002]. Grains can also en-
ter floodplain storage for long periods of time, and then be
exhumed as the channel migrates into the relevant deposit
[e.g., Bradley , 1970; Lauer and Parker , 2008a, b]. Again, all
these effects can influence the advection/diffusion of tracer
particles.

The macroscopic transport of grains undergoing steps and
rest periods governed by statistical laws can be most sim-
ply characterized in terms of the classical advection-diffusion
model, according to which the particles spread downstream
with a constant diffusivity. When step lengths and rest peri-
ods are governed by a multiplicity of mechanisms over a very
wide range of spatial and temporal scales, however, the ad-
vection/diffusion of tracer particles may no longer be charac-
terizable in terms of the classical model. It is widely known
in the groundwater literature that a multiplicity of scales
over which transport takes place can lead to “anomalous dif-
fusion”, for which the advection/diffusion equation can be
characterized by fractional derivatives [e.g., Benson, 1998;
Berkowitz et al., 2002; Cushman and Ginn, 2000; Schumer
et al., 2003].

Nikora et al. [2002] have studied the diffusion of bedload
particles using the measured motion of individual particles
in a canal as the basis for ensemble averaging. They ex-
tracted from their data various moments characterizing par-
ticle location as a function of time. They delineated three
ranges of temporal and spatial scales, each with different
regimes of diffusion: ballistic diffusion (at the scale of salta-
tion length), normal/anomalous diffusion (at a scale of step
length) and sub-diffusion (at global scale). Their study thus
represents a pioneering effort in the identification of anoma-
lous diffusion of bedload particles.

We develop here a theoretical model for the study of
anomalous diffusion of tracer particles moving as bedload.
The present model is not intended to be comprehensive, in
that it covers only a restricted set of phenomena that might
lead to anomalous diffusion. It is our desire, however, that
this first model should serve as an example illustrating the
pathway to more general models of anomalous diffusion.

The paper is structured as follows. In Section 2, a
straightforward formulation of the Exner equation for sedi-
ment conservation is presented which incorporates the prob-
ability density function (pdf) for step lengths, i.e., the dis-
tances traveled by particles once they are entrained to when
they are deposited again on the river bed. In Section 3 we
show that the assumption of step lengths having a distri-
bution with thin tails (e.g., exponential, normal, log-normal
distributions) leads to a classical advection-diffusion equa-
tion for tracer dispersal. However, in real rivers the com-
plexity resulting from broad distributions of particle sizes
and flood events can lead to a heavy tail in the pdf of
step lengths (arising, for example, from the combination of
an exponential distribution for step length conditional on
a particle size and a gamma distribution of particle sizes).
In Section 4, we show that this consideration leads to an

anomalous advection-diffusion formulation which includes
fractional derivatives. That model was introduced earlier
in the context of other problems, such as groundwater dis-
persion. Section 5 shows how a heavy-tail step length distri-
bution can arise from a thin-tailed (exponential) pdf of step
length for particles of a given size, together with a thin-tailed
grain size distribution. In Section 6, we build a stochastic
model to describe the time evolution of the relative concen-
tration of the tracers in the active layer, and show that the
approximate solutions obtained in Sections 3 and 4 are long-
time asymptotic solutions of the derived model. Finally, in
section 7, numerical results are presented showing the dif-
ference between normal and anomalous advection-diffusion
of gravel tracer particles.

2. Formulation

The starting point for our analysis is the entrainment-
based one-dimensional Exner equation for sediment balance
[Tsujimoto, 1978; Parker et al., 2000; Garcia, 2008];

(1 − λp)
∂η(x, t)

∂t
= Db (x, t) −Eb (x, t) (1)

where η denotes local mean bed elevation, t denotes time, x
denotes the downstream co-ordinate, Db denotes the volume
rate per unit area of deposition of bedload particles onto the
bed, Eb denotes the volume rate per unit area of entrain-
ment of bed particles into bedload, and λp is the porosity of
bed sediment. We assume that, once entrained, a particle
undergoes a step with length r before depositing. We further
assume that this step length is probabilistic, with a proba-
bility density fs(r) (pdf of step length). The deposition rate
of tracers Db(x, t) is then given as:

Db (x, t) =

Z

∞

0

Eb (x− r, t) fs(r)dr (2)

In the above formulation Eb is a macroscopically determined
parameter, which can be shown to vary inversely with the
mean resting time of a particle. The formulation thus in-
cludes the effect of stochasticity in step length, but not in
resting time.

A model formulation for tracers that simplifies the above-
mentioned model of entrainment and deposition is the active
layer formulation. According to this formulation, grains in
an active bed layer of thickness La below the local mean bed
surface exchange directly with bedload grains. Grains below
the active layer, i.e., grains in the substrate, exchange with
the active layer only by means of bed aggradation (when ac-
tive layer grains are transferred to the substrate) and degra-
dation (when substrate grains are transferred to the active
layer). In such a model, substrate grains do not directly
exchange with the bedload grains.

Let fa(x, t) denote the fraction of tracer particles in the
active layer at any location x and time t. In addition, let
fI(x, t) denote the fraction of tracer particles in the sed-
iment that is exchanged across the interface between the
active layer and the substrate as the bed aggrades or de-
grades. The equation of mass conservation of tracers can
then be written as:

(1 − λp)

„

fI(x, t)
∂η(x, t)

∂t
+ La

∂fa(x, t)

∂t

«

= DbT (x, t)−EbT (x, t)

(3)
where EbT denotes the volume entrainment rate of tracers
and DbT denotes the corresponding deposition rate, which
are given as [Parker et al., 2000]:

EbT (x, t) = Eb(x, t)fa(x, t) (4)
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and

DbT (x, t) =

Z

∞

0

Eb (x− r, t) fa (x− r, t) fs(r)dr (5)

Here we exclude the complication induced by bedforms such
as dunes [e.g., Blom et al., 2006] by considering conditions of
lower regime plane-bed transport, such as those investigated
by Wong et al. [2007].

The fraction fI of tracers exchanged at the interface as
the mean bed elevation fluctuates can be expected to dif-
fer depending upon whether or not the bed is aggrading or
degrading. Hoey and Ferguson [1994] and Toro-Escobar et
al. [1996] have suggested forms for interfacial exchange frac-
tions which can be adapted to the problem of tracers. Here
we restrict consideration to the case for which the bed eleva-
tion is at equilibrium, so that La, Eb, η and the pdf fs(r) are
all constant in x and t. Under this condition, equations (3),
(4) and (5) reduce to:

(1 − λp)
La

Eb

∂fa(x, t)

∂t
=

Z

∞

0

fa (x− r, t) fs(r)dr − fa(x, t)

(6)
The nature of the pattern of tracer diffusion predicted by
equation (6) depends on the nature of the pdf fs(r) of step
lengths. As shown in the next sections, a thin-tailed pdf, i.e.,
one for which all moments of fs(r) exist, leads to a classical
Fickian advection-diffusion equation, while a heavy-tailed
pdf, i.e., one for which moments larger than a given order
do not exist, can lead to an anomalous advection-diffusion
equation.

3. Tracer transport with thin-tailed step
length distribution

In this section, we show that a thin-tailed pdf for the
step length distribution, fs(r), in equation (6) leads to a
classical Fickian (normal) advection-diffusion equation. For
simplicity, we assume the porosity to be zero, i.e., λp = 0.
The simplest way to solve the integral equation (6) is to use
Fourier transforms, since the convolution becomes a prod-
uct in Fourier space. The Fourier transform of a function
fa(x, t) is given by:

f̂a(k, t) =

Z

∞

−∞

e−ikxfa(x, t) dx (7)

Taking the Fourier transforms in equation (6) and manipu-
lating yields:

La

Eb

∂f̂a(k, t)

∂t
=
“

f̂s(k) − 1
”

f̂a(k, t) (8)

Expanding the Fourier transform of fs(r) as Taylor series
gives:

f̂s(k) = 1 − ikµ1 +
1

2
(ik)2 µ2 + · · · (9)

where µn =
R

rnfs(r)dr denotes the nth order moment of
the step length distribution. The above expansion is valid
provided that the moments µn exist and are finite, and the
series converges uniformly in a neighborhood of k = 0 [Pa-
poulis and Pillai , 2002]. Substituting equation (9) into (8)
we obtain:

La

Eb

∂f̂a(k, t)

∂t
=

„

−ikµ1 +
1

2
(ik)2 µ2 + · · ·

«

f̂a(k, t) (10)

Recall that (ik)f̂a(k, t) is the Fourier transform of
∂fa(x, t)/∂x. By making the approximation that higher or-
der terms can be neglected (which will be shown equivalent,
in Section 6, to considering a long-time asymptotic solu-
tion), and by setting v = µ1 and 2Dd = µ2, it follows by

an inverse Fourier transform that the function fa(x, t) is the
approximate solution to the advection-diffusion equation:

La

Eb

∂fa

∂t
= −v ∂fa

∂x
+Dd

∂2fa

∂x2
(11)

This is the standard form of the advection-diffusion equation
for tracer dispersal, and applies under equilibrium bedload
conditions where v and Dd can be considered constant. The
associated Green’s function, i.e., the solution to the above
equation with a pulse as the initial condition at t = 0, is the
Gaussian distribution, which describes the tracer concen-
tration at any given time t > 0. If the source is distributed
in space and/or time, the solution to equation (11) is the
convolution of the Green’s function with the source.

4. Tracer transport with heavy-tailed step
length distribution

As detailed in the next section, a heavy-tailed, power-
law distribution for step lengths in gravel bed rivers can
result from a thin-tailed pdf of step length for particles of
a given size, together with a thin-tailed pdf of grain sizes.
In this section, we develop a formalism that incorporates
heavy tails for the step length distribution in the proba-
bilistic Exner equation. In equation (6), consider fs(r) to
be a step length distribution with power-law decaying tail,
i.e., fs(r) ≈ Cαr−α−1 for r > 0 sufficiently large, some
constant C > 0, and some power law index 1 < α < 2.
In this case, the Fourier transform expansion (9) in terms
of statistical moments of fs(r) is not valid, as the integrals
µn =

R

rnfs(r)dr do not converge for n > 1 [e.g., Lamperti ,
1962]. Instead, we may use a fractional Taylor expansion to
write [Odibat and Shawagfeh, 2007; Wheatcraft and Meer-
schaert , 2008]:

f̂s(k) = 1 − ikµ1 + cα (ik)α + · · · (12)

where cα is a constant that depends only on C and α. Sub-
stituting back in equation (8) we obtain:

La

Eb

∂f̂a(k, t)

∂t
= (−ikµ1 + cα (ik)α + · · · ) f̂a(k, t) (13)

This equation (13) can be understood in terms of frac-
tional derivatives. Fractional derivatives are close cousins
of their integer order counterparts. The fractional deriva-
tive ∂αfa(x, t)/∂xα can be defined simply as the function
whose Fourier transform is (ik)α f̂a(k, t). As in the normal
advection-diffusion case, we make an approximation by in-
cluding the first two terms in the expansion and neglecting
the higher order terms (shown equivalent in Appendix A to
a long-time asymptotic solution). Then by setting v = µ1

and Dd = cα, it follows from (13) that the function fa(x, t)
is approximately the solution of the fractional advection-
diffusion equation:

La

Eb

∂fa

∂t
= −v ∂fa

∂x
+Dd

∂αfa

∂xα
(14)

Fractional advection-diffusion has been extensively used in
modeling the dispersal of tracers or pollutants in porous
media which exhibit multiple scales of variability, as in sub-
surface transport [e.g., Benson et al., 2000a, b; Berkowitz

et al., 2002] and pollutant transport in rivers [e.g., Deng
et al., 2005, 2006]. However, to the best of our knowledge,
its application has not yet been explored in the context
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of river transport, apart from a recent study which uses
fractional advection for transporting sediment in buffered
bedrock rivers [Stark et al., 2009].

In most natural rivers, the distribution of step lengths
holds in the near field, but eventually transport steps be-
come limited by river features (e.g., bars) that change the
intermediate and far field distributions. The application of
the governing equations (11) and (14) depends on the nat-
ural truncation of the step length distributions. If the trun-
cation occurs at a very small threshold, then the Central
Limit Theorem applies and a standard advection-diffusion
equation will be the governing equation for the fraction of
tracers in the active layer. However, if the truncation oc-
curs at a large threshold, then the distribution can still be
approximated by a power-law in the intermediate field and
the governing equation for the fraction of tracers in the ac-
tive layer is the fractional advection-diffusion equation. It
is worth noting that equation (14) is the governing equation
on scales where the power-law approximation of the step
length distribution is accurate. In the next section, we ex-
plain how a power-law distribution for step lengths could
emerge by combining a thin-tailed pdf of step length for
particles of a given size with a thin-tailed pdf of grain sizes.
Then in Section 6 we describe the stochastic model underly-
ing the probabilistic Exner equation (6), and we show how
equations (11) and (14) represent long-time asymptotic so-
lutions.

5. Transport of sediment mixtures

A generalization of equation (6) for a range of grain sizes
D can be expressed as follows. Let fad (x, t,D) denote the
fraction of tracers in the active layer with grain size D, so
that,

fa(x, t) =

Z

∞

0

fad(x, t,D)dD (15)

In addition, let Ebu(D) denote the entrainment rate per unit
bed content of size D. The generalization of equation (6) is
then [e.g., Parker , 2008],

(1 − λp)La
∂fa (x, t,D)

∂t
= Ebu(D)

„

Z

∞

0

fad (x− r, t,D) fs(r|D)dr − fad (x, t,D)

«

(16)
In the above formulation, the conditional pdf of step length
fs is specified as a function of grain size, but the thickness
of the active layer La is taken to be a constant for all grain
sizes. The form corresponding to equation (6) is obtained
by integrating over all grain sizes,

(1 − λp)La
∂fa (x, t)

∂t
=

Z

∞

0

Ebu(D)

„

Z

∞

0

fad (x− r, t,D) fs(r|D)dr − fad (x, t,D)

«

dD

(17)
In general, Ebu and fad can both be expected to vary signif-
icantly in D. Closure of equation (17) requires specification
of forms for Ebu and fad as functions of, among other param-
eters, grain size D. Such forms are available in the literature
[e.g., Tsujimoto, 1978].

The goal of the present analysis is, however, to study the
role of heavy-tailed pdfs for step lengths in driving the dif-
fusion of tracer particles. With this in mind, the problem is
simplified for the purposes of illustration to one in which fad

varies in D but Ebu does not. More specifically, by assuming
independence of grain size D on space-time location (x, t),
one can write fad(x, t,D) = fa(x, t)f(D). Then uncondi-
tioning fs(r|D) with the grain size pdf f(D) in equation (17)
is used to develop the Exner equation for a grain size mix-
ture. In the next subsection, we show that a heavy-tailed
pdf for step lengths in a mixture of particles can emerge,
under certain conditions, from two thin-tailed pdfs.

5.1. Power laws emerging from thin tails

A typical finding in sediment transport is that step
lengths r are exponentially distributed for a given grain size

D [e.g., Nakagawa and Tsujimoto, 1976, 1980], i. e.,

P(R > r |D) = e−r/µr(D) (18)

where µr(D) is the mean step length as a function of grain
size D. If we let f denote the pdf of grain sizes, then the un-
conditional distribution of step length can be derived from:

P(R > r) =

Z

∞

0

e−r/µr(D) f(D) dD. (19)

The resulting pdf for step length, relating to a mixture of
particle sizes, depends on both the mean step length µr(D)
for grains of size D, and the pdf of grain sizes.

In this study we explore two distinct cases, one in which
µr(D) increases with grain size, and another for which µr(D)
decreases with grain size. The true dependence of mean step
length on grain size in sediment mixtures remains somewhat
ambiguous. In the case of uniform sediment, Niño and Gar-
cia [1998] found that grain saltation length decreases with
increasing grain size. One step length, however, typically
consists of around 10 saltation lengths. Hassan and Church
[1992] have studied the travel distance of size mixtures of
stones in gravel-bed rivers, and have found a marked ten-
dency for travel distance to decrease with increasing grain
size. This result must be qualified in light of the fact that
the distance traveled by a grain during a flood can be ex-
pected to be associated with multiple step lengths. This
qualification notwithstanding, the data suggest a range of
conditions under which the dependence between grain size
and mean travel distance can be approximated by the sim-
plified model:

µr(D) = κ/D (20)

where κ is a constant. A lognormal pdf of grain sizes

f(D) =
1

Dσ
√

2π
e
−

1
2

(ln D−µ)2

σ2 (21)

was invoked by Wilcock and Southard [1989]; Garcia [2008];
Lanzoni and Tubino [1999]; Parker [2008], where µ, σ are the
mean and standard deviation of the sedimentological scale
ψ = lnD. The overall (unconditional) step length distri-
bution can then be obtained, in principle, by substituting
equations (20) and (21) into equation (19) and computing
the integral. However, this integral is difficult to compute
analytically with a log-normal form for f(D). Figure 1 shows
the grain size data from Wilcock and Southard [1989] along
with a lognormal fit, as well as an alternative gamma distri-
bution fit to the same data. The gamma pdf

f(D) =
νν

Γ(ν)Dm
ν D

ν−1 exp

„

−ν D

Dm

«

(22)

with mean Dm and shape parameter ν provides a convenient
alternative to the lognormal distribution that makes it pos-
sible to analytically evaluate the integral (19). Following
the argument of Stark et al. [2009], we substitute equations
(20) and (22) into equation (19) and evaluate the integral
to obtain the unconditional probability distribution of step
length:

P(R > r) =

„

1 +

„

Dm

νκ

«

r

«

−ν

(23)

The above equation (23) represents a heavy-tailed power-
law pdf for the step length distribution arising from a thin-
tailed pdf of step length combined with a thin-tailed pdf of
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grain sizes. The distribution in equation (23) is known as
the Generalized Pareto, and its variance exists only when
the shape parameter ν > 2 [Feller , 1971]. The Generalized
Pareto distribution also arises from exceedances over a fixed
high threshold, and has consequently been used in model-
ing extreme floods and other hydrological phenomena [e.g.,
Hosking and Wallace, 1987].

The relationship (20) between mean step length and grain
size may not be applicable in all situations. Depending upon
the grain size distribution and the flow conditions, large par-
ticles may roll over holes that trap smaller particles, so that
step length increases with grain size. Such a tendency has
been reported in the experiments of Tsujimoto [1978]. Also
Wong et al. [2007] observed that, in the case of uniform
sediment subject to the same bed shear stress, step length
increases with grain size. Such an increase in step length
does not directly translate into a higher bedload transport
rate for coarser grains, because the entrainment rate Ebu(D)
in equation (17) may decline with increasing grain sizes. In
the present simplified analysis, where Ebu is assumed to be
independent of grain size, the tendency for step length to
increase with grain size can be captured in terms of the fol-
lowing simple form:

µr(D) = κD (24)

where κ is a constant.
If D has an inverse gamma pdf with mean Dm and shape

parameter ν, also similar in shape to the lognormal,

f(D) =
(ν − 1)νDm

ν

Γ(ν)
D−ν−1 exp

„

− (ν − 1)Dm

D

«

(25)

then a change of variables y = 1/D in (19) leads to another
generalized Pareto:

P(R > r) =

„

1 +

„

1

(ν − 1)Dmκ

«

r

«

−ν

(26)

as shown in Hill et al. [2009], so that again the step length
distribution averaged over all particle sizes has a heavy tail.

Note that in both cases considered above, whether mean
step length increases or decreases with grain size, a heavy-
tailed distribution for step lengths can emerge from a com-
bination of two thin-tailed distributions. The gamma and
inverse gamma distributions are used for particle sizes, as
opposed to the more typical log-normal distribution, in or-
der to derive analytically the heavy-tail pdf of the resulting
step length distribution for a mixture of grain sizes. The al-
ternative pdf assumption should be considered reasonable if
the reader accepts that the fitted log-normal and gamma dis-
tributions for the grain size data from Wilcock and Southard
[1989] in Figure 1 are practically indistinguishable. We has-
ten to emphasize, however, that the finding of a possible
heavy-tailed pdf for step length is by no means universal.
Many different choices of the grain size pdf f(D) would cer-
tainly lead to a thin-tailed pdf of step length. Our point
is simply that both thin-tail and heavy-tail models are rea-
sonable, and hence it becomes very important to investigate
the grain size distributions more exhaustively, to determine
which type of overall step length pdf applies in a given sit-
uation.

6. Stochastic model for gravel transport in
rivers

In this section, we develop a stochastic model to describe
the time evolution of the relative concentration of gravel
tracer particles in rivers. We derive an exact solution for
fa(x, t) and show that, in the long-time asymptotic limit,

a thin tail for the step length distribution leads to clas-
sical advection-diffusion, whereas heavy tails for the step
length distribution leads to anomalous advection-diffusion.
We start by rewriting (6) in the equivalent form:

∂fa(x, t)

∂t
= −λfa(x, t) + λ

Z

∞

0

fa(x− r, t)fs(r) dr (27)

where λ = Eb/La is the rate at which particles are entrained.
The Fourier transform of the above equation is given by:

∂f̂a(k, t)

∂t
= −λf̂a(k, t)

“

1 − f̂s(k)
”

(28)

Equation (27) describes the time evolution of the pdf fa(x, t)
and can be regarded as a Kolmogorov forward equation for
some Markov process X(t), where X(t) represents the lo-
cation of a randomly selected gravel particle at time t > 0
[see Feller , 1971]. In this context, fa(x, t) is the pdf of the
random variable X(t). In this Markov process, the waiting
time between entrainments has an exponential distribution
with a rate parameter λ, and the number of entrainment
events, N(t), by any time t > 0 has a Poisson distribution
with mean λt [Feller , 1971], i.e.,

P [N(t) = n] = e−λt (λt)n

n!
(29)

Let Yn denote the travel distance during the nth entrain-
ment period. Since there are N(t) entrainment periods by
time t > 0, the particle location at some time t > 0 is given
by the random sum:

X(t) = Y1 + · · · + YN(t) =

N(t)
X

i=1

Yi (30)

This random sum is a compound Poisson process [e.g.,
Feller , 1971]. Its pdf can be derived directly from equa-
tion (28) whose point source solution is:

f̂a(k, t) = exp
“

−λt
“

1 − f̂s(k)
””

(31)

As a result, the fraction of tracers in the active layer, fa(x, t),
can be obtained by taking the inverse Fourier transform of
(31) and is given by:

fa(x, t) = e−λt
∞
X

n=0

(λn)n

n!
fn∗

s (x) (32)

where fn∗

s (x) is the n-fold convolution of the density func-
tion fs(x) (recall that fn∗

s (x) is the inverse Fourier transform
of f̂s(k)

n), which is also the pdf of Y1 + · · · + Yn. One way
to understand this formula for fa(x, t) is that it randomizes
the density of the sum of the particle movements according
to the pdf of the number of jumps N(t). The random sum,
equation (30), is a special case of a continuous time ran-
dom walk (CTRW) [Montroll and Weiss, 1965; Scher and
Lax , 1973; Meerschaert and Scheffler , 2004]. It is impor-
tant to note that the connection of the probabilistic Exner
equation with CTRWs allows one to obtain the exact solu-
tion of equation (27) via simulation of the tracer particle
motion. For example, a forward Kolmogorov equation of a
Markov process can be solved by simulating a CTRW with
an exponential waiting time distribution and step length dis-
tribution fs(r) [e.g., Scalas et al., 2004; Fulger et al., 2008].
Even if the complete shape of the pdf of step lengths is not
known, the behavior of the stochastic process X(t) is well
defined in the long-time limit as shown below.
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Consider the standardized particle location:

Z(t) =
X(t) − λµ1t√

λµ2t
(33)

This random process has a mean 0 and variance 1 at every
time t > 0. An easy calculation shows that the pdf of Z(t)
has Fourier transform:

f̂a

„

k√
λµ2t

, t

«

exp

„

ikλµ1t√
λµ2t

«

(34)

Combining this equation with:

f̂a(k, t) = exp

„

−λt
„

ikµ1 − 1

2
(ik)2µ2 + · · ·

««

(35)

which is obtained by substituting equation (9) into equa-
tion (31) results in the Fourier transform of the pdf of Z(t)
taking the form:

exp

 

−λt
 

−1

2

(ik)2

λµ2t
µ2 +

1

3!

(ik)3

(λµ3t)
3
2

µ3 + · · ·
!!

(36)

As t → ∞, (36) tends to exp
`

− 1
2
k2
´

which is the Fourier
transform of a standard normal density. This shows that
Z(t) tends to a standard normal deviate, Z, for all large
t > 0. Substituting into equation (33) and solving, we see
that the long-time asymptotic solution for the particle loca-
tion is:

X(t) ≈ λµ1t+
p

λµ2tZ (37)

By taking the Fourier transforms of the corresponding pdfs
we obtain:

f̂a(k, t) = exp

„

−λµ1t(ik) +
1

2
λµ2t(ik)

2

«

(38)

which is the point source solution to the differential equa-
tion:

∂f̂a(x, t)

∂t
≈
„

−λµ1(ik) +
1

2
λµ2(ik)

2

«

f̂a(k, t) (39)

Inverting this Fourier transform yields the advection-
diffusion equation (11) with v = λµ1 and 2Dd = λµ2, as
in Section 3. In summary, equation (11) governs the asymp-
totic particle density in the long-time limit.

Now consider the case of a particle jump length density
with a heavy tail. A similar argument shows that equa-
tion (14) governs the asymptotic particle density in the long-
time limit, when the particle jump length density fs(r) has
a heavy tail with a power-law decay, i.e., fs(r) ≈ Cαr−α−1

for r > 0 sufficiently large, some constant C > 0, and some
power law index 1 < α < 2 (see Appendix A for a detailed
proof). In this case, we note that the governing equation in
the long-time asymptotic limit for f̂a(k, t) is given by:

∂f̂a(k, t)

∂t
≈ (−λµ1(ik) + λcα(ik)α) f̂a(k, t) (40)

Inverting the Fourier transform yields the fractional
advection-diffusion equation (14) with v = λµ1 and Dd =
λcα, as in Section 4. We remark that, while the derivation
in this section is new in the context of stone tracer disper-
sion, a similar approach was taken to derive the fractional
advection-diffusion equation for tracers in ground water, un-
der a different set of assumptions [Schumer et al., 2001]. The
next section provides a numerical demonstration to illustrate
how a source of tracers will disperse over time under normal
or anomalous diffusion.

7. Tracer dispersal under normal and
anomalous diffusion

Consider a patch of tracers entrained instantaneously in
the flow at a location x0 and initial time t0. This patch will
advect and diffuse on the gravel bed over time. It is useful to
track the time evolution of the fraction of tracers fa(x, t) in
the active layer at any location x and time t. As was shown
in the previous sections, the probabilistic Exner equation
can be approximated at late time by a normal or anomalous
diffusion, equations (11) and (14) respectively, depending on
the pdf of step length. In this section we illustrate the time
evolution of a patch of tracers under normal and anomalous
advection-diffusion. We know from theory that the Green’s
function solution to the normal advection-diffusion equation
is the Gaussian distribution, and the Green’s function so-
lution to the fractional advection-diffusion is the α-stable
distribution [Benson et al., 2000b]. The α-stable distri-
butions are also known as Lévy distributions. Specifically,
in our case, the Green’s function solution to the fractional
advection-diffusion equation is an α-stable distribution with
a skewness parameter β = 1, owing to the fact that step
lengths are positive, so that the stable pdf has a heavy lead-
ing tail (see Appendix B for a description of stable distri-
butions). Figure ?? shows the evolution of fa(x, t) under
normal advection-diffusion from a pulse at t = 0 and x = 0,
i.e., fa(0, 0) = 1. Figure ?? shows the evolution of fa(x, t)
under anomalous advection-diffusion with α = 1.5 from a
pulse at x = 0. The α-stable densities in Figures ?? and ??
were simulated using the method of Nolan [1997]. In this hy-
pothetical experiment, we chose the parameter values of the
normal and anomalous diffusion equations to be unity, i.e.,
v = 1 m/day andDd = 1 mα/day. Note that the units of the
diffusion coefficient, Dd, is [Lα/T ]. As can be seen by com-
paring Figures ?? and ??, anomalous advection-diffusion
predicts a faster spreading of tracers downstream (heavy
leading tails). For example, the leading tails of the frac-
tion of tracers at t = 100 reaches a near-zero value at ∼ 50
m downstream of its mean in normal advection-diffusion,
whereas it reaches this value at ∼ 200 m downstream of its
mean in fractional advection-diffusion with α = 1.5. Note
that the mean of fa(x, t) in both cases is the same. It is
worth noting that both the Gaussian pdf, and the skewed
stable pdf, assign some extremely small but mathematically
nonzero probability to the interval left of the particle source,
while the probabilistic Exner equation assigns zero probabil-
ity to that interval. This illustrates the fact that both the
Gaussian and skewed stable pdfs are only approximations
to the relative concentration of tracer particles. However,
the probability assigned to to the interval left of the par-
ticle source is exceedingly small, since both the Gaussian
and skewed stable pdfs fall off at a super-exponential rate
on the left tail [Zolotarev , 1986], and this approximation is
perfectly reasonable in practice.

As seen in the previous section, under equilibrium bed-
load transport conditions, the long-time asymptotic solu-
tions of the probabilistic Exner equation converge to the nor-
mal and anomalous advection-diffusion equation depending
on the pdf of the step length. Therefore, long-time asymp-
totic solutions of the probabilistic Exner equation are the
Gaussian and α-stable distributions in the respective cases
of thin or heavy tailed pdfs for step length. In Figure 3
we compare the long-time asymptotic solutions for several
values of α, starting from α = 2 (Gaussian corresponding
to the solution of normal advection-diffusion equation) to
α = 1.1. One can easily see the marked difference in the
dispersal of tracers downstream in normal and anomalous
advection-diffusion. For example, after 500 days, only ∼ 5%
of the tracers have been recovered at ∼ 550 m in standard
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advection-diffusion, whereas ∼ 8% and ∼ 18% of tracers
are recovered at the same distance in fractional advection-
diffusion for α = 1.5 and α = 1.1, respectively. Note that
in the case of α = 1.1 the gravel tracer particles are trans-
ported very long distances downstream when compared with
the normal advection-diffusion case (α = 2). Note that the
parameter α of the fractional advection-diffusion relates to
the heaviness of the tail of the pdf of particle step lengths,
in effect determining how far downstream the tracers dis-
perse from the source. In practice, the parameter α will
have to be estimated from observations which typically will
not be in the form of step lengths but in the form of “break-
through curves” or pdfs of particle concentration at a given
location downstream of the source. Tracer experiments in
a large experimental flume are currently under development
to document the possibility of faster-than-normal diffusion
of tracers and the estimation of the parameter α.

8. Conclusions

In this work, a mathematical framework for the contin-
uum treatment of tracer particle dispersal in rivers has been
proposed, based on the probabilistic Exner equation. We
have shown that when the step length distribution is thin-
tailed, the governing equation for the tracer dispersal in the
long-time limit is given by the standard advection-diffusion
equation. However, the step length distributions can be
heavy-tailed with power-law decay arising from heterogene-
ity in grain sizes and other complexities in real gravel bed
rivers. It was shown that these heavy tails can be modeled
using fractional derivatives, akin to contaminant transport
in subsurface hydrology [e.g., Benson, 1998; Benson et al.,
2000a, b; Berkowitz et al., 2002]. For a simplified active layer
formulation, the probabilistic Exner equation was shown to
be governed by a Markov process that describes the tracer
dispersal problem. Further, it was shown that the classi-
cal (normal) advection-diffusion and fractional (anomalous)
advection-diffusion equations arise as long-time asymptotic
solutions of that stochastic model. A numerical example was
then provided to illustrate the profound effect of fractional
diffusion on the leading edge of the particle distribution.

The material presented here is intended to serve as an in-
troduction to the problem of anomalous diffusion in the con-
text of transport in gravel-bed rivers. The full power of the
techniques introduced here remains to be realized through
future research. For example, the innate variability of rivers
is such that the entrainment rate Eb and bed elevation η are
unlikely to be constant in x and t. This variability can lead
to long-term sequestration, and subsequent long-delayed ex-
humation of tracers. Parker et al. [2000] and Blom et al.
[2006] have shown how the fractional Exner equation (1)
can be generalized to a formulation that assigns a proba-
bilistic structure not only to step length, but also to the
probabilities of entrainment and deposition as continuously
varying functions of vertical position within the bed deposit.
These complications can lead to anomalous sub-diffusion, if
particle resting times have a heavy, power-law tail. A model
that can explain the deposition and exhumation of parti-
cles at arbitrary depth, including variability in entrainment
rate and bed elevation as well as grain size, has the poten-
tial to explain at least part of the tendency for a decrease
in advection velocity over time described by Ferguson and
Hoey [2002]. One possible approach to modeling anomalous
sub-diffusion caused by power law waiting times between
particle movements is by using fractional time derivatives,
as discussed in the paper of Schumer and Jerolmack [2009]
in this volume in the context of interpreting geological de-
position records. The anomalous advection-diffusion model
proposed herein, as well as further extensions to accommo-
date additional stochastic elements of transport as discussed
above, will require extensive experiments and data collec-
tion to directly verify the nature of the distribution of step
lenghts, waiting times and entrainment rates of particles in
order to select the most appropriate model for transport.

Appendix A: Long-time asymptotics for
heavy-tailed distributions

The standardized particle location cannot be expressed us-

ing equation (33) when the step length distribution has a

heavy tail, because the second moment µ2 of the distribu-

tion fs(r) does not exist, i.e., the population variance is

infinite while the sample variance diverges unstably as the

number of samples increases [Lamperti , 1962]. Instead, we

consider the normalized process:

S(t) =
X(t) − λµ1t

(λcαt)
1
α

(A1)

The pdf of S(t) has the Fourier transform:

f̂a

 

k

(λcαt)
1
α

, t

!

exp

 

ikλµ1t

(λcαt)
1
α

!

(A2)

Substitution of equation (12) into equation (31) results in:

f̂a(k, t) = exp
`

−λt
`

ikµ1 − cα(ik)α − dα(ik)2α + · · ·
´´

(A3)

which combined with (A2) gives the left-hand side of the

equation (A4) for the Fourier transform of the PDF of S(t).

In the long-time limit, i.e., as t→ ∞ this tends to the limit

in the right-hand side below, i.e.,

exp

„

λt

„

cα
(ik)α

λcαt
+ dα

(ik)2α

(λcαt)2
+ · · ·

««

→ exp ((ik)α)

(A4)

since the higher order terms tend to zero as t → ∞. This

limit is the Fourier transform of a standard stable density,

and the limit argument is closely related to the convergence

criterion for compound Poisson random variables (see Chap-

ter 3 in Meerschaert and Scheffler [2001] for more details

and extensions). Hence, S(t) ≈ S is standard stable for all

large t > 0. Substituting into equation (A1) and solving,

we see that the long-time asymptotic approximation for the

particle location is:

X(t) ≈ λµ1t+ (λcαt)
1
α S (A5)

Taking the Fourier transforms of the corresponding pdfs, we

obtain:

f̂a(k, t) ≈ exp (−λµ1t(ik) + λcαt(ik)
α) (A6)

This is the Fourier transform of fa(x, t) with the higher or-

der terms removed, as well as the point source solution to

the differential equation:

∂ ˆfa(k, t)

∂t
≈ (−λµ1(ik) + λcα(ik)α) f̂a(k, t) (A7)

Inverting this Fourier transform results in the fractional

advection-diffusion equation (14).

Appendix B: Stable distributions

IfX,X1,X2, . . . are mutually independent random variables

with a common distribution Fs, then the distribution Fs is
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said to be stable if for each n ∈ Z, there exists constants Cn

and rn such that [e.g., Lamperti , 1962; Feller , 1971]:

Sn
d
=CnX + rn (B1)

where Sn = X1 +X2 + · · · +Xn and
d
= means identical in

distribution. In other words, stable distributions are aggre-
gation invariant up to a scale parameter, Cn, and location
parameter, rn. The norming constant Cn is of the form n

1
α

for 0 < α ≤ 2, where α is called the characteristic exponent
of the distribution Fs. The distribution Fs is said to be
strictly stable when rn = 0. Closed-form expressions of the
density functions of stable distributions exist for values of α
equal to 2, 1 and 0.5. In general, the stable pdf is defined
by its Fourier transform [see Stuart and Ord , 1987]:

ρ̂(k) = {−iδk − |γk|α
“

1 + iβsgn(k) tan
“πα

2

””

} (B2)

for 0 < α ≤ 2 and α 6= 1. In the above equation sgn(·)
denotes the signum function. The remaining parameters of
the distribution are the location parameter (−∞ < δ <∞),
scale parameter (γ > 0) and the skewness parameter (−1 ≤
β ≤ 1). The distribution is symmetric for β = 0 and is said
to be completely skewed for β = −1 and β = 1. For α = 2,
ρ̂(k) gives the Fourier transform of a Gaussian density with
mean δ and variance 2γ2. For the special case α = 1, the
Fourier transform is expressed in a slightly different way.
When α = 1 and β = 0, the stable distribution is also called
a Cauchy distribution.

If a random variable X has an α-stable distribution, then
its theoretical statistical moments exist only up to order α.
The mean of the distribution exists when 1 < α ≤ 2, but
when 0 < α < 1 both the mean and variance of the dis-
tribution are undefined. Thus, the Gaussian distribution is
the only stable distribution with finite mean and variance.
Stable distributions provide good approximations for spa-
tial rainfall fluctuations in convective storms [e.g., Kumar
and Foufoula-Georgiou, 1993], daily discharges in river flows
[e.g., Dodov and Foufoula-Georgiou, 2004], spatial snapshots
of tracer plumes in underground aquifers [e.g., Benson et al.,
2000a] and river flows [e.g., Deng et al., 2004].

Notation

x streamwise co-ordinate.
t time.

η local mean bed elevation.
t time.
ν shape parameter of the gamma distribution.

λp porosity.
Db volume rate per unit area of deposition of

bedload particles.

Eb volume rate per unit area of entrainment of
bedload particles.

fs(r) pdf of step lengths.

fs(r|D) pdf of step lengths conditioned on grain
size.

fa (x, t) fraction of tracer particles in the active
layer.

fI (x, t) fraction of the tracer particles in the sedi-
ment that is exchanged across the interface
between active layer and substrate.

La thickness of the active layer.

EbT volume entrainment rate of tracers.
DbT volume deposition rate of tracers.

v advection velocity of tracers.
Dd diffusivity of tracers.

D grain-size.
Dm arithmetic-mean of the grain-size distribution.
Dg geometric mean of the grain-size distribution.

α tail index of the stable distribution and the
order of fractional differentiation.

µr(D) mean step length for grain-size D.

fad (x, t,D) fraction of tracers in the active layer with
grain-size D.

Ebu(D) entrainment rate per unit bed content of
grain-size D.
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Figure 1. Plot showing fitted log-normal (dashed line)
and gamma (solid line) distributions, to a grain-size dis-
tribution (solid points) reproduced from Wilcock and
Southard [1989].
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Figure 2. Time evolution of the fraction of tracers in the
active layer, fa(x, t), by (a) normal advection-diffusion
(α = 2), and (b) anomalous advection-diffusion with α =
1.5. Note that the advection term has been removed to
facilitate comparison of the dispersion of the tracers at
different times. The initial condition is a pulse at x = 0.
The solutions are obtained with parameters v = 1 m/day
and Dd = 1 mα/day. The times (in days) at which the
solutions are obtained are labeled in the figure.
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Figure 3. Long-time asymptotic solutions of the anoma-
lous advection-diffusion equation for three different val-
ues of α. The solutions shown above are for 500 days
after a patch of tracers is entrained into the flow. Nor-
mal advection-diffusion corresponds to α = 2.
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[1] A geometric framework for the automatic extraction of channels and channel
networks from high-resolution digital elevation data is introduced in this paper. The
proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both
to remove noise and to enhance features that are critical to the network extraction.
Following this preprocessing, channels are defined as curves of minimal effort, or
geodesics, where the effort is measured on the basis of fundamental geomorphological
characteristics such as flow accumulation area and isoheight contours curvature. The
merits of the proposed methodology, and especially the computational efficiency and
accurate localization of the extracted channels, are demonstrated using light detection and
ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in
northern California.
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1. Introduction

[2] The detection of channel networks and the localiza-
tion of channel heads from digital elevation (DEM) data are
fundamental to the accurate modeling of water, sediment,
and other environmental fluxes in a watershed. Several
methodologies to delineate channel heads and channel net-
works from DEMs have been proposed [e.g., Montgomery
andDietrich, 1988; Tarboton et al., 1988, 1991;Montgomery
and Foufoula-Georgiou, 1993; Costa-Cabral and Burges,
1994; Giannoni et al., 2005; Hancock and Evans, 2006].
Channel heads typically are found in unchanneled valleys
and appear to occur where some erosion threshold has been
crossed (e.g., landsliding, overland flow incision through a
vegetated surface, seepage erosion, etc.) [e.g., Montgomery
and Dietrich, 1988; Dietrich et al., 1993]. Field data also
show that channel head location varies with a topographic
threshold that depends on drainage area and local valley
slope [e.g., Montgomery and Dietrich, 1988, 1989, 1992,
1994]. More recently, for example, McNamara et al. [2006]

located channel heads in a small watershed in Thailand and
suggested that different channel initiation processes pro-
duced different slope-area relationships. Several studies
employ, instead, an assumption of constant critical support
area for determining the location of channel heads [e.g.,
O’Callaghan and Mark, 1984; Band, 1986; Mark, 1988;
Tarboton et al., 1989, 1991; McMaster, 2002], although
empirical support from field observations was not reported.
Other work has explored the localization of channel heads
by identifying valley heads as concave areas in DEMs
[Tribe, 1991, 1992].
[3] With the availability of high-resolution topographic

data obtained by airborne laser mapping, new methodolo-
gies have been proposed for the determination of the
locations and distribution of landslide activity [e.g.,
McKean and Roering, 2004; Glenn et al., 2006; Ardizzone
et al., 2007; C. Gangodagamage et al., Statistical signature of
deep-seated landslides, submitted to Journal of Geophysical
Research, 2009], the geomorphological mapping of glacial
landforms [Smith et al., 2006], numerical modeling of
shallow landslides [e.g., Dietrich et al., 2001; Tarolli and
Tarboton, 2006], computation of channel slope [Vianello et
al., 2009], identification of depositional features of alluvial
fans [Staley et al., 2006; Frankel and Dolan, 2007; Cavalli
and Marchi, 2008] and of channel bed morphology [Cavalli
et al., 2008], and the detection of hillslope-to-valley transi-
tion [Tarolli and Dalla Fontana, 2009].
[4] Light detection and ranging (lidar) data now permits

direct detection of channels, rather than estimation of likely
channel location based on topographic features (slope,
drainage area, or topographic curvature). Recently,
Lashermes et al. [2007] proposed a wavelet-based filtering
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methodology to extract channels and channel networks from
high-resolution topography that can be obtained from air-
borne lidar data. In the methodology of Lashermes et al.
[2007], multiscale analysis, i.e., going from fine to coarser
scales, was achieved via a convolution of the original
image with a Gaussian kernel at different scales. This is
equivalent to applying the heat equation on the image
going forward in time (e.g., see Braunmandl et al. [2003]
and later in this paper). Gaussian linear filtering, however,
smoothes small-scale structures at the same rate as it
smoothes larger-scale structures (actually some of the most
critical scales are smoothed even faster, which can be
shown following the theory of robust estimation). This
might not be desirable in DEM feature extraction as small-
scale structures, such as the crest of a ridge or channel
bank, should remain sharp during coarsening until the
whole ridge disappears. This problem of edge preservation
has prompted in image processing the introduction of
adaptive geometric filters which reduce smoothing at the
edges of features while applying Gaussian filtering to the
rest of the image.
[5] In this paper, a geometric framework which signif-

icantly advances the accurate and automatic extraction of
channel networks from lidar data is developed using such
scale-adaptive filtering. The first component of the frame-
work is the use of nonlinear geometric filtering (via
partial differential equations), instead of linear filtering
via wavelets, which naturally adapts to a given landscape
and facilitates the enhancement of features for further
processing. Early uses of nonlinear partial differential
equations for digital elevation maps appear in the work
of Braunmandl et al. [2003], Almansa et al. [2002], and
Solé et al. [2004]. The form of this filtering is such that
it behaves as linear diffusion at low-elevation gradients,
while it arrests diffusion as the gradients become large
(other features could be used to control the nonstationary
diffusion as well). It is noted that the nonlinear diffusion
term here employed refers to the filtering methodology in
image processing and not to the nonlinear erosion laws
[e.g., Kirkby, 1984, 1985; Andrews and Buckman, 1987;
Anderson and Humphrey, 1989; Anderson, 1994; Howard,
1994a, 1994b, 1997; Roering et al., 1999]. The second
key component of the proposed framework is the novel
formulation of the channel network extraction problem as
a geodesic energy minimization problem with a cost
function which is geomorphologically informed; that is,
it is defined in terms of local attributes of the landscape
such as upstream drainage area and isoheight contours
curvature. In other words, channels are defined as curves
of minimal effort. Such curves are derived from global
integration of local quantities and computed in optimal
linear complexity. This global integration methodology
makes the channel network extraction robust to noise and
data interruptions, contrary to what obtained with more
common forward marching approaches (e.g., following
steepest descent directions).
[6] This paper is organized as follows. Section 2 gives a

brief mathematical background on nonlinear diffusion,
geometric filtering, geodesics, and energy minimization
principles. In section 3 these techniques are applied to the
problem of channel network extraction and demonstrated in

a real basin. Finally, section 4 presents concluding remarks
and challenges for future research.

2. Mathematical Background on the Proposed
Methodology

[7] This section presents the basic mathematical back-
ground that provides the foundation for the channel network
extraction geometric framework introduced in this paper.
First, the notion of nonlinear anisotropic filtering is intro-
duced. Next, the framework of geodesic computations is
presented. The channel extraction methodology presented
here has been released to the community as a toolbox called
GeoNet. The code is available for download at http://
software.nced.umn.edu/geonet/.

2.1. Nonlinear Diffusion and Geometric Filtering

[8] Let us denote by h0(x, y): R
2! R the provided DEM

image, i.e., high-resolution digital elevation data. Typical of
any feature extraction methodology is the application of a
smoothing filter on the original data h0(x, y) to remove
‘‘noise’’ (observational noise or irregularities at scales
smaller than the scales of interest) and identify features as
entities that persist over a range of scales. This operation of
smoothing is also very important to make computations
such as derivatives mathematically well posed. A popular
smoothing filter is the Gaussian kernel, which, when applied
to h0(x, y), results in landscapes at coarser resolutions:

h x; y; tð Þ ¼ h0 x; yð Þ ? G x; y; tð Þ ð1Þ

where ? denotes the convolution operation and G(x, y; t) is
a Gaussian kernel of standard deviation t (larger values of
t result in coarser resolution landscapes), centered at
location (x, y):

Gx;y;t u; vð Þ ¼ 1

2pt
exp � u� xð Þ2 þ v� yð Þ2

2t

" #
ð2Þ

As it was shown and exploited in the work of Lashermes et
al. [2007], the use of the classical Gaussian smoothing
kernel naturally leads to a multiscale (scale-space in the
computer vision terminology) efficient computation of local
slopes and Laplacian curvatures via wavelets, where
wavelets were selected as the first and second derivatives
of a Gaussian kernel (see Burt and Adelson [1983],
Koenderink [1984], and Witkin [1983] for early develop-
ments and the introduction of Gaussian filtering for
multiscale image analysis).
[9] The family of coarsened landscapes resulting from

(1) may be seen as solutions of the linear heat or diffusion
equation, e.g., see Koenderink [1984], with the initial
condition h(x, y; 0) = h0(x, y):

@th x; y; tð Þ ¼ r � crhð Þ ¼ cr2h ð3Þ

where c is the diffusion coefficient and r is the gradient
operator. Thus, processing the landscape with Gaussian
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filters of increasing spatial scale, as done by Lashermes et
al. [2007], is equivalent to applying an isotropic diffusion
equation over time on the landscape with the spatial scale of
the filter (variance) and the time of diffusion being related to
each other (since derivatives are linear operations, filtering
and then differentiating is equivalent to filtering with the
corresponding derivatives of the original filter; see also
Lashermes et al. [2007] for a formal exposition). Once the
time of diffusion is fixed, the spatial scale over which the
Gaussian smoothing is applied on the original landscape is
spatially uniform; that is, the landscape is uniformly
diffused at all points and in all directions.
[10] The choice of the Gaussian kernel as smoothing filter

is motivated in part by two criteria defined by Koenderink
[1984] as (1) causality and (2) homogeneity/isotropy. The
causality guarantees that no spurious feature should be
generated at coarser resolutions, since any feature at a
coarse level of resolution must have a cause at a finer level
of resolution. This guarantees noise reduction in the original
data as the resolution is coarsened. The homogeneity/isotropy
criterion requires the blurring to be space invariant. The
Gaussian kernel thus satisfies the standard ‘‘scale-space
paradigm’’ as stated by Koenderink [1984]. It is noted,
however, that the Gaussian filtering is isotropic and does not
respect the natural boundaries of the features and diffuses
across boundaries throughout the landscape. This obviously
degrades the spatial localization of these boundaries, espe-
cially at larger scales of smoothing. These boundaries
represent, in the case of landscapes, important discontinu-
ities such as crests and valleys. Perona and Malik [1990]
reformulated the space-scale paradigm to address this issue.
The new paradigm was reformulated to satisfy three
criteria: (1) causality, as previously stated by Koenderink
[1984], (2) immediate localization, which searches, at each
resolution, sharp and meaningful region boundaries, and
(3) piecewise smoothing, which indicates preferential
smoothing (intraregion rather than interregion).
[11] In the standard linear diffusion equation (3), the

diffusion coefficient c is constant, that is, independent of
the space location. An extension to the Gaussian filtering is
obtained by choosing the diffusion coefficient c to be a
suitable function of spatial location, such that the new
space-scale paradigm criteria are satisfied. The modified
diffusion equation can be written as

@th x; y; tð Þ ¼ r � c x; y; tð Þrh½ � ð4Þ

where r indicates as before the gradient operator. Note that
(4) reduces to the linear diffusion equation (3) if c(x, y, t) is
constant.
[12] If the location of a channel were known, then, in

order to achieve noise reduction and edge enhancement,
smoothing should preferentially happen in the region out-
side and within the channel, rather than across its boundary.
This could be achieved by setting c = 0 at the channel
boundaries and c = 1 everywhere else. However the channel
location is not known in advance, and what can be com-
puted instead is an estimate of it, or some geometric
characteristic that defines it, thereby stopping, or at least
reducing, diffusion across the channel boundary.
[13] Let ~E(x, y, t) denote the vector-valued function

representing an estimate of the channel’s location. The

diffusion coefficient can be chosen as a function of the
magnitude of ~E(x, y, t):

c ¼ p ~E
�� ��� �

ð5Þ

where p(�) has to be designed such that it ideally does not
allow diffusion across boundaries. Perona and Malik [1990]
have proposed a simple first estimate of the channel’s
location (or image edges in their original application), given
by the gradient of the elevation h(x, y; t) at the location (x, y)
and time t:

~E x; y; tð Þ ¼ rh x; y; tð Þ ð6Þ

This provides a local estimator of the edges/discontinuities
within the nonlinear space-scale paradigm. Note that we
could also use curvature, area in combination with slope, or
other higher-order features to localize channels and thus
define the diffusion coefficient c, while the use of gradients
is the most standard formulation in image processing and
found to be sufficient for our application (see also
discussion of Perona and Malik [1990] for advantages of
such a simple formulation). The diffusion equation thus
takes the following form:

@th x; y; tð Þ ¼ r � p rhj jð Þrh½ � ð7Þ

Perona and Malik suggested the following as possible edge-
stopping functions:

p rhj jð Þ ¼ 1

1þ rhj j=lð Þ2
ð8Þ

or

p rhj jð Þ ¼ e� rhj j=lð Þ2 ð9Þ

where l is a constant. Such expressions (when properly
regularized, e.g., via Gaussian smoothing) of the edge-
stopping function guarantee basic properties of the scale-
space paradigm, while at the same time enhancing the
discontinuities, thereby allowing their easier extraction (see
Alvarez et al. [1992], Perona and Malik [1990], and the
Appendix for details). From a numerical point of view, we
employ the version of the Perona-Malik filter proposed by
Catté et al. [1992]. The diffusion coefficient c is computed
in the four directions (north, south, east, and west) with the
gradients in (8) or (9) computed through standard finite
differences on Gaussian filtered data (with a very small
standard deviation of the kernel s = 0.05 m), to avoid the
stability issues related to the Perona-Malik original
formulation [Catté et al., 1992]. Then, the gradients in
(7) are computed on the nonsmoothed data through standard
finite differences, multiplied by the diffusion coefficient in
each direction and then summed to advance in time.
[14] The just introduced nonlinear diffusion equation (7)

will be used as a preprocessing step on the elevation data, to
remove unwanted details and enhance the features that are
relevant for channel network extraction. While many alter-
natives exist in the literature for nonlinear diffusion, we
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found this basic and most classical one to be sufficient to
introduce the ideas and to obtain state-of-the-art results for
the tested lidar elevation data.
[15] We have constructed an example to show the effect

of Gaussian (linear) versus Perona-Malik (nonlinear) filter-
ing on an idealized landscape (Figure 1a) with noise added
on the surface. The white band represents an idealized ridge
at a higher elevation compared to the surrounding land-
scape. As shown in Figure 1b Gaussian filtering (standard
deviation of the kernel s = 7 m which corresponds to t =
s2 = 49) achieves noise reduction at the expense of the
localization of the ridge, as it appears diffused in the
neighboring landscape. The Perona-Malik filter (Figure 1c
after t = 50 iterations) achieves noise reduction without
affecting the boundaries localization. Note how after further
processing the idealized landscape through Gaussian filter-
ing (Figure 1d with s = 14 m which corresponds to t = 196)
the ridge and its location are not identifiable anymore, while
the Perona-Malik filtering (Figure 1e with t = 200) only
improves noise reduction, without affecting the feature. In
addition Figure 2 shows the profiles extracted from the
idealized landscape shown in Figure 1. Figure 2a shows
the case of an idealized landscape with no noise added on
the surface. Note how the profile extracted from the Perona-
Malik filtered data after t = 50 iterations resembles the
original one, while the idealized ridge has almost disap-
peared from the Gaussian filtered landscape. The profiles
shown in Figures 2b and 2c refer to the same idealized
landscape with noise added on the surface shown in

Figure 1. Note how well defined and enhanced appear the
ridge after further Perona-Malik filtering of the data. This is
due to the fact that at the boundary between the ridge and
the surrounding landscape the gradients are large, thus
diffusion is stopped.

2.2. Geodesics and Energy Minimization Principles
for Network Extraction

[16] Having applied the Perona-Malik filter to the initial
DEM image, unwanted details have been eliminated, or
reduced, and the features enhanced. The question then arises
as to how to best (optimally) extract the whole channel
network.
[17] If we have two fixed points a and b on the surface,

we know there are infinite possible curves passing through
them. If a and b now represent the outlet and a channel head
of a tributary river network, then we know that among all
the possible curves, only one will be a channel. (The
detection of the outlet and of the channel sources will be
explained later in section 3.2. For now, let us assume their
locations are known). Topographic attributes that distin-
guish channels from the rest of the landscape are the surface
curvature and the flow accumulation. Channelized areas are,
in fact, commonly characterized by positive curvature (or
curvature above a threshold value which indicates conver-
gent topography, while negative curvature indicates diver-
gent topography correspondent to hillslopes) and by large
values of flow accumulation (as channelized paths collect
water in the downstream direction). If we were able to

Figure 1. Comparison of the effect of Gaussian (linear) versus Perona-Malik (nonlinear) filtering on an
idealized landscape. The white area represents an idealized ridge, with an elevation higher than the
surrounding landscape. (a) Noise has been added on the original data. (b) Gaussian filtering achieves
noise reduction at the expense of the boundaries localization (standard deviation of the kernel s = 7 m),
while (c) Perona-Malik filtering achieves noise reduction while preserving the right localization, avoiding
diffusion across its boundaries (number of iterations t = 50). (d) Note how further processing with
Gaussian filtering results in a completely blurred ridge (s = 14 m), while (e) the Perona-Malik filtering
operation only reduces the noise further, without affecting the feature and its localization (t = 200).
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choose among all the possible curves connecting point a and
point b (the outlet and a channel head of our river network)
the one with the largest overall positive curvature and flow
accumulation, then we would have identified the channel.
This concept can be mathematically expressed through a
function, called the ‘‘cost function’’ and indicated by y,
which represents the cost of traveling between point a and
point b, in this case in terms of surface curvature and flow
accumulation. This means that while the channel itself will
be the curve with minimum cost (as will meet the require-
ments of positive curvature and large flow accumulation),
the other curves will be penalized with a higher cost. The
curve with the minimal cost corresponds to a mathemati-

cally defined quantity called the geodesic curve and for-
mally defined as follows:

g a; bð Þ :¼ arg min
C2W

Z b

a

y sð Þds
� �

ð10Þ

where s is the standard Euclidean arc length [Do Carmo,
1976]. The minimum is taken over all the possible curves C
that start at point a and end at point b.
[18] Before we give more details on how the computation

of the geodesic curve is performed, let us make two important
observations related to the just introduced concepts. First,

Figure 2. The 1-D representation of the example shown in Figure 1. (a) Idealized landscape with no
noise added on the surface. Profiles extracted from the original idealized landscape (left), the Gaussian
filtered landscape (s = 7 m) (middle), and the Perona-Malik filtered landscape (t = 50) (right).
(b) Idealized landscape with noise added on the surface as shown in Figure 1. Profiles extracted from the
original idealized landscape (left), the Gaussian filtered landscape (s = 7 m) (middle), and the Perona-
Malik filtered landscape (t = 50) (right). (c) Effect of further smoothing on the data shown in Figure 2b.
Profiles extracted from the Gaussian filtered landscape (s = 14 m) (middle) and Perona-Malik filtered
landscape (t = 200) (right).
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having said that for the detection of channels we define the
cost function in terms of positive surface curvature and large
flow accumulation, implies that different feature selections
of the cost function will lead to different curves on the
surface. This means that this approach could be used for the
detection of other features of interest, such as roads or
landslides for example, with the only challenge of being
able to identify the most appropriate topographic attributes
needed. Also, as it can be seen from equation (10) the
integral sign indicates that the minimum is achieved in a
global sense, not locally. If, for example, channels were to
be traced following steepest descent directions, then the
presence of noise in a pixel would deviate the channel in
an erroneous way, while the global approach guarantees
robustness. The same happens in the case of missing data:
while forward marching techniques would stop, global
approaches such as the geodesic framework would naturally
‘‘jump’’ over them, as they always connect the selected
extreme points.
[19] The computation of the geodesic curve involves

another well defined mathematical quantity called geodesic
distance:

d a; xð Þ :¼ min
C2W

Z x

a

y sð Þds ð11Þ

This is the quantity which gives us the minimum distance
from any point x to location a, computed by minimizing the
cost function. Intuitively we can now see how, if we want to
travel from point a to point b along the geodesic curve
(which in our case it means that we want to identify the
channel that connects the outlet and a channel head), we
need to use the information given by the geodesic distances.
Formally, the actual geodesic curve is computed by gradient
descent on the distance function d(a, �), backtracking from
the ‘‘downstream’’ point b. The geodesic is thus the integral
curve of rd starting at point b, and the gradient is
intrinsically computed on the surface. Clearly, the efficiency
of the computation of the geodesic curves depends on the
computation of the geodesic distances. Several algorithms
are available in the literature for the efficient computation of
the geodesic distances [e.g., Yatziv et al., 2006; Dial, 1969;
Dijkstra, 1959]. These algorithms are applicable to all
diverse types of surface representations, from triangulated
surfaces [Kimmel, 2003] to point cloud data as in lidar
[Memoli and Sapiro, 2005]. These extensions are based on
the fact that the geodesic distance function satisfies a
Hamilton-Jacobi geometric partial differential equation,
jrdj = y, where the gradient is intrinsic to the surface in
the most general case. Additional information on these
efficient computations can be found in the work of Helmsen
et al. [1996], Sethian [1999], Tsitsiklis [1995], Tsai et al.
[2003], and Zhao [2004]. Note that these algorithms are of
complexity linear on the number of grid points, and thereby
computationally optimal.

3. Channel Network Extraction

[20] The objective of this section is to illustrate the
concepts described above through their application on lidar
data of the South Fork Eel River basin in northern California.
We use the ALSM (Airborne Laser Swath Mapping) data

(2.6 m average bare earth data spacing, gridded to 1 m)
acquired by NCALM (National Center for Airborne Laser
Mapping) (the data are available online at the data distri-
bution archive http://www.ncalm.org/). We focus in partic-
ular on the Skunk Creek, a 0.54 km2 landslide complex
tributary located just upstream of the Elder Creek. The
subbasin and the location map are shown in Figure 3. For
the Skunk Creek we had available a hand-drawn channel
network map (field survey done by Joel Scheingross and
Eric Winchell, University of California, Berkeley). The
digitized version of the hand-drawn map is shown in
Figure 3 as well. As can be seen, the part of the network
close to the outlet is composed by active channels (channels
with well defined banks and presence of bed material),
while the part close to the divide consists of inactive (poorly
formed channels with limited bed material but with defin-
able channel banks) and transient channels (which present
characteristics in between the inactive and active channels).
Because the channel network of Skunk Creek is dis-
rupted by deep-seated landsliding (see also analysis of
C. Gangodagamage et al. (submitted manuscript, 2009))
and is discontinuous in its upper reaches, several channel
heads occur along individual valley paths (see Figure 3). We
preserve this discontinuity to explore how well we can
detect not only channel initiation points but also channel
disruptions through our proposed techniques. The channel
network of the Skunk Creek is a very challenging basin for
testing a channel extraction methodology. Nevertheless, the
capability of our methodology in capturing channel disrup-
tions, as shown in this section, makes it a very interesting
application.

3.1. Preprocessing: Regularization of High-Resolution
Digital Elevation Data Through Nonlinear Filtering

[21] We focus our analysis on a 200 m � 200 m portion
of the Skunk Creek, referred to as portion A (see Figure 4).
The landscape A has been processed with a Gaussian filter
(isotropic linear diffusion) and the Perona-Malik filter
(anisotropic nonlinear diffusion). To allow comparison of
the two filtered landscapes, the time of forward diffusion
(iteration steps) has been set to 50 iterations in both (in
general, there is no exact mathematical correspondence
between the corresponding diffusion times). This corre-
sponds to a Gaussian spatial filter of approximate s = 7 m
(scale of smoothing of the landscape of approximately
4s = 28 m) [see Lashermes et al., 2007, Table 1]. As is
apparent from the theory, no such unique and uniform
equivalent spatial scale of smoothing can be assigned to
the nonlinearly filtered landscape as the effective smoothing
scale varies locally at every point depending on the local
gradient. Specifically, the effective spatial scale of smooth-
ing is smaller in the vicinity of feature boundaries (e.g., the
channel boundaries, where the gradient is large and the edge
stopping function of equation (8) assigns a small diffusivity
coefficient), and larger in areas of spatially homogeneous
and small gradients (recall also the example shown in
Figures 1 and 2). The Perona-Malik filter used in this
analysis is that of equation (8) with parameter l estimated
from the 90% quantile of the probability distribution func-
tion (pdf) of the gradients, as also suggested by Perona and
Malik [1990] (the selection of such a parameter can be made
fully automatic also following the robust statistics approach
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by Black et al. [1998]). Note that the standard deviation of
the Gaussian kernel and the number of iterations of the
Perona-Malik filter have to be defined based on the scale of
the objects we want to remove from the data. In particular
the notion of 50 iterations has to be interpreted as a
parameter of the algorithm. It represents the number of
steps needed to achieve noise reduction and discontinuities
enhancement before proceeding with the channel extraction.
[22] Figure 5a shows the original landscape at the reso-

lution of 1 m with 3 m contours superimposed on it, as well
as the computed gradients and curvatures (using simple first-
and second-order numerical differentiation). Figures 5b and
5c show the filtered landscapes with the Gaussian filter and
Perona-Malik filter, respectively, using for both 50 iterations
as the stopping time of the forward diffusion as explained

above. The curvature reported here in all cases is the
(geometric) curvature of the isoheight contours:

k ¼ r � rh= rhj jð Þ ð12Þ

computed by standard finite differences. The advantages in
using the geometric curvature instead of the Laplacian will
be addressed later in this section.
[23] Several observations can be made from Figure 5.

First, it is easily seen from Figure 5b that the Gaussian filter
smoothes the contours along the channels much more than
the Perona-Malik filter. This is expected from the theoretical
properties of the Perona-Malik filter which deforms the
landscape much less along the discontinuities. In fact, the
Perona-Malik filter achieves a limited deformation of con-

Figure 3. Skunk Creek, a 0.54 km2 tributary located just upstream of Elder Creek, part of the South
Fork Eel River in northern California. The upper half of the basin consists of active channels (well
defined banks and presence of bed material), while the bottom half consists of inactive (poorly formed
channels with limited bed material) and transient channels (with characteristics in between active and
inactive).
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tours along the discontinuities such that it encourages the
localization of these features. It is also observed that the
areas of the landscape over which the curvature is positive
(along the channelized areas) are much broader, and thereby
deformed, in the Gaussian filtered landscape than in the
Perona-Malik landscape. This is also expected from the basic
properties of the two filters. One can argue that the Gaussian
filtering (isotropic diffusion) could be stopped earlier, i.e,
smaller spatial scale of filtering, to result in better localiza-
tion of the channelized valleys. However, as it will be seen
later, such a smaller-scale filtering would not adequately
eliminate the isolated high curvature areas that are not
pertinent to channel extraction. Furthermore, nonlinear
diffusion is enhancing the discontinuities (acting in those
regions as backward diffusion as shown by Perona and
Malik [1990]; see also Appendix), which is critical for
facilitating the automatic channel network extraction.
[24] Figure 6 shows the pdfs of the geometric curvatures

of the original data and the filtered landscapes as well as the

Figure 4. Location of the 200 m � 200 m square, named
portion A, in Skunk Creek.

Figure 5. Comparison of the (left) elevation, (middle) gradient, and (right) curvature between the
(a) original data, (b) Gaussian filtered data (scale s = 7m), and (c) Perona-Malik filtered data (50 iterations)
computed in portion A of Skunk Creek shown in Figure 4. In all plots, elevation contours at 3 m spacing
are superimposed. Notice the sharper localization of the channels in the Perona-Malik filtered lidar data.
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quantile-quantile plots of those curvatures. As discussed in
the work of Lashermes et al. [2007] for the Laplacian, the
sudden change in the statistical signature of the landscape,
depicted by the (positive) curvature at which the pdf
deviates from a Gaussian pdf, marks the transition from
hillslopes to valleys. It is interesting to observe that
although the actual value of the threshold curvature is
different for the original image and the two filtered images,
as expected, the quantile at which this transition occurs is
scale- and filter-independent and as reported in the work of
Lashermes et al. [2007] for the Laplacian, corresponds to
the standard normal deviate of z = 1 (approximately the 84th
quantile of the pdf of curvatures). Figure 6 (right) depicts
the pixels at which the curvature was greater than the
threshold curvature identified from the corresponding pdfs;
white pixels correspond to pixels with curvature greater
than the threshold value while black pixels correspond to
pixels with curvature smaller than the threshold value.
Several observations can be made. First, the above-thresh-
old curvature pixels in the original high-resolution data
depict the channelized part of the landscape but at the same

time one sees several isolated small areas which are strongly
convergent due to the high frequency variability present on
the landscape (e.g., bumpy ground, vegetation, etc.). The
operation of smoothing is thus performed in order to focus
the channel identification on the scale of interest. Second,
the above-threshold curvature pixels on the Gaussian fil-
tered landscape eliminate the noise and nicely depict the
valleys or channelized areas only; however, the corridors of
the convergent areas are too wide due to the smoothing of
the landscape which has been done at the scale of approx-
imately 28 m throughout the landscape.
[25] The above-threshold curvature pixels in the Perona-

Malik filtered landscape (shown in Figure 6c), depict in a
much sharper way the channelized valleys. Of course, a
smaller-scale Gaussian filter would also result in a sharper
delineation of the channelized valleys. While this is true,
however, the smaller scale of smoothing would not elimi-
nate the isolated small convergent areas which are not part
of the channel network. This is demonstrated in Figure 7,
which displays the above-threshold curvature pixels for
three standard deviations of the Gaussian filter: s = 2 m

Figure 6. Comparison of the pdfs of (left) curvature, (middle) q-q plots of curvature from which the
threshold value is determined, and (right) skeleton of pixels with above-threshold curvature for the
(a) original data, (b) Gaussian filtered data (scale s = 7 m), and (c) Perona-Malik filtered data
(50 iterations) computed in portion A of Skunk Creek shown in Figure 4. The Perona-Malik filter does
the best in terms of accurately localizing the channelized valleys while reducing background noise (see
text for more discussion).
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(landscape smoothing scale a = 8.9 m); s = 4 m (landscape
smoothing scale a = 17.8 m); s = 6 m (landscape smoothing
scale a = 26.7 m). It is noted by comparing Figures 6c and 7
that the Perona-Malik localization of the channelized
valleys (measured by the width of the white corridors) is

comparable to the localization provided by the Gaussian
filter at scale of approximately 9 m (s = 2 m). However, at
this small scale of smoothing, the Gaussian filtering results
in many more isolated high curvature areas as can be seen in
Figure 7a compared to Figure 6c. Thus we conclude overall,
that the Perona-Malik filter is a more efficient filter to use
for preprocessing of the raw data (to produce what is called
‘‘regularized data’’) on which further operations for auto-
matic channel extraction can be performed.
[26] It is also worth pointing out the advantage of using

the (geometric) curvature k instead of the Laplacian. This
can be seen by comparing Figure 6b to Figure 8. The figures
show the skeletons of pixels above-threshold curvature
obtained on the Gaussian filtered data (scale s = 7 m) using
geometric curvature (Figure 6b) and Laplacian (Figure 8).
Note how sharper and well defined is the skeleton obtained
using the geometric curvature.
[27] Before demonstrating in the next section the geode-

sic energy minimization approach for the automatic extrac-
tion of the whole channel network of the Skunk Creek, we
note that one can further process the regularized data to
eliminate even more the occasional isolated convergent
pixels seen in Figure 6c. This is a further operation which
can be easily done via a contributing area threshold, where
the threshold used has to be small enough not to interfere
with channel initiation. For example, Figure 9 shows the
skeleton of Figure 6c after applying the additional contrib-
uting area threshold of A = 3000 m2, meaning that only the
pixels with contributing area equal to or above this thresh-
old were selected. The contributing area was computed
using the Dinf algorithm [Tarboton, 1997]. We have then
compared this value to the minimum contributing area at the
channel heads, obtained using the same algorithm at the
11 farthest surveyed channel heads in Skunk Creek. As it
can be seen from the histogram of the contributing area
shown in Figure 10, the minimum value is equal to 3329 m2,
thus the chosen contributing area threshold of 3000 m2 does
not interfere with channel initiation. It is noted that, while
the curvature threshold is easily identifiable from the

Figure 7. Comparison of the images obtained threshold-
ing the curvature computed on the Gaussian filtered data
with s = 2 m, 4 m, 6 m (landscape smoothing scales of
8.9 m, 17.8 m, and 26.7 m, respectively). White pixels
indicate pixels with above-threshold curvature. The plots
refer to portion A of Skunk Creek shown in Figure 4.

Figure 8. Skeleton of pixels above threshold curvature for
the Gaussian filtered data using the Laplacian with s = 7 m
(landscape smoothing scale of 31.1 m). The plot refers to
portion A of Skunk Creek shown in Figure 4.
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quantile-quantile plot, as explained earlier, the contributing
area threshold is an arbitrarily chosen value, the smallest
able to reduce the noise further in the skeleton of likely
channelized pixels. It is observed that this further operation
not only removes isolated convergent areas, but also further
narrows the width of the likely channelized valleys provid-
ing a better preprocessed data on which channel heads are
identified for the geodesic optimization to be performed (see
discussion later in the application to the Skunk Creek basin).

3.2. Automatic Extraction of Channel Paths From
the Regularized Data

[28] In this section we focus on the regularized data set of
Skunk Creek obtained through nonlinear filtering and
illustrate how the concepts of geodesics and energy mini-
mization described earlier allow a fast and efficient extrac-
tion of the channel network. The first step of the extraction
procedure is the creation of the skeleton obtained by
nonlinear filtering and thresholding the curvature and the
contributing area, as discussed in the previous section. The
threshold curvature was easily identified by a clear change
in the statistical behavior of the curvature, while the
threshold area was set to a value of 3000 m2. The
extracted skeleton for the Skunk Creek river basin is
shown in Figure 11.
[29] Several observations can be made by comparing

Figure 11 with the surveyed network shown in Figure 3.
First, in Figure 3 one observes that most of the channels in
the part of the network close to the divide are labeled as
‘‘transient’’ or ‘‘inactive’’ and indeed the extracted skeleton
depicts this topography by a series of interrupted areas of
high curvature (and large contributing area). Second, at the
points where the surveyed channel heads are located, our
algorithm depicts a substantial interruption in the channel-

ized valley. It is observed therefore, that the preprocessing
already allows one to investigate more closely the richness
of the landscape form, something not possible with other
current algorithms.
[30] From the skeleton of Figure 11, we can detect the

river network outlet, as the point with the maximum flow
accumulation area, computed, for example, using the Dinf
algorithm [Tarboton, 1997]. After the outlet of the network
has been identified, we can proceed with the detection of
the end points. First the algorithm uses the skeleton of
Figure 11 to compute how many continuous elements
compose the skeleton and how many pixels belong to each
of them. With this we mean that we label with a sequential
number all the parts of the skeleton which are completely
connected and do not present disruptions (i.e., the skeleton
is continuously equal to 1, while the disruption is repre-
sented by one or more pixels equal to zero). We call the
variable representing the number of pixels in each
connected element N and plot in Figure 12a its histogram.
As it can be seen, the Skunk Creek skeleton is composed by
56 connected elements, one of which is composed by
4508 pixels and 55 much smaller elements. This is some-
thing we could have expected having already observed that
Skunk Creek is an extremely disrupted basin, and we can
deduce that the element composed by 4508 pixels is the one
which includes the part of the basin close to the outlet (the
most continuous one), while the 55 smallest elements
compose the skeleton of the part of the basin close to the
divide (which, as we already pointed out, appears extremely
disrupted in agreement with the fact that the channels here
are either inactive or transient). Note that some of these
elements may also represent small isolated noisy areas still
present in the data.
[31] Now that the connected elements of the skeleton are

identified, the algorithm looks for the end points. These are
identified as the points at which the branches end. Since the
branches are wider than one pixel, the actual point taken as
end point is the one which belongs to the minimum
geodesic distance path. Thus we need to define the cost

Figure 9. Skeleton obtained by thresholding curvature and
contributing area for the portion A of Skunk Creek shown in
Figure 4. Introducing the contributing area criterion
eliminates all the isolated pixels which have a positive
curvature above threshold but are not part of the channel
network.

Figure 10. Histogram of the contributing area computed
with the Dinf algorithm at the 11 farthest channel heads
surveyed in Skunk Creek.
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function which will be used to identify the end points and
connect them to the outlet through geodesic curves. This
cost function was chosen to give penalty for selecting paths
along which the drainage area does not have large flow
accumulation and along which the curvature is not large
compared to the surrounding points. The chosen form of the
cost function y used in (10) is the following:

y ¼ 1

a � Aþ d � kð Þ ð13Þ

where A is the contributing area, k is the curvature (of
isoheight contours for our examples), and a and d are
constants which have to be chosen appropriately for the
application at hand. The purpose of these constants is to
take care of the dimensionality of y (as A is measured in
m2, while k in 1/m) and of the difference in the order of
magnitude between the quantities employed (A varies
between 1 and 5 � 105 m2, while k has been normalized
and thus varies between 0 and 1).
[32] We will discuss later in this section how the choice of

the constants a and d can be made. For now, to illustrate
how the end points are detected, let us assume we have
identified the optimal parameters of the cost function (13)
for our application, namely a = 1 m�2 and d = 103 m (see
discussion later in this section on how these parameters can
be determined). We focus on the 200 m � 200 m portion A
of the Skunk Creek used in section 3.1. Figure 13a shows
the skeleton of Skunk Creek (the same previously shown in
Figure 9) and Figure 13b shows the end points as detected
by the algorithm and indicated by a white circle. We can
notice that the locations marked as A, B, and C do not
appear to belong to a channel, but rather to be small
convergent areas still present in the skeleton after prepro-
cessing. It is clear that we need to identify these elements
and ignore them, such that they will not be erroneously
considered as channels. If we plot again the histogram of N,
the number of pixels belonging to each connected element
of the skeleton, ignoring the largest element, as shown in
Figure 12b, we notice that there is a large number of

small connected elements located below and around a
value of N = 10 pixels. We can interpret these elements as
small isolated convergent areas and detect the end points
only on the elements of the skeleton with N > 10 pixels. Note
that we expect the identification of this threshold of N to be
much simpler in the case of a basin more homogeneous than
Skunk Creek. Due to the nature of the basin here in analysis,
the choice of this value of N is extremely challenging, while
a more homogeneous basin would probably present the
skeleton as a unique connected element, with a few smaller
ones, which could be easily interpreted as isolated areas.
The result of adding a threshold N > 10 pixels in the end
points detection can be seen in Figure 13c. Locations A, B,
and C are now ignored and the end points (indicated by
white circles) are identified only on the branches that appear
to be channels. Following this procedure we have identified

Figure 11. Skeleton obtained by thresholding curvature
and contributing area for Skunk Creek.

Figure 12. (a) Histogram of the number of pixels
belonging to each connected element of the skeleton of
Skunk Creek. The skeleton is composed by 56 elements of
which one includes the majority of the pixels. (b) Excluding
the most connected element, the histogram highlights a
large number of small connected elements below and
around N = 10 pixels. This value can be interpreted as the
size of small isolated convergent areas which do not belong
to channels.
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all the end points in the Skunk Creek skeleton, as shown in
Figure 14.
[33] After all the end points have been detected, we

connect them with geodesic curves through the above
defined cost function (13). Let us now discuss the selection
of the constants a and d. A helpful quantity in the definition
of the constants a and d is the geodesic distance d (11).
Since the geodesic curves (10) are computed by gradient
descent on d, then d can be used to understand how optimal is
the choice of the constants. This is illustrated in Figure 15.
Figures 15a–15j show the geodesic distances d and the
extracted network correspondent to different choices of a
and d in the cost function y (13). Figures 15a and 15c show
the geodesic distances d corresponding to a = 1 m�2 and d =
0 m and a = 0 m�2 and d = 1 m respectively, and Figures 15b
and 15d the corresponding extracted networks. It is clear
that using only one of the two quantities does not give good
results. Figures 15e through 15j show the geodesic distances
and the extracted networks for a = 1 m�2 and d = 1, 103,
105 m. It can be seen how the choice of a = 1 m�2 and d =
1000 m gives the smallest values of the geodesic distance
along the skeleton of the network. This can be used as
guidance to ensure an optimal computation of the geodesic
curves. Note that the value of d = 1000 m corresponds to the
order of magnitude of the mean contributing area computed
on the whole surface A ’ 550 m2.
[34] Figure 16 shows the extracted channel network

obtained for the Skunk Creek with a = 1 m�2 and d =
1000 m and compared to the surveyed data. As discussed
before, this is a challenging basin for the automatic channel
network extraction due to many interruptions due to land-

Figure 13. Detection of the end points. (a) Skeleton-
obtained thresholding curvature and contributing area in
portion A of Skunk Creek. (b) Without a threshold in N, the
number of pixels composing each connected element,
locations A and B are identified as channels. (c) The
threshold N > 10 pixels allows to exclude locations A and B
from the end points detection. End points are here indicated
by a white circle.

Figure 14. End points automatically detected in Skunk
Creek.
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Figure 15. The geodesic distances d and the extracted networks for different choices of the parameters
of the cost function y. The geodesic distances are useful in understanding if the choice of the cost
function guarantees the optimal tracing of geodesic curves. (a and b) y = 1

A
; (c and d) y = 1

k; (e and f) y =
1

Aþk; (g and h) y = 1
Aþ103�k; (i and j) y = 1

Aþ105�k.
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slides and debris flows. Nevertheless, the automatically
extracted channel network compares well with the field-
surveyed river network. Recall that the only information
that was externally provided was the threshold area of
3000 m2 and the values of the parameters a and d, though
guidelines for the possible automatic selection of these
parameters were provided as well.
[35] As discussed earlier, our algorithm allows the detec-

tion of channel disruptions (see Figure 11) which are
depicted in the skeleton and can be kept before the geodesic
optimization is performed. The channels are traced contin-
uously to the farthest end points detected, but the user
knows the location and the extent of the disruptions from
the skeleton. Figures 17a and 17b show the histogram of the
length of the channel disruptions measured on the surveyed
data of Figure 3 and on the extracted skeleton of Figure 11.
As it can be seen the extracted network of Skunk Creek
shows, statistically, the same level of disruptiveness char-
acteristic of the area.

4. Concluding Remarks

[36] High-resolution DEMs offer new opportunities for
extracting detailed features from landscapes (e.g., channels,
disruptions, channel heads), but also challenges in develop-
ing extraction methodologies that are objective and compu-
tationally efficient. The problem really becomes one of
image processing relying on scale-space representation,
i.e., coarsening the landscape without smoothing out fea-
tures of interest and detecting features efficiently. In this
paper we introduced a geometric framework for the extrac-
tion of channel networks from lidar data. The proposed
approach includes two main components: the preprocessing
of the data via nonlinear diffusion, to reduce noise and
enhance features that are relevant to the network extraction,

and the computation of channel networks in the filtered data
via geodesic curves that incorporate geomorphological
knowledge such as contributing area and (geometric) cur-
vature. The methodology presented in this paper has been
applied to Skunk Creek, a tributary of the South Fork Eel
River basin in northern California. Despite the challenges
presented by the basin analyzed, which is a complex
landslide-disrupted basin, the proposed methodology has
demonstrated to be computationally efficient and able to
detect, not only channels, but also the presence of channel
disruptions.
[37] This work, which introduces the idea of approaching

geomorphological analysis as a geometric task, opens the
door to many problems in the automatic extraction of
information from lidar data. For the particular case of
channel networks, it is important to study the possible
benefits of using other nonlinear equations for preprocess-
ing and the introduction of additional features in the
geodesic penalty function. Similarly, the exploitation for
geomorphological analysis of other models which are pop-
ular in the partial differential equations and variational
formulations in image processing community, such as the
Mumford-Shah functional [Mumford and Shah, 1989], is of
great interest. For example, the channel networks can be
considered as discontinuity fields and outliers, and as such
be automatically computed by such an approach [Sapiro,
2001]. Beyond this, the methodology is being presented
here for the case of a tributary system, but with an
appropriate modification of the cost function, could be
applied to a distributary or mixed systems. Moreover
channel networks are just one of the many important
features in landscapes, and the exploration of the geometric
approach here initiated for the extraction of other geomor-
phic features, such as landslides, debris flow regions,

Figure 16. Automatically extracted river network for Skunk Creek using the geodesic optimization on
the Perona-Malik filtered landscape compared to the digitized surveyed data.
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ravines, channel morphology, etc., is a subject of future
research.

Appendix A

[38] In this Appendix we illustrate the property of the
Perona-Malik filtering. In particular we include part of the
formulation in the original Perona and Malik [1990] paper
to show that this filter acts as a backward diffusion in
regions of high gradients such that it results in enhancing
these edges for easy extraction. We illustrate this via a
simple 1-D example of an edge modeled as a step function
convolved with a Gaussian, assumed to be aligned with the
y axis (see Figure A1). The divergence operator in this case
simplifies as follows:

r � c x; y; tð Þrh½ � ¼ @x c x; y; tð Þ@xh½ � ðA1Þ

Choose c to be a function of the gradient of h: c(x, y, t) =
p[@xh(x, y, t)] and define the flux: f(@xh) � c�@xh � p(hx)�hx.

Then, the 1-D version of the nonlinear diffusion equation (7)
becomes:

@th ¼ @xf hxð Þ ¼ f0 hxð Þ � hxx ðA2Þ

We are interested in the variation in time of the slope of the
edge, which is given by @t(hx). If c(�) > 0 and the function h is
smooth, the order of differentiation may be inverted:

@t hxð Þ ¼ @x htð Þ ¼ @x @xf hxð Þ½ � ¼ f00 � h2xx þ f0 � hxxx ðA3Þ

Assuming the edge to be oriented such that hx > 0, then, at
the point of inflection, being the point with maximum
slope, hxx = 0, and hxxx � 0. Then as can be seen from
(A3) if f0(hx) > 0 the slope of the edge decreases with
time, while if f0(hx) < 0 the slope increases with time (the
edge becomes sharper with time). Several possible choices

Figure 17. (a) Histogram of the length of the channel
disruptions Ld measured on the surveyed data. (b) Histogram
of the length of the channel disruptions Ld measured on the
extracted data.

Figure A1. The 1-D edge modeled as a step function
convolved with a Gaussian kernel and its first, second, and
third derivatives. Figure adapted from Perona and Malik
[1990] (copyright 1990 with permission from IEEE).
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of the function f(�) exist, one being the following (see
Figure A2):

f hxð Þ ¼ C= 1þ hx=lð Þ1þa
� �

ðA4Þ

with a > 0. This means that there is a certain threshold value
related to l and a, below which f(�) is monotonically
increasing, and beyond which f(�) is monotonically
decreasing, achieving noise reduction and edge enhance-
ment. In a neighborhood of the steepest region of an edge,
f0(hx) is negative, which means that the nonlinear diffusion
acts as backward in time, thus achieving edge enhancement,
while preserving the advantages of the stability given by the
maximum principle satisfied by this type of elliptic
equation. For more details the reader is referred to the
original publication of Perona and Malik [1990].
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Catté, F., P.-L. Lions, J.-M. Morel, and T. Coll (1992), Image selective
smoothing and edge detection by nonlinear diffusion, SIAM J. Numer.
Anal., 29(1), 182–193.

Cavalli, M., and L. Marchi (2008), Characterisation of the surface morphol-
ogy of an alpine alluvial fan using airborne lidar, Nat. Hazards Earth
Syst. Sci., 8(2), 323–333.

Cavalli, M., P. Tarolli, L. Marchi, and G. Dalla Fontana (2008), The effec-
tiveness of airborne lidar data in the recognition of channel bed morphol-
ogy, Catena, 73, 249–260, doi:10.1016/j.catena.2007.11.001.

Costa-Cabral, M. C., and S. J. Burges (1994), Digital elevation model net-
works (DEMON): A model of flow over hillslopes for computation of
contributing and dispersal areas, Water Resour. Res., 30(6), 1681–1692.

Dial, R. B. (1969), Algorithm 360: Shortest-path forest with topological
ordering, Commun. ACM, 12(11), 632–633.

Dietrich, W. E., C. J. Wilson, D. R. Montgomery, and J. McKean (1993),
Analysis of erosion thresholds, channel networks and landscape morphol-
ogy using a digital terrain model, J. Geol., 101(2), 259–278.

Dietrich, W. E., D. Bellugi, and R. Real de Asua (2001), Validation of the
shallow landslide model, SHALSTAB, for forest management, in Land
Use and Watersheds: Human Influence on Hydrology and Geomorphol-
ogy in Urban and Forest Areas, Water Sci. Appl. Ser., vol. 2, edited by
M. S. Wigmosta and S. J. Burges, pp. 195–227, AGU, Washington, D. C.

Dijkstra, E. (1959), A note on two problems in connection with graphs,
Numer. Math., 1(1), 269–271.

Do Carmo, M. P. (1976), Differential Geometry of Curves and Surfaces,
Prentice-Hall, Englewood Cliffs, N. J.

Frankel, K. L., and J. F. Dolan (2007), Characterizing arid region alluvial
fan surface roughness with airborne laser swath mapping digital topo-
graphic data, J. Geophys. Res., 112, F02025, doi:10.1029/2006JF000644.

Giannoni, F., G. Roth, and R. Rudari (2005), A procedure for drainage
network identification from geomorphology and its application to the pre-
diction of the hydrologic response, Adv. Water Resour., 28(6), 567–581.

Glenn, N. F., D. R. Streutker, D. J. Chadwick, G. D. Tahckray, and S. J.
Dorsch (2006), Analysis of lidar-derived topography information for
characterizing and differentiating landslide morphology and activity,
Geomorphology, 73, 131–148.

Hancock, G. R., and K. G. Evans (2006), Channel head location and
characteristics using digital elevation models, Earth Surf. Processes
Landforms, 31(7), 809–824.

Helmsen, J., E. G. Puckett, P. Collela, and M. Dorr (1996), Two new
methods for simulating photolithography development in 3-D, Proc.
SPIE Int. Soc. Opt. Eng., 2726, 253–261.

Howard, A. D. (1994a), A detachment-limited model of drainage basin
evolution, Water Resour. Res., 30(7), 2261–2285.

Howard, A. D. (1994b), Badlands, in Geomorphology of Desert Environ-
ments, edited by A. D. Abrahams and A. J. Parsons, pp. 213–242,
Chapman and Hall, New York.

Howard, A. D. (1997), Badland morphology and evolution: Interpretation
using a simulation model, Earth Surf. Processes Landforms, 22, 211–227.

Kimmel, R. (2003), Numerical Geometry of Images: Theory, Algorithms,
and Applications, 209 pp., Springer, New York.

Kirkby, M. J. (1984), Modeling cliff development in South Wales: Savigear
re-reviewed, Z. Geomorphol., 28, 405–426.

Kirkby, M. J. (1985), A model for the evolution of regolith-mantled slopes,
in Models in Geomorphology, edited by M. J. Woldenberg, pp. 213–237,
Allen and Unwin, Winchester, Mass.

Figure A2. One form of the flux f. There is a certain
threshold value below which f(�) is monotonically increas-
ing and beyond which f(�) is monotonically decreasing,
achieving noise reduction and edge enhancement. Figure
adapted from Perona and Malik [1990] (copyright 1990
with permission from IEEE).

F01002 PASSALACQUA ET AL.: GEOMETRIC NONLINEAR CHANNELS EXTRACTION

17 of 18

F01002



Koenderink, J. (1984), The structure of images, Biol. Cybern., 50(5),
363–370.

Lashermes, B., E. Foufoula-Georgiou, and W. E. Dietrich (2007), Channel
network extraction from high-resolution topography using wavelets, Geo-
phys. Res. Lett., 34, L23S04, doi:10.1029/2007GL031140.

Mark, D. M. (1988), Network models in geomorphology, in Modeling
Geomorphological Systems, edited by M. G. Anderson, pp. 73–97, John
Wiley, New York.

McKean, J., and J. J. Roering (2004), Objective landslide detection and
surface morphology mapping using high-resolution airborne laser altime-
try,Geomorphology, 57, 331–351, doi:10.1016/S0169-555X(03)00164-8.

McMaster, K. J. (2002), Effects of digital elevation model resolution on
derived stream network positions, Water Resour. Res., 38(4), 1042,
doi:10.1029/2000WR000150.

McNamara, J. P., A. D. Ziegler, S. H. Wood, and J. B. Vogler (2006),
Channel head locations with respect to geomorphologic thresholds de-
rived from a digital elevation model: A case study in northern Thailand,
For. Ecol. Manage., 224, 147–156.

Memoli, F., and G. Sapiro (2005), Distance functions and geodesics on
submanifolds of Rd and point clouds, SIAM J. Appl. Math., 65(4),
1227–1260.

Montgomery, D., and W. E. Dietrich (1988), Where do channels begin?,
Nature, 336, 232–234, doi:10.1038/336232a0.

Montgomery, D. R., and W. E. Dietrich (1989), Source areas, drainage
density, and channel initiation, Water Resour. Res., 25(8), 1907–1918.

Montgomery, D. R., and W. E. Dietrich (1992), Channel initiation and the
problem of landscape scale, Science, 255, 826–830.

Montgomery, D. R., and W. E. Dietrich (1994), Landscape dissection and
drainage area-slope thresholds, in Process Models and Theoretical Geo-
morphology, edited by M. J. Kirkby, pp. 221–246, John Wiley, New
York.

Montgomery, D., and E. Foufoula-Georgiou (1993), Channel network
source representation for digital elevation models, Water Resour. Res.,
29(12), 3925–3934.

Mumford, D., and J. Shah (1989), Optimal approximation by piecewise
smooth functions and associated variational problems, Commun. Pure
Appl. Math., 42, 577–685.

O’Callaghan, J., and D. Mark (1984), The extraction of drainage networks
from digital elevation data, J. Comput. Vis. Graph. Image Process., 28(3),
323–344.

Perona, P., and J. Malik (1990), Scale-space and edge detection using
anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intel., 12(7),
629–639.

Roering, J. J., J. Kirchner, and W. E. Dietrich (1999), Evidence for non-
linear, diffusive sediment transport on hillslopes and implications for
landscape morphology, Water Resour. Res., 35(3), 853–870.

Sapiro, G. (2001), Geometric Partial Differential Equations and Image
Analysis, 412 pp., Cambridge Univ. Press, New York.

Sethian, J. A. (1999), Level Set Methods and Fast Marching Methods,
400 pp., Cambridge Univ. Press, Cambridge, U. K.

Smith, M. J., J. Rose, and S. Booth (2006), Geomorphological mapping of
glacial landforms from remotely sensed data: An evaluation of the prin-
cipal data sources and an assessment of their quality, Geomorphology, 76,
148–165, doi:10.1016/j.geomorph.2005.11.001.
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Following the introduction of the Brownian motion model for sediment transport by Einstein, several
stochastic models have been explored in the literature motivated by the need to reproduce the observed
non-Gaussian probability density functions �PDFs� of the sediment transport rates observed in laboratory
experiments. Recent studies have presented evidence that PDFs of bed elevation and sediment transport rates
depend on time scale �sampling time�, but this dependence is not accounted for in any previous stochastic
models. Here we propose an extension of Brownian motion, called fractional Laplace motion, as a model for
sediment transport which acknowledges the fact that the time over which the gravel particles are in motion is
in itself a random variable. We show that this model reproduces the multiscale statistics of sediment transport
rates as quantified via a large-scale laboratory experiment.
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I. INTRODUCTION

Stochastic theories of sediment transport were initiated
with the seminal work of Einstein �1�, who introduced a
Brownian motion model for particle motion. Since then,
these theories were advanced by the need to reproduce the
observed statistics of sediment transport rates or particle
movement. In �2�, a birth-death process was proposed for
sediment transport, which was later shown, in �3�, to be in-
adequate as it failed to predict the heavy tails found in the
probability density functions �PDFs� of the number of mov-
ing particles in a given observation window. In �4�, the birth-
death model was extended to a birth-death-immigration-
emigration model to reproduce the experimentally observed
negative binomial distributions for the number of moving
sediment particles. The stochastic nature of sediment particle
entrainment has been widely recognized and considerable ef-
forts have been invested in modeling this behavior �5–8�.
The underlying assumption of these models is that the shear
stress, which is the initiator for sediment entrainment, fol-
lows a Gaussian distribution. However, many experimental
studies have shown that the shear stress fluctuations do not
follow a Gaussian distribution, and in particular it has been
shown that they follow a Gamma distribution �e.g., �9,10��.
The role of near-bed turbulence in sediment transport has
also been recognized to play an important role �11,12�. How-
ever, turbulence is well known to exhibit variability over a
range of scales, and it is reasonable to ask whether this mul-
tiscale variability shows its effect on sediment transport se-
ries and bed elevation fluctuations.

In a recent study �13�, the dependence of the statistics of
sediment transport on time scale �sampling time� akin to the
scale-dependent statistics of fully developed turbulence �14�
was documented. Specifically, it was shown that the PDF of
sediment transport rates at small sampling times exhibits a
heavy-tailed distribution which however approaches a
Gaussian distribution as the sampling time increases. To the
best of our knowledge, no stochastic model of sediment
transport exists which reproduces this observed multiscale
statistical structure of sediment transport series. It is the
scope of this paper to present such a model and discuss its
mathematical properties and its physical relevance to model-
ing sediment transport.

The paper is structured as follows. In the following sec-
tion a brief review of multiscale statistics of sediment trans-
port series observed in a large-scale laboratory experiment is
given. In Sec. III the application of a stochastic model, called
the fractional Laplace motion, is proposed to characterize the
sediment transport series and is shown that it is able to re-
produce the observed statistics. In Sec. IV the proposed
model is validated against the sediment transport series ob-
tained from a large-scale laboratory experiment. Finally, dis-
cussion and conclusions are given in Secs. V and VI.

II. MULTISCALE STATISTICS OF SEDIMENT
TRANSPORT SERIES

A large-scale laboratory experiment was recently con-
ducted in the Main Channel facility at the St. Anthony Falls
Laboratory, University of Minnesota, in order to study sedi-
ment transport dynamics in gravel and sand-bed rivers. The
details of the experimental facility can be found in
�13,15,16�. Here we briefly describe one of the experiments
from which data were used in this study. The flume is 2.74 m
wide and 55 m long, with a maximum depth of 1.8 m �see
Fig. 1�. Gravel with a median particle size �D50� of 11.3 mm
was placed in a 20-m-long mobile-bed section of the 55-m-
long channel. A constant discharge of water at 4300 liters per
second was released into the flume. At the downstream end

FIG. 1. Experimental flume facility at the St. Anthony Falls
Laboratory, University of Minnesota.
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of the test section was located a bedload trap, consisting of
five weighing pans of equal size that spanned the width of
the channel. Any bedload sediment transported to the end of
the test section of the channel would fall into the pans, which
automatically recorded the weight of the accumulated sedi-
ment every 1.1 s. Data were collected over a period of 30 h
once a state of statistical equilibrium was reached �see
�13,16��. The original series of 1.1 s sampling interval were
converted to 2 min sediment accumulations via moving av-
eraging in order to remove mechanical �due to vibration�
noise present in the raw data �see �13,16��. Let us denote by
S�t� the 2 min sediment accumulation series which is shown
in Fig. 2. In this section, we present the multiscale analysis
performed on this sediment transport series.

The goal of a multiscale analysis is to quantify the manner
in which the statistics of the local fluctuations, or variability
in a series, changes with scale. In order to investigate the
multiscale structure of S�t� over a range of scales, differences
�or increments� were computed at different scales �lags� r,
denoted by �S�t ,r�, as

�S�t,r� = S�t + r�t� − S�t� , �1�

i.e., �S�t ,r� is the incremental sediment accumulation within
a time interval r�t, where �t=2 mins. In �13�, “generalized
fluctuations” were used defined via wavelet transforms �act-
ing as a differencing filter�. Notice that while S�t� can only
be positive, the fluctuation series �S�t ,r� will have zero
mean and can be both positive and negative. The estimates of
the qth-order statistical moments of the absolute values of
sediment transport increments at scale r, also called the par-
tition functions or structure functions, M�q ,r� are defined as

M�q,r� =
1

Nr
�
t=1

Nr

��S�t,r��q, �2�

where Nr is the number of data points of sediment transport
increments at a scale r. The statistical moments M�q ,r� for
all q completely describe the shape of the PDFs as the scale
r changes. Statistical scaling, or scale invariance, requires
that M�q ,r� is a power-law function of the scale, that is,

M�q,r� � r��q�, �3�

where ��q� is the so-called scaling exponent function. For a
scale-invariant series, it has been shown that the function
��q� completely determines how the PDF of the variable
changes with scale �e.g., �17,18��. The simplest form of scal-
ing, known as simple scaling or monoscaling, is when the
scaling exponents are a linear function of the moment order,
i.e., when ��q�=Hq. In this case, the shape of the PDF re-
mains the same over scales apart from a rescaling by a de-
terministic function which depends on the single parameter
H. If ��q� is nonlinear, the shape of the PDF changes over
scales and more than one parameter is required to describe
this change �e.g., �17,18��. In this case, the series is called a
multifractal. For most processes the nonlinear relationship of
��q� with q can be parameterized as a polynomial, and the
simplest form is a quadratic approximation,

��q� = c1q −
c2

2
q2. �4�

The multiscale analysis in this framework provides a com-
pact way, using two parameters c1 and c2, of parametrizing
the change of the PDF over a range of scales. In parallel to
the statistical interpretation of these parameters, there is also
a geometrical interpretation. Specifically, the parameter c1 is
a measure of the average “roughness” of the series and c2,
the so-called intermittency coefficient, is a measure of the
temporal heterogeneity of the abrupt local fluctuations in the
series �in fact, it relates to the variance of the so-called local
Hölder exponent which measures the local degree of nondif-
ferentiability of the series �e.g., �18���. It is noted that using a
higher than second degree polynomial approximation of
��q�, say a third degree polynomial, introduces a third pa-
rameter c3, which is a measure of the third moment of the
local differentiability of the series and it might be hard to
accurately estimate from a limited sample size of data. Thus,
in most practical applications the approximation of ��q�
curve is restricted to a quadratic function which is parameter-
ized by c1 and c2. Estimation of the multifractal parameters,
c1 and c2, can be performed in various ways. For example,
one can use a quadratic fit to the whole ��q� curve �estimated
for several values of q from the slopes of M�q ,r� vs r in
log-log space� or use the first two scaling exponents only,
��1� and ��2�, or use the cumulant analysis method �e.g., �18�
and references therein�. In this study, we use the quadratic fit
to the ��q� curve for the estimation of the parameters c1 and
c2.

The multiscale analysis described above was performed
on the sediment transport series shown in Fig. 2. Figure 3�a�
shows the scaling of the moments of the sediment transport
increment series �S�t ,r� with scale r. It is to note that the
structure functions follow a power-law relation in r over a
range of scales from r=4 to 64 �8 to 128 min�. The scaling
exponents of the structure functions M�q ,r� are plotted as a
function of the order of moments q in Fig. 3�b� for q
=0.5,1 ,1.5, . . . ,3. We observe that ��q� has a nonlinear de-
pendence on q, which is an indication of the presence of
multifractality and the fact that the shape of the PDF changes
with scale. Figure 3�c� displays the PDFs of sediment trans-
port increments at two scales, r=10 and r=60 �i.e., 20 and
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FIG. 2. Sediment transport series S�t� �in kgs� at a sampling
interval of 2 min, i.e., series of 2 min sediment accumulation.
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120 min sediment accumulations, respectively�. It is noted
that at smaller scales the PDF of the sediment increments
deviates from a Gaussian distribution and is close to a double
exponential. The PDF, eventually, becomes Gaussian at
larger scales. The PDFs reported in Fig. 3�c� are for scales
that fall within the scaling regime of the sediment data series
�see Fig. 3�a��. The dependence of the statistics of the sedi-
ment transport rates on scale has also been documented in
field observations �see �19� and a discussion in �13��. As
discussed above, we estimated the parameters of multifrac-

tality by approximating the ��q� curve in Fig. 3�b� as a qua-
dratic function in q and the estimates obtained together with
their 95% standard errors were c1=0.41�0.005 and c2
=0.04�0.004. It is noted for comparison that the c2 estimate
of velocity fluctuations in fully developed turbulence is of
the order of 0.03 �14�. We emphasize that no existing sto-
chastic model for sediment transport addresses the issue of
statistical scale dependence documented in experimental and
field observations. In the following section, we propose a
stochastic model for sediment transport which exhibits the
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FIG. 3. �a� Structure functions
of sediment transport series. Verti-
cal lines delineate the scaling re-
gime which is between 8 and 128
min �see top horizontal axis�. �b�
Estimated ��q� curve �solid
points� from the slopes of struc-
ture functions and a quadratic fit
�solid line�. Deviation from the
straight line establishes the pres-
ence of multifractality �see text
for parameter values�. �c� Change
in PDF of sediment transport in-
crements with scale. The solid
dots correspond to PDF at incre-
ments of r=10 �20 min� and +
correspond to increments at r=60
�120 min�. The solid line indicates
a Gaussian PDF.
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observed change in PDFs of sediment transport increments
over scales, reproduces the multifractal behavior of the ex-
perimental data series, and provides the potential for relating
the observed macroscale statistics to the microscale dynam-
ics of sediment particle movement.

III. PROPOSED MODEL: FRACTIONAL LAPLACE
MOTION

A. Brownian motion

Brownian motion is widely recognized to be a special
case of a continuous time random walk �CTRW�. In general,
CTRWs specify the particle location xi at a time ti by the
iterative discrete equations �e.g., �20,21��,

xi+1 = xi + �i, �5a�

ti+1 = ti + �i, �5b�

where ��i ,�i� is a set of random numbers drawn from a PDF
��� ,��. One can recast the above equations in the following
form:

tn = �
i=1

n

�i, �6a�

x�t� = �
i=1

n

�i, �6b�

where t� �tn , tn+1�. The CTRW is said to be decoupled when
the random variables �i and �i are mutually independent.
Brownian motion is a special case of a decoupled CTRW
where �i are independent identically distributed �i. i. d� ran-
dom variables drawn from a Gaussian distribution and �i are
i. i. d random variables sampled from an exponential distri-
bution. It is to note that the increments of Brownian motion
follow a Gaussian distribution. However, the increments of
most natural phenomena often show deviation from Gaussian
PDFs and this has prompted the introduction of other sto-
chastic processes such as Lévy walks and continuous-time
Lévy flights, where the random variables �i and/or �i are
sampled from heavy-tailed PDFs. However, such processes
do not have all of their statistical moments convergent. For
example, Lévy walks and Lévy flights do not have conver-
gent second moments �22�. It is also noted that modeling real
data with such processes typically requires an exponential
truncation of the algebraic decays �23� or sometimes even
milder than algebraic decay �24�. Correlation and long-range
dependence in the observed data can be modeled by relaxing
the independence assumption in sampling �i and/or �i or by
relaxing the independence assumption of a decoupled
CTRW. Fractional Brownian motion, denoted by BH�t�, is a
decoupled CTRW starting at zero and has the following cor-
relation function:

E�BH�t�BH�s�� =
1

2
��t�2H + �s�2H − �t − s�2H� , �7�

where E� . � denotes the expectation operator and H is a pa-
rameter of fractional Brownian motion called the Hurst ex-

ponent. For H=0.5, the fractional Brownian motion reduces
to the standard Brownian motion with independent incre-
ments. For other values of 0�H�1, BH�t� is called the frac-
tional Brownian motion and its increments are positively cor-
related for H	0.5 and negatively correlated for H�0.5.

An extension of Brownian motion, or fractional Brownian
motion, can be obtained via subordination. The notion of
subordination was originated by Bochner �25�. One can ob-
tain a subordinated stochastic process Y�t�=X�T�t�� by ran-
domizing the clock time of a stochastic process X�t� using a
new time t�=T�t�. The resulting process Y�t� is said to be
subordinated to the so-called parent process X�t��, and t� is
commonly referred to as the operational time �26�. We pro-
pose the application of subordination of fractional Brownian
motion �called fractional Laplace motion� as an extension to
the Brownian motion model proposed by Einstein for sedi-
ment transport �2�. In the following subsection, we describe
the properties of subordinated fractional Brownian motion.

B. Fractional Laplace motion

Fractional Laplace motion is a subordinated stochastic
process, whose parent process is fractional Brownian motion
and the operational time is a Gamma process �27�,

L�t� = BH�
t� , �8�

where BH�t� is fractional Brownian motion with Hurst expo-
nent 0�H�1 and 
t represents a Gamma process for any
t�0. The increments of the Gamma process �
t+s−
t� have
a gamma distribution with shape parameter �=s and scale
parameter 
=1, i.e.,

f�x� =
1


�
���
x�−1e−x. �9�

For H=0.5 the subordinated process L�t�=BH�
t� is called
the Laplace motion.

Increments of the fractional Laplace motion defined by
Y�t ,r�=L�t+r�−L�t�, called the fractional Laplace noise,
form a stationary process. Fractional Laplace noise has three
parameters, namely, the Hurst exponent of the parent process
H, the variance of the parent process BH�t� at the smallest
scale t=1, i.e., �2=Var�BH�1��, and the shape parameter of
the Gamma process �
t�, �. The variance of the fractional
Laplace noise can be expressed as a function of the scale r
and its parameters as �27�

Var�Y�t,r�� = �2
�2H + r/��

�r/��

. �10�

The covariance function of the fractional Laplace noise at a
given scale r, defined as ��n�=E�Y�t ,r�Y�t+n ,r��, can be
expressed in terms of its parameters for any n�1 as

��n� =
�2

2
�
�2H + �n + 1�r/��


��n + 1�r/��
+


�2H + �n − 1�r/��

��n − 1�r/��

− 2

�2H + nr/��

�
�nr/��� 	 . �11�

Fractional Laplace noise is positively correlated for H	0.5
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and is negatively correlated for H�0.5. In particular, frac-
tional Laplace noise exhibits long-range dependence for H
	0.5.

The fundamental difference between fractional Laplace
motion and other similar stochastic processes such as frac-
tional Brownian motion and Lévy motion is that in the latter
two cases the PDFs of the increments remain Gaussian and
Lévy stable, respectively, at all scales. In fractional Laplace
motion, the PDFs of the increments are variable with scale
with Laplace PDFs at small scales and as the scale increases
the PDFs approach Gaussian. In particular, fractional
Laplace motion deviates from the classical self-similarity
and shows stochastic self-similarity �27�. The Laplace PDF
emerges from a different and less well-known central limit
theorem called the geometric central limit theorem, which
states that the sum of a random number of independent iden-
tically distributed variates with finite variance is asymptoti-
cally Laplace if the random count is geometrically distrib-
uted �28�. In fact, the Laplace PDF can be considered as a
Gaussian PDF with a random variance or spread �29�. Given
the stochastic self-similarity extensively documented in sedi-
ment transport series �in �13� and also in Sec. II of this pa-
per�, the subordination of the fractional Brownian motion
model proposed herein offers an attractive and simple exten-
sion to Brownian motion for particle movement, as demon-
strated in more detail in the next section.

IV. FRACTIONAL LAPLACE MOTION MODEL FOR
SEDIMENT TRANSPORT

The physical relevance of the fractional Laplace motion to
model sediment transport is argued on the basis that the no-
tion of operational time acknowledges the randomness in the
entrainment time experienced by sediment particles which
are subject to a varied range of velocities in turbulent flows.
It is known that turbulent velocity fluctuations themselves
exhibit intermittency and possess a multifractal behavior
�e.g., �14��. Turbulent velocity “sweeps” and “bursts” are
expected to influence particle motion and introduce a multi-
scale variability in the fluctuations of the resulting sediment
transport series. In groundwater hydrology, the notion of op-
erational time has been used to acknowledge the fact that
time passes faster for particles in higher velocity zones
�30,31�. Along these lines, a subordinated Brownian motion
model has been proposed to model hydraulic conductivity
�28� and connections between turbulent velocities and het-
erogeneous sediment properties have been proposed �32�.

In the following subsections we study the multiscale prop-
erties of fractional Laplace motion and show that fractional
Laplace motion reproduces the intricate stochastic structure
shown by the sediment transport series. Further, we elaborate
on the model parameter fitting to the sediment transport se-
ries.

A. Multifractal properties of fractional Laplace motion

In order to study the self-similar behavior of fractional
Laplace motion, we first study the analytical behavior of the
structure functions of fractional Laplace motion. The struc-

ture functions of fractional Laplace motion for �=1 can be
written in terms of its parameters H and � as �27�

M�q,r� =
2q

�

�1 + q

2
�
�Hq + r/��


�r/��
. �12�

Statistical scaling or self-similar behavior requires that the
structure functions follow a power-law relationship in scales.
Figure 4�a� shows the structure-function dependence on
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FIG. 4. �a� Structure functions of fractional Laplace motion for
a set of chosen parameters H=0.4, �=3.0, and �=1 computed from
Eq. �12�. The vertical lines correspond to the scaling regime of the
sediment transport series which is from scales of r=4 to r=64. �b�
Estimated ��q� curve �solid points� from the fitted slopes of the
structure functions. The solid line indicates a quadratic fit and the
nonlinear dependence of ��q� on q establishes that fractional
Laplace motion shows a multifractal behavior in the scales under
consideration. �c� Change of PDF of increments of simulated frac-
tional Laplace motion series. Solid dots correspond to PDF of in-
crements at r=10 and + to r=60. Solid line indicates a Gaussian
PDF.
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scales in log-log space for an arbitrary choice of the param-
eter values, H=0.4 and �=3.0. �These values of H and � are
used for illustration of the model properties and the estima-
tion of these parameters is discussed more thoroughly in the
next subsection�. It is to note that from Fig. 4�a� that al-
though Eq. �12� does not analytically accept a power-law
expression on r, for all practical purposes, fractional Laplace
motion can be approximated by a self-similar process, i.e.,
the structure functions show a power-law relationship in
scales at least for the range of scales which coincide with the
scaling regime of sediment transport series �scales or lags of
r=4 to r=64�. Plotting the ��q� curve �estimated from the
slopes of M�q ,r� vs r in log-log space within the above
scaling regime� one can see that the scaling exponents, ��q�,
show a nonlinear dependence on the order of moments q �see
Fig. 4�b��. It is to note that the scaling exponents ��q� are
independent of the variance of the parent process �2. The
change in PDF of the increments of fractional Laplace mo-
tion with scale is shown in Fig. 4�c�, where the PDF at small
scales �r=10 in Fig. 4�a�� shows a double-exponential behav-
ior and it eventually tends to a Gaussian distribution for large
scales �r=60 in Fig. 4�a��. The above results document that
fractional Laplace motion can be approximated by a stochas-
tic self-similar process in an intermediate range of scales and
within those scales it exhibits a multifractal behavior. At the
limit of very large time scales, i.e., as r→�, fractional
Laplace motion tends to a fractional Brownian motion with
��q� a linear function of q �i.e., monofractal behavior�.

It is interesting to note from Eq. �12� that the second-
order structure function of Laplace motion �H=0.5 and q
=2� obeys a power-law relationship in scales and in particu-
lar it shows a linear dependence on scales

M�2,r� = 
 2

�
�

�1.5��r , �13�

yielding an exponent of ��2�=1. This implies that Laplace
motion has self-similar second-order moments, i.e., it shows
a log-log linear power spectrum �although higher order mo-
ments are not exact power laws�. In the next subsection we
elaborate on the parameter estimation of the fractional
Laplace motion from the sediment transport series.

B. Model fitting

As seen in the previous section, fractional Laplace motion
has three parameters H, � and �. The scale parameter of the
operational time PDF, 
, is 1 by the definition of fractional
Laplace motion �27�. Estimation of the parameters H and �
from the sediment transport series is performed by minimiz-
ing the mean squared error between the empirical and theo-
retical ��q� curves. The mean squared error, denoted by
MSE, is a function of H and � and is independent of �,

MSE�H,�� = �
q

��m�q� − �̂�q��2, �14�

where �̂�q� are the estimated scaling exponents of the sedi-
ment transport series �see Fig. 3�b�� and �m�q� are the scaling
exponents of the fractional Laplace motion model which are
computed from the slopes of the theoretical M�q ,r� versus r

within the scaling regime of the sediment transport series
�4�r�64� in the log-log space �see Fig. 4�b��. Minimiza-
tion of the mean squared error for the sediment transport
series yields a Hurst exponent of H=0.39 and a shape pa-
rameter of �=6.8. It is to note that the multiscale structure of
fractional Laplace motion model is determined by the param-
eters H and �. Further, we estimate the parameter � by mini-
mizing the mean squared error between the variance of the
increments of sediment transport series and the fractional
Laplace noise for H=0.39 and �=6.8 over the scaling regime
�4�r�64�,

� = Min �
r=4

r=64

�Var��S�t,r�� − Var�Y�t,r���2, �15�

where Var��S�t ,r�� is the variance of the increments of sedi-
ment transport series and Var�Y�t ,r�� is the variance of frac-
tional Laplace noise at the scale r, given by Eq. �10�. The
value of � estimated using Eq. �15� was �=0.296. The mul-
tifractal parameters of the fractional Laplace motion model
computed with the estimated parameters of H=0.39 and �
=6.8 were c1=0.41 and c2=0.041, which compare very well
to the values estimated from the sediment transport data of
c1=0.41 and c2=0.04. �Note that c1 and c2 were not used
directly in the model fitting which was done via Eq. �14� on
the whole ��q� curve�. As a result the model and the data-
estimated ��q� curves are indistinguishable. Figure 5�a�
shows the increments of sediment transport series at a scale
of r=20 or 40 min �note that this scale lies within the scaling
regime of the sediment transport series�. For visual compari-
son, the fractional Laplace noise simulated series with the
estimated parameters H=0.39, �=6.8, and �=0.296 at the
same scale is shown in Fig. 5�b�.

As noted in the previous section, fractional Laplace noise
is negatively correlated for H�0.5. Figure 6�a� shows the
autocorrelation function of the increments of sediment trans-
port series at the scale r=20 �40 min�. The data show a
negative correlation in the scaling regime of the sediment
transport series for small lags. This is qualitatively consistent
with the fractional Laplace noise model which shows a nega-
tive correlation for the estimated parameter values �see Fig.
6�b��. The increments of fractional Laplace motion at small
scales follow a Laplace PDF which eventually becomes
Gaussian at larger scales. Figure 7�a� shows the PDF of sedi-
ment transport increments at a scale of r=4 which is the
beginning of the scaling regime of the sediment transport
series. A Laplace PDF provides a good fit to the increments
at that scale. As noted in Fig. 7�b�, the PDF of sediment
transport increments at a scale of r=64 �128 min� tends to a
Gaussian PDF. Thus, one can see that the sediment transport
series are consistent with the properties of fractional Laplace
motion within the scaling regime.

V. DISCUSSION

In the previous section we established the fact that the
fractional Laplace motion model is able to reproduce the
intricate stochastic structure of the observed sediment trans-
port series over a range of scales and also reproduce the
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change of the PDFs of increments of sediment transport se-
ries in the scaling regime. In this section, we discuss the
physical significance of the notion of operational time in
sediment transport series. Near-bed turbulence is known to
play an important role in sediment transport �12�. Turbulent
velocity fluctuations pick up sediment particles and transport
them over long distances. However, since the turbulent ve-
locities themselves are known to exhibit variability over a
large range of scales, the entrainment time experienced by
the sediment particles is also expected to carry some of this
variability. This consideration leads to a randomization of
time over which a sediment particle is operated upon, as
sediment particles in different velocity zones experience time
to move faster or slower depending on whether they are in a
high- or low-velocity zone, respectively. Thus, the notion of
operational time can arise due to the stochastic nature of
sediment particle entrainment. It is interesting to note that
the turbulent velocity fluctuations themselves exhibit
Laplace and stretched Laplace distributions at small scales
and their PDFs become Gaussian at larger scales �33�. It is
also interesting to note that the rate of sediment particle en-
trainments, which are proportional to the shear stress fluctua-
tions at the bed, have been reported to follow a Gamma
distribution �9�. Both these observations are qualitatively
consistent with the fractional Laplace motion model for sedi-
ment transport proposed in this paper.

The observed multiscaling and intermittency in sediment
transport series �macroscale behavior� was shown to arise by

the introduction of the notion of operational time in
Brownian-type particle movement �microscale behavior�.
Thus, while the model parameters H and � relate to the �un-
observed� particle movement statistics, they are estimated
from the �observed� sediment transport statistics, and specifi-
cally from their multiscale behavior concisely parameterized
via the parameters c1 and c2. It is of interest to study how the
parameter space of �H ,�� relates to that of �c1 ,c2� in order to
gain insight on model sensitivity and the physical meaning of
the parameter � which characterizes the variability of the
particle motion. We compute the multifractal parameters c1
and c2 for different values of the model parameters H and �
by evaluating M�q ,r� from Eq. �12�, estimating ��q� in the
range 4�r�64, and approximating the ��q� curve as a qua-
dratic function in q �Eq. �4��. Figure 8 shows the contour
plots of c1 and c2 for different values of H and �. It is to note
that the average “roughness” of the sediment series, quanti-
fied by the parameter c1, is strongly dependent on the Hurst
exponent of the fractional Brownian motion H �see Fig. 8�a��
and not as much on the parameter � of the operational time.
On the other hand, from Fig. 8�b�, one can see that the inter-
mittency coefficient c2 is strongly dependent on the shape
parameter � of the distribution of operational time for a
given value of H. In particular, for a given value of H, the
value of c2 is higher for a higher value of �. One way to
understand this is to note that for higher values of � the
Gamma distribution has a higher variance. Thus, for higher
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FIG. 5. �a� Comparison of the increments of the sediment trans-
port series in kgs at scale r=20 �40 min� and �b� the same scale
increments of simulated fractional Laplace motion series with H
=0.39, �=6.8, and �=0.3. The values of H and � were obtained by
minimizing the mean squared error defined in Eq. �14�. The value of
� was obtained using Eq. �15�. The scale of r=20 was chosen for
comparison as it lies within the scaling regime of the sediment
transport series.
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FIG. 6. �a� The autocorrelation function of the increments of
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�b� The autocorrelation function of generated fractional Laplace
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fitted to the data. The autocorrelation of the fractional Laplace noise
is computed from Eqs. �10� and �11�.
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values of � the operational time is sampled from a distribu-
tion with higher variance and this variability in the opera-
tional time shows up as a higher intermittency coefficient in
the sediment transport series �larger degree of temporal het-
erogeneity in bursts of sediment transport increments�. It is
emphasized that estimation of the parameter values of the
fractional Laplace motion, H and �, was performed through
the scaling exponents of the structure functions of the sedi-
ment transport series �Eq. �14��. Direct estimation of the pa-
rameters H and �, or for that matter direct assessment of the
whole statistical structure of operational time from observa-
tions, would require access to series of particle entrainment
which are difficult to make and are not available in the ex-
perimental setting studied here. Rather, the present study at-
tempted a physical insight via relating the macroscale statis-
tics of the sediment series to the microscale dynamics of
particle movement.

VI. CONCLUDING REMARKS

In this work we proposed the adaptation of fractional
Laplace motion as a stochastic model for sediment transport.
Fractional Laplace motion arises from randomization of the
clock time in fractional Brownian motion, and introduces the
notion of operational time. The physical significance of op-

erational time in the context of sediment transport was rea-
soned on the basis that the stochastic nature of turbulent
velocity fluctuations near the bed induces stochasticity in
particle entrainment and, therefore, the time over which par-
ticles are in motion. The proposed model was shown able to
reproduce the multiscale statistics of sediment transport se-
ries and was validated against a data set from a large-scale
laboratory experiment. The effect of the model parameters on
the multifractal parameters of sediment transport series was
also discussed. Although direct estimation of the model pa-
rameters would require particle-scale observations, it was
shown here that an indirect estimation based on the statistics
of sediment transport series is possible. We see this work as
a step toward relating the microscale dynamics of particle
movement to the macroscale statistics of sediment transport
via minimum complexity stochastic models.
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[1] Understanding bed load transport fluctuations in rivers is crucial for development of
a transport theory and for choosing a sampling interval for ‘‘mean’’ transport rates. Field-
scale studies lack sufficient resolution to statistically characterize these fluctuations,
while laboratory experiments are limited in scale and hence cannot be directly compared
to field cases. Here we use a natural-scale laboratory channel to examine bed load
transport fluctuations in a heterogeneous gravel substrate under normal flow conditions.
The novelty of our approach is the application of a geometrical/statistical formalism
(called the multifractal formalism), which allows characterization of the ‘‘roughness’’ of
the series (depicting the average strength of local abrupt fluctuations in the signal) and
the ‘‘intermittency’’ (depicting the temporal heterogeneity of fluctuations of different
strength). We document a rougher and more intermittent behavior in bed load sediment
transport series at low-discharge conditions, transitioning to a smoother and less
intermittent behavior at high-discharge conditions. We derive an expression for the
dependence of the probability distribution of bed load sediment transport rates on
sampling interval. Our findings are consistent with field observations demonstrating that
mean bed load sediment transport rate decreases with sampling time at low-transport
conditions and increases with sampling time at high-transport conditions. Simultaneous
measurement of bed elevation suggests that the statistics of sediment transport
fluctuations are related to the statistics of bed topography.

Citation: Singh, A., K. Fienberg, D. J. Jerolmack, J. Marr, and E. Foufoula-Georgiou (2009), Experimental evidence for statistical

scaling and intermittency in sediment transport rates, J. Geophys. Res., 114, F01025, doi:10.1029/2007JF000963.

1. Introduction

[2] Measurements of bed load transport rates are funda-
mental to estimating material transport in a river, yet even
defining a representative time period over which to sample is
difficult due to the inherent variability and stochastic char-
acter of sediment transport. This variability is present over a
wide range of scales, from the movement of individual
grains [Iseya and Ikeda, 1987; Drake et al., 1988; Nikora
et al., 2002; Schmeeckle and Nelson, 2003; Sumer et al.,
2003; Ancey et al., 2008] up to the propagation of dunes and
bars [Kuhnle and Southard, 1988; Gomez et al., 1989;
Cudden and Hoey, 2003; Jerolmack and Mohrig, 2005],
even under steady flow conditions. Computed statistics of
instantaneous bed load transport rates (flux) have shown that
probability distributions are often skewed toward larger
values [e.g., Gomez et al., 1989], implying a high likelihood
of extreme fluctuations, the prediction of which is essential

for protecting hydraulic structures and assessing the stability
of riverine habitat [Yarnell et al., 2006]. It has also been
observed that the mean sediment flux depends on the time
interval (sampling time) over which the mean is computed,
and previous work has suggested that this time dependence
is the result of large, infrequent transport events [see Bunte
and Abt, 2005, and references therein].
[3] An analogous time dependence that has been more

thoroughly studied is that of the sedimentary record, where
apparent deposition rate (measured from two dated surfaces)
diminishes rapidly with measurement duration in virtually
all depositional environments [Sadler, 1981, 1999]. Models
show that this scale dependence is a direct result of the
statistics of transport fluctuations [e.g., Jerolmack and
Sadler, 2007]. In the case of geologic rates the data have
been assumed to obey simple scaling over a wide range of
time scales; that is, the statistical moments can be fitted as
power law functions of scale, with the exponents linear in
moment order. This power law relationship provides a value
for the Hurst exponent, H, which may be used to compare
rates at one scale to rates at a different scale via a simple
statistical transformation (see also section 5). However,
many geophysical processes exhibit multiscaling (or multi-
fractal behavior), which implies that a range of exponents
(and not a single exponent) is required to describe the
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changes in the probability density function (pdf) with scale.
Examples include rainfall intensities [e.g., Lovejoy and
Schertzer, 1985; Venugopal et al., 2006b], cloud structures
[e.g., Lovejoy et al., 1993; Arneodo et al., 1999a], river
flows [e.g., Gupta and Waymire, 1996], river network
branching topologies [e.g., Rinaldo et al., 1993; Marani et
al., 1994; Lashermes and Foufoula-Georgiou, 2007], braid-
ed river systems [e.g., Foufoula-Georgiou and Sapozhnikov,
1998], and valley morphology [e.g., Gangodagamage et al.,
2007]. This rich multiscale statistical structure includes
extreme but rare fluctuations (‘‘bursts’’) that occur inhomo-
geneously over time, giving rise to the so-called ‘‘intermit-
tency’’ and leading to a nontrivial scaling of the statistical
moments. A prime example of this is the velocity fluctua-
tions in fully developed isotropic turbulence [e.g., Parisi
and Frisch, 1985; Frisch, 1995; Arneodo et al., 1999b].
[4] To the best of our knowledge, bed load sediment

transport series have not been analyzed before from the
perspective of quantifying how the statistical moments of
the series change with scale. In an early study, Gomez et al.
[1989] acknowledged that the probability distribution of
sediment transport rates depends on sampling time (scale)
and extended the Einstein and Hamamori distributions to a
scale-dependent form, without, however, attempting any
scale renormalization. Knowledge of the variability inherent
in bed load transport rates at all scales is essential for
quantifying material flux, for designing appropriate mea-
surement programs, and for comparison among different
data sets and model predictions at different temporal and
spatial scales. Also, quantifying the statistical structure of
these fluctuations across scales may yield insight into the
fundamental physics of sediment transport and provide a set
of diagnostics against which to rigorously test competing
theories and bed load transport models [see also Ancey et
al., 2006, 2008].
[5] One would expect that the statistics of bed load

sediment transport would relate in some way to the statistics
of the fluctuations in bed elevation. Although river bed
elevations have been analyzed much more than sediment
fluxes and have been found to exhibit fluctuations across a
wide range of scales, in both sandy [e.g., Nikora et al.,
1997; Nikora and Hicks, 1997; Jerolmack and Mohrig,
2005] and gravelly [Dinehart, 1992; Nikora and Walsh,
2004; Aberle and Nikora, 2006] systems, the link between
bed topography and sediment flux remains largely unex-
plored due to the difficulty in simultaneous data acquisition.
Establishing a relationship between the statistics of bed
elevations and sediment transport rates is important for
effective modeling of river bed morphodynamics and also
for understanding the physics of sediment transport. More
practically, since bed elevation data are far easier to collect
than sediment flux measurements, an understanding of how
the statistics of the one variable relate to those of the other,
at least over a range of temporal scales, could greatly
facilitate estimating sediment transport rate in the field.
[6] To address these issues we present here an analysis of

data from a unique experimental laboratory setup capable of
mimicking transport conditions in the field (see section 3).
High-resolution, long-duration time series of sediment
transport rates and bed elevation were simultaneously
collected in a suite of experiments with a heterogeneous
gravel bed. We use the multifractal formalism, originally

developed for fluid turbulence [Parisi and Frisch, 1985;
Frisch, 1995; Muzy et al., 1994], to quantify the ‘‘rough-
ness’’ (the average strength of local burstiness in the signal)
and the ‘‘intermittency’’ (the temporal variability or hetero-
geneity of bursts of different strengths) and relate those
geometrical quantities to the statistics of sediment flux and
bed topography over a range of time scales. (Note that
throughout the paper the term ‘‘roughness,’’ as defined
mathematically via the strength of local singularities, refers
to the signal roughness being that sediment transport rates
or bed elevation fluctuations and it is not to be confused
with other uses of the term roughness such as bed roughness
or hydraulic roughness.) We substantiate the findings of
Bunte and Abt [2005] that mean sediment transport rate
diminishes with increasing sampling time at low bed stress
(slightly above critical) but does the opposite for high-
transport conditions, and we relate this reversal in trend to
the influence of large-scale bed forms. Our analysis also
allows characterization of the sampling time dependence of
all of the statistical moments, allowing thus the prediction of
extremes at small scales from the statistics at larger scales.

2. Description of Experiments

2.1. Experimental Setup

[7] The experiments reported here were conducted in the
Main Channel facility at the St. Anthony Falls Laboratory,
University of Minnesota, as part of the StreamLab06 project
undertaken by the National Center of Earth-surface Dynam-
ics (NCED) [Wilcock et al., 2008]. StreamLab06 was an 11
month multidisciplinary laboratory channel study focused
on various aspects of ecogeomorphology in gravel bed
streams. Five separate projects were conducted as part of
StreamLab06 and an extensive data set was collected
including hydraulic conditions (discharge, water slope,
bed slope, depth average velocity, and flow field), morpho-
logical conditions (bed topography, bar locations and
shapes, photo images of the bed), sediment transport char-
acterization (continuous sediment flux, recirculation grain
size information), water chemistry (temperature, dissolved
oxygen, nutrient concentrations) and biological conditions
(heterotrophic respiration, biomass accumulation, nutrient
processing rates). For the work presented here, we focus on
bed topography and sediment flux data collected in the first
of the five StreamLab06 projects, which focused on ground
truth testing of various conventional and surrogate bed load
monitoring technologies.
[8] The Main Channel is 2.74 m wide and has a maxi-

mum depth of 1.8 m. It is a partial-recirculating channel
with the ability to recirculate gravel while the water flows
through the channel without recirculation. Water for the
channel was drawn directly from the Mississippi River, with
a maximum discharge capacity of 8000 L/s. Water discharge
was controlled by a sluice gate situated at the head end of
the facility while flow depth was regulated by a sharp-
crested weir located at the downstream end of the channel.
The channel has a 55-m-long test section and in the experi-
ments reported here a poorly sorted gravel bed extended
over the last 20 m of this test section. Short, 0.4-m-high
bulkhead walls were located upstream and downstream of
the test section and served to contain the gravel bed
material. The gravel used in these experiments had a broad
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particle size distribution characterized by d50 = 11.3 mm,
d16 = 4.3 mm and d84 = 23.1 mm [see also Fienberg et al.,
2008]. The thickness of the gravel bed at the start of run was
approximately 0.45 m.
[9] The Main Channel was equipped with a sediment flux

monitoring system that provided the ability to collect high-
resolution, long-duration data sets of sediment transport
dynamics using field-scale gravel particle sizes and trans-
port rates. The sediment flux and recirculation systems were
colocated in the channel at the downstream end of the 20-m
test section. The flux monitoring system was composed of
five adjacent, identical aluminum weighing pans (positioned
0.54 m apart) that spanned the width of the channel and
independently measured the submerged weight of the gravel
intercepted by the bed load trap (see Figure 1). Each pan
could accommodate up to 76-mm-diameter particles and
hanged from an aluminum frame that extended from its
sides to a load cell connected to the ceiling above the Main
Channel (see Figure 2). The system used load cells manu-
factured by Interface Advanced Force Measurement (SM-
250) that had a capacity of 113 kg and were accurate to ±45
gram force. As a safety margin to avoid exceeding the
capacity of the weighing pan system, the pan rotation that
voided each bin’s contents was triggered at a user-specified
net weight, which in our case was set to 20 kg force (kg f).
[10] Removable stainless steel cover plates with 45-cm by

15-cm slots served to funnel the intercepted bed load
downward into the pans. The pans (also referred as drums)
were constructed of aluminum and had three radial
baffles welded to a common 3.8-cm diameter hub and to
two 81.3-cm-diameter end plates. They were oriented
horizontally and transverse to the channel under the
sediment trap. The three radial baffles formed two adjacent
120� ‘‘V’’-shaped bins, each of which had a capacity of 62 L.
The submerged weight of sediment in a bin at maximum
capacity was 62 kg f. Each pan operated independently using
a tipping bucket arrangement with ‘‘tips’’ consisting of
alternating clockwise and counterclockwise 120� rotations.
When the sediment mass in a pan reached a specified
threshold, an air cylinder either extended or retracted, causing
the pan to rotate 120 degrees. This action resulted in dumping
the contents of one bin and repositioning the adjacent empty
bin under the funnel to continue collecting bed load. In this
manner, all bed load was continuously captured and weighed
in the five independently operating pans.
[11] Bed load material that was transported out of the test

section fell by gravity into the pans and incrementally added

to the weight of the pan which was recorded every 1.1 s.
Material dumped out of the pans was collected in a large
hopper located underneath the pans, which also served as
the material source for the recirculation system. The rate of
gravel removal out of this hopper, and delivery to the
upstream end of the channel via a large pump, was manually
set by adjusting the rotation speed of a large helix, which
served to push gravel laterally out of the hopper and into the
recirculation line. In this way, the collection hopper and
helix served to buffer small fluctuations in sediment flux out
of the test section, providing a more steady ‘‘feed-type’’
delivery of sediment to the upstream end. Because the
physical size of the collection hopper was finite, the auger
speed (and hence upstream input sediment feed rate to the
test section) was manually adjusted periodically to maintain
storage in the hopper. In other words, an auger rate set too
high could potentially remove material faster than the test
section would deliver resulting in emptying of the hopper.
Conversely, an auger rate set too low would result in
overfilling of the hopper. We used periodic visual observa-
tions of the fill level in the collection hopper to inform our
manual adjustments of the auger speed. Slight adjustments
to auger speed were necessary every 30–60 min and very
rarely did the system collection hopper empty or overfill
meaning that the feed rate out of the collection hopper was
in balance with the long-term flux of bed load out of the test
section.
[12] The experimental setup also included five stationary

2.5-cm-diameter, submersible sonar transducers deployed
0.95 m below the water surface and 0.95 m upstream of
each pan. The sonar transducers, mounted to the end of rigid
1.5-cm steel tubes and directed perpendicular to the bed,
were used to collect continuous temporal bed elevation
information upstream of the each pan. Sonar data was
sampled at every 10 sec with a vertical precision of
�1 mm. The acquisition times for the bed elevation and
sediment accumulation data were based on precisely syn-
chronized clocks allowing the two data sets to be analyzed
together. Water temperature was also measured using YSI
thermistor capable of measuring up to ±0.1�C. Water
temperature for the two runs studied in this research
averaged 3.0�C.
[13] Measurements of bed elevation and sediment trans-

port were taken over a range of discharges corresponding to

Figure 1. Weighing pans located at the downstream end of
the experimental Main Channel.

Figure 2. Side view schematic of a pan and sediment
recirculation system in the Main Channel.
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different bed shear stresses. Bed shear stress is often
characterized in terms of the dimensionless Shields stress,
t*b. For steady, uniform flow it may be approximated as
t*b = hRS/Rd50, where hR and S are the hydraulic radius and
channel slope, respectively, and R = 1.65 is the relative
submerged density of silica. In the analysis presented here,
we report on two different discharges: a low-discharge case,
with a discharge of 4300 L/s, corresponding to a dimen-
sionless bed stress of about twice the critical value (Shields
stress, t*b = 0.085 using median diameter) and a high
discharge, 5500 L/s, corresponding to a bed stress about
five times the critical value (Shields stress, t*b = 0.196); see
Table 1 for relevant hydraulic parameters. (Note that the
critical Shields stress (also known as Shields number) was
estimated to be 0.047 [Meyer-Peter and Müller, 1948].)
[14] For both bed stress conditions, the channel was

allowed to run prior to data collection such that a dynamic
equilibrium was achieved in transport and slope adjustment
of the water surface and bed. Determination of the dynamic

equilibrium state was evaluated by checking the stability of
the 60 min average total sediment flux at the downstream
end of the test section. Using the pan accumulation data, the
acquisition software computed a 60 min mean of sediment
flux in all five pans. Dynamic equilibrium was reached
when variation in this value became negligible. In other
words, when the average of the previous 60 min of
instantaneous flux values computed from the pan data
stabilized, we determined the channel to be in dynamic
equilibrium and proceeded with formal data collection and
sampling.
[15] The bed load sediment accumulation series and the

corresponding bed elevation series were then recorded over a
span of approximately 20 h for each experiment. Figures 3a
and 3b display the time series of sediment accumulation over
2 min and 10 min intervals, respectively, for pan 4, and
Figure 3c the corresponding bed elevation series (recorded
by the sonar transducer immediately upstream of pan 4) for
the low-discharge conditions over a period of 10 h. Figure 4
shows the same series for the high-discharge conditions.
Considering the bed elevation series, it can be observed that
the low bed stress run (Figure 3c) produced a channel bed
with only limited topographic variation, i.e., without obvious
large-scale structures in the bed (the standard deviation in the
bed is 10.1 mm, compared to a d50 grain size of 11.3 mm).
However, the higher stress run (Figure 4c) generated sub-
stantial bed variability at large scale in the form of dunes,
with intermediate to particle-scale fluctuations superimposed
on these larger-scale features. In this study we focus on

Table 1. Hydraulic Conditions for the Two Studied Dischargesa

Qw (L/s) Depth (m) V (m/s) hR (m) Sw (%) t*b Tmean (�C)

4300
1.3 1.20 0.67 0.23 0.085 3.5

5500 1.3 1.54 0.67 0.53 0.196 2.7
aQw is design water discharge for the run; depth is average depth of flow

in test section; v is velocity of flow; hR is hydraulic radius; Sw is water
surface slope; t*b is dimensionless Shields stress (computed using
hydraulic radius); and Tmean is mean water temperature.

Figure 3. Low-transport conditions (flow rate 4300 L/s). Bed load sediment transport series
accumulated every (a) 2 min and (b) 10 min and (c) the corresponding series of gravel bed elevations.
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comparing these two runs using the multiscale analysis
techniques described in section 3.

2.2. Sources of Error in the Data

[16] One source of error in the accumulated sediment
series was the tipping events of the pans. To account for
this, the raw sediment accumulation data were preprocessed
prior to the analysis presented here. The preprocessing
involved removal of pan dumping events from the data
and translating the data set into a continuous accumulation
of sediment time series for each pan over the duration of the
experiment. A single tipping event required the removal of
no more than eight data points (�8.8 s) from the record. To
get the final time series of accumulated sediment transport,
the time series prior to the tipping event was left unchanged,
the tipping event was removed from the series, and all
subsequent points were shifted backward in time to create a
continuous time series as though the tipping event never
occurred. Overall, the data affected by the pan tipping
constituted less than 0.15% of the total data record and is,
thus, negligible.
[17] There were other sources of error, however. Sedi-

ment accumulation data in the pans should increase mono-
tonically, when corrected for tipping of the scales as
discussed above. At the resolution of our measurements
(approximately 1 s), however, sediment accumulation
showed negative excursions which would imply negative
bed load flux, which is not physically possible given the

experimental setup [see Fienberg et al., 2008, Figure 3].
These errors have been attributed to (1) the fluctuating water
surface over the pan, (2) the natural oscillation of the pans
after being hit by the falling gravel, and (3) to the vibration
caused by the large gravel recirculation pump which was
placed near to the pans. This error makes the raw sediment
data at small time scales (from 1 s up to approximately 1–2
min accumulations) unusable. As a check, we computed
distributions of sediment flux values averaged over different
time scales and found that data averaged over less than 2
min showed negative values, supporting the contention that
scales smaller than 2 min are error prone. Also, although
there were five pans, pans 1 and 5 (Figure 1) were not used
in order to avoid data potentially impacted by wall effects.
[18] Bed elevation data were substantially less error

prone, due to the acoustic (rather than mechanical) nature
of the measurements. Our multiscale analysis showed a
small noise regime which was only a small factor larger
than the sampling interval of 10 s.

3. Roughness, Intermittency, and Statistical
Scaling

3.1. Characterizing Signal Roughness and
Intermittency

[19] Previous authors [e.g., Gomez et al., 1989; Ancey et
al., 2006] have observed and documented high fluctuations
in bed load sediment transport rates or particle counts at

Figure 4. High-transport conditions (flow rate 5500 L/s). Bed load sediment transport series
accumulated every (a) 2 min and (b) 10 min and (c) the corresponding series of gravel bed elevations.
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short time scales and have described these series as ‘‘inter-
mittent.’’ In these and other studies it has also been noted
that as flow rate increased, the sediment transport was seen
to be ‘‘smoother’’ or more continuous, whereas at low flow
rates it was ‘‘rougher’’ or more ‘‘bursty.’’ These terms have
been used in a qualitative way to describe the presence (or
absence) of sudden bursts of sediment or high fluctuations at
short time scales that arise from the stochastic nature of the
transport and the collective behavior of particle dynamics.
[20] In this paper the ‘‘roughness’’ and ‘‘intermittency’’

of the sediment transport series are mathematically defined,
allowing a more precise quantification of the nature of the
fluctuations in bed load sediment at small time scales. A
mathematical characterization of the strength of local fluc-
tuations in a function X(t) is given by the Hölder or
singularity exponent h(t0), defined at any point t0 to be
the largest exponent such that:

X tð Þ � X t0ð Þj j � C t � t0j jh t0ð Þ; as t ! t0 ð1Þ

where C is a constant. This definition holds for 0 � h � 1,
but it can be generalized to h > 1, as discussed in section 3.3
[see also Muzy et al., 1994]. The Hölder exponent gives a
local measure of the smoothness or degree of differentia-
bility of the function X(t): a value of h(t0) � 1 indicates that
the function is smooth at t0, in the sense that it is at least
once differentiable at the point t0, whereas a function with
h(t0) = 0 is so rough that it is discontinuous at that point.
Between these extremes, a value of 0 < h(t0) < 1 means that
the function is continuous but not differentiable at t0, with a
higher h value (closer to 1) implying that the function is
‘‘smoother’’ or more regular, and a lower h value (closer to
zero) implying that the function is ‘‘rougher’’ or more
irregular.
[21] Having established a measure of local (point-wise)

roughness in a signal, it is natural to ask what kind of h(t0)
values are present in an observed time series, and how they
are distributed. If we denote the set of all points in the
function X(t) with a particular value of Hölder exponent h as:

W hð Þ ¼ t0 : h t0ð Þ ¼ hf g ð2Þ

then, in general, for a multifractal function these sets of
points are interwoven fractal sets whose distribution can be
characterized by the so-called singularity spectrum D(h),
defined as

D hð Þ ¼ DimH W hð Þð Þ ð3Þ

where DimH is the Hausdorff dimension of the fractal set
[e.g., Schroeder, 1991]. In other words, the singularity
spectrum D(h) describes the relative frequency of occur-
rence of local abrupt fluctuations (singularities) with
strength h. In a one-dimensional function like a time series,
the value of h corresponding to the peak of the singularity
spectrum indicates the most frequently occurring singularity
or fluctuation strength. (Note that if D(h) is symmetric,
which is a good approximation for most signals, then this
value characterizes the ‘‘average roughness’’ of the signal as
it coincides with the arithmetic mean of the local
singularities h.) The range of h over which D(h) � 0, or

the spread of the singularity spectrum, reflects the temporal
heterogeneity of the local singularities; that is, it measures
the degree of clustering in the abrupt local fluctuations of
various strengths. Simply put, a signal with a wide D(h) will
have sparse regions where the strength of the local
fluctuations is much greater than (or much less than) the
mean fluctuation strength, and hence will display infrequent
but exceptionally large ‘‘bursts’’ at small scales embedded
within bursts of lesser strength; that is, the signal will be
very ‘‘intermittent.’’ On the other hand, a D(h) spectrum
which is just a spike, i.e., D(h) = 1 at h = H and zero
elsewhere, indicates a signal which exhibits one strength of
singularity only, H also called the Hurst exponent, which is
homogeneously distributed throughout the signal (in this
case the signal has zero intermittency). It is noted that H,
which is a local measure of variability, provides different
information than the standard deviation of a signal, which is
a global measure of variability; in other words two signals
with the same standard deviation can have considerably
different values of H [e.g., see Turcotte, 1997].

3.2. Multiscale Analysis

[22] While the spectrum of singularities D(h) can be used
to describe the ‘‘roughness’’ and ‘‘intermittency’’ of a
signal, it can be difficult to estimate it directly from the
data. An interesting mathematical result (the so-called
multifractal formalism [Parisi and Frisch, 1985; Muzy et
al., 1994]) establishes that D(h) relates to how the proba-
bility density function (pdf), or equivalently the statistical
moments, of the signal fluctuations changes with scale. Let
the fluctuation S(t0, a), at any time t0 and scale a, be defined
as

S t0; að Þ ¼ X t0 þ að Þ � X t0ð Þ ð4Þ

and the statistical moments of the absolute values of these
fluctuations by

M q; að Þ ¼ S to; að Þj jqh i ð5Þ

where angle brackets denote expectation over time. For a
process that exhibits statistical scale invariance, the
statistical moments of the fluctuations behave as a power
law function of scale:

M q; að Þ � at qð Þ ð6Þ

where t(q) is the so-called spectrum of scaling exponents
and is a function of the moment order q. Thus if the series
exhibits scale invariance, the function t(q) completely
describes the manner in which the statistical moments of the
pdf of fluctuations varies with scale.
[23] It is the scaling function t(q) that can be used to retrieve

the spectrum of singularities D(h). The precise transform
between these two representations is given by the Legendre
transform [Parisi and Frisch, 1985; Muzy et al., 1994]:

D hð Þ ¼ min
q

qh� t qð Þ þ 1½ � ð7Þ

In this way the spectrum of singularities describing the
average roughness and intermittency of the signal can be
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estimated through the scaling properties of the statistical
moments of the signal fluctuations.

3.3. Generalized Fluctuations and the Wavelet
Transform

[24] Although the fluctuations S(t0, a) of a time series can
be computed by directly taking the first-order increments, as
in equation (4), calculating the statistical moments in this
way (which gives rise to the so-called structure function
approach) has some limitations. First, these fluctuations can
be corrupted by small-scale noise (since observations are
used directly without local smoothing); in addition, they do
not remove higher-order nonstationarities (it is easy to show
that the first-order increments remove only constant level
trends); and finally, they cannot estimate singularity
strengths h > 1. To overcome these limitations, the contin-
uous wavelet transform can be used to define generalized
fluctuations in the time series [e.g., see Arneodo et al.,
1995; Jaffard, 1997; Venugopal et al., 2006a; Lashermes
and Foufoula-Georgiou, 2007]. In this framework we
redefine the (generalized) fluctuations S(t0, a) to be

S t0; að Þ ¼
Z1
�1

ya;t0 tð ÞX tð Þdt ð8Þ

where ya,t0
(t) is a ‘‘differencing function,’’ as for example,

the first derivative of a Gaussian function. In particular ya,t0
is a wavelet resulting from shifting and scaling a mother
wavelet y(t), such that,

ya;t0 tð Þ ¼ 1

a
y

t � t0

a

� �
ð9Þ

where t0 is the location and a is the scale parameter. For the
continuous wavelet transform to be invertible, the mother
wavelet must satisfy the invertibility condition

R1
�1 ty(t)dt

= 0 i.e., it must have a zero mean (which makes it a kind of
local differencing function; e.g., see Mallat [1998] or
Kumar and Foufoula-Georgiou [1997]). A commonly used
mother wavelet is the family of Gaussian wavelets defined
as the Nth-order derivatives of a Gaussian function g0(t),
i.e., gN(t) = (dN/dtN) g0(t), modulus a proper multiplicative
factor to ensure correct normalization. Defining the
fluctuations S(t0, a) using the first-order derivative of the
Gaussian function can be seen as computing first-order
increments of the series after the series has been locally
smoothed with a Gaussian kernel or, equivalently, as
computing first-order increments and then performing a
smoothing (weighted averaging). (This can be easily
deduced from the convolution theorem [see also Lashermes
et al., 2007].) Similarly, defining multiresolution coeffi-
cients using gN(t) can be considered as smoothing the series
with a moving Gaussian window, followed by Nth-order
differencing (the standard deviation of the Gaussian
function determines the ‘‘scale’’ at which the smoothing
and thus differencing is done [see Lashermes and Foufoula-
Georgiou, 2007]). The smoothing operation removes the
noise and the higher-order differencing removes nonstatio-
narities from the signal, rendering the wavelet-based

generalized fluctuations appropriate for characterization of
statistical scaling [e.g., see Muzy et al., 1994].
[25] One property that should be considered when choos-

ing an appropriate mother wavelet for defining the mutir-
esolution coefficients is the number of vanishing moments.
Note that the mother wavelet is said to have N vanishing
moments if

Z1
�1

t kyo tð Þdt ¼ 0

for 0 � k < N. The Gaussian wavelet gN(t), defined above as
the Nth derivative of the Gaussian, can be easily shown to
have N vanishing moments. Defining multiresolution
coefficients with a mother wavelet which has N vanishing
moments can be shown to remove from the series an
additive polynomial trend of degree less than N [e.g., see
Kumar and Foufoula-Georgiou, 1997]. Therefore, the
wavelet-based multiscale analysis proposed here renders
the fluctuation series stationary if one chooses a wavelet
with more vanishing moments than the degree of non-
stationarity in the data. In practice, the degree of
nonstationarity of the data series is not known in advance,
so one applies the wavelet transform gN(t) with increasing
values of N until the results of the analysis do not vary with
N: this will imply that the order has been chosen large
enough to remove any nonstationarities. The correct
selection of multiresolution coefficients is important for a
meaningful multifractal analysis as has been recently
demonstrated by Lashermes and Foufoula-Georgiou
[2007]. For example, using standard fluctuations (first-order
differences) to analyze a nonstationary signal will result in a
spurious estimate of H = 1 misleading one to assume that
the signal is smooth and differentiable.
[26] In this study, the fluctuations, S(t0, a), of the bed load

sediment and bed elevation series at various scales were
computed using the wavelet transform (equation (8)) with
the wavelet g3(t), since this was the lowest-order wavelet
able to remove all nonstationarities from the sediment
transport series (a lower-order wavelet g2 proved sufficient
for the bed elevation series but the use of the higher-order
wavelet g3 does not alter the results; this is discussed in more
detail in section 4). The moments M(q, a) were then
estimated using equation (5), and the scaling exponents
t(q) computed from the log-log linear relationships (equa-
tion (6)) over the scaling range. This in turn allowed the
calculation of the singularity spectrum D(h) via equation (7).

3.4. Scale Dependence of the pdf of the Fluctuations

[27] The scaling exponents t(q) are not only of interest
for calculating the singularity spectrum D(h), but also for
describing how the pdf of the fluctuations depends on scale.
As discussed in section 3.2, the statistical moments M(q, a)
in equation (5) describe how the fluctuations of a process
change with scale and, for a scale-invariant process, this
change is captured in the t(q) curve. In the case of simple
scaling, the scaling exponent function is linear in moment
order, i.e., t(q) = qH for some constant H (called the Hurst
exponent), which can be shown to imply that the pdf of the
fluctuations at scale a, Pa(S) � P(S(t, a)), is related to the
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pdf at another scale a by [e.g., see Arneodo et al., 1997;
Venugopal et al., 2006a]

Pa0 Sð Þ ¼
a

a0

� ��H
Pa

a

a0

� ��H
S

� �
ð10Þ

Note that the normalizing factor (a/a0)�H is a deterministic
kernel that depends on H and the ratio of scales (not each
scale individually). As this type of statistical scaling
behavior is controlled by a single parameter only, it is
referred to as monoscaling. Note that equation (7) implies
that in the monoscaling case D(h) = d(h � H), i.e., the only
Hölder exponent with dimension greater than zero is h = H,
and the function is completely uniform in its roughness, i.e.,
not intermittent, at small scales.
[28] In the more general case of multiscaling, the scale

invariance relation (equation (6)) still holds, but t(q) is not
linear but a concave function of the moment order q. In this
case, the pdf of the fluctuations does not maintain its shape
between two different scales but changes continuously via
convolution with a kernel that depends on the ratio of scales
[Arneodo et al., 1999b; Venugopal et al., 2006a]. The
generalization of equation (10) for multifractals is obtained
[Castaing et al., 1990] by considering that H is not a
constant but has a probability density function r(h). In this
case, expression (10) becomes

Pa0 Sð Þ ¼
Z1
�1

r hð Þ a

a0

� ��h
Pa

a

a0

� ��h
S

� �
dh for a0 < a ð11Þ

In general, the pdf of the fluctuations is expected to widen
and have fatter tails as the scale decreases. In turbulence, for
example, the above transformation renormalizes the almost
Gaussian pdf of turbulent velocity fluctuations at very large
scales to a thick-tailed pdf at small scales. It is noted that the
probability density involved in the renormalization of the
pdf’s is related to the spectrum of singularities D(h), r(h) /
a�D(h), and reflects the presence of Hölder exponents of
various strengths which are inhomogeneously distributed
throughout the signal (see Frisch [1995] and also Venugopal
et al. [2006a] for a discussion of the equivalency of the
geometrical and statistical interpretations). The pdf rescal-
ing of (11) can be expressed in a convolution form as

Pa0 Sð Þ ¼
Z1
�1

Gaa0 uð Þe�uPa e�uSð Þ du for a0 < a ð12Þ

where u = h ln(a/a0) and Gaa0(u) = r[u/ln(a/a0]/ln(a/a0). This
implies that the pdf at scale a0 can be expressed as a
weighted sum of dilated pdf’s at larger scales a > a0. The
kernel Gaa0(u) is called the propagator and can be estimated
from the data (see Castaing et al. [1990] for the theory and
Venugopal et al. [2006a] for an application to high-
resolution temporal rainfall series). Once the propagator is
known, a known pdf at any scale can be used to derive the
pdf at any smaller scale via equation (12).
[29] To gain better insight into how the t(q) (or D(h))

curve controls the pdf change over scales, let us consider the
coefficient of variation, Cv, which is the ratio of the standard

deviation to the mean, Cv = s/m. For a monoscaling process,
this ratio would be constant with scale, as both the mean
and standard deviation are rescaled equally, as shown by
equation (6). In a multiscaling situation, however, the
increasing width of the pdf leads to Cv increasing with
decreasing scale. The precise behavior of Cv with scale can
be seen by noting that Cv

2 + 1 = M(2, a)/M(1, a)2, so that for
a multiscaling process, equation (6) implies (Cv

2 + 1) �
at(2)�2t(1). In other words, t(2) � 2t(1) characterizes the
(second order) relative stretching of pdf’s across scales, and
its magnitude is also a measure of deviation from mono-
scaling. Similar relationships can be worked out for higher-
moment ratios. As we will see for the sediment transport
series, Cv significantly depends on scale, attesting to the
presence of multiscaling.

3.5. Parameterizing the Scaling Properties and
Singularity Spectrum

[30] While knowing the t(q) (or D(h)) curve completely
characterizes the scale dependence of the pdf’s of fluctua-
tions, for practical purposes it is often desirable to param-
eterize these curves concisely. Assuming an analytic form of
the t(q) curve, the simplest parameterization for multiscal-
ing is to extend the linear model of t(q) used for mono-
scaling to a quadratic model, that is,

t qð Þ ¼ c0 þ c1q�
c2

2
q2 ð13Þ

In this parameterization, the constant c0 = t(0) is the scaling
exponent of the zeroth-order moment, which will be equal
to zero if the support of the field under analysis fills the
space, as we see for both sediment flux and bed elevation.
This leaves two parameters to describe the (multi)scaling:
the parameters c1 and c2 control the scaling of all the
moments and the change in shape of the pdf with changing
scale. The two parameters c1 and c2 in (13) can be estimated
by fitting a quadratic function to the empirical t(q) curve, or
via a more robust methodology called the cumulant analysis
(see Delour et al. [2001] and Venugopal et al. [2006a] for an
application to rainfall series).
[31] For such a quadratic t(q), it can be shown from

equation (7) [e.g., Venugopal et al., 2006a] that the spec-
trum of singularities is also quadratic, with

D hð Þ ¼ 1� 1

2c2
h� c1ð Þ2 ð14Þ

This shows that the most frequently occurring value of the
Hölder exponent (peak of the D(h) curve), and hence the
mean roughness/smoothness of the function, is given by the
parameter c1 (note that D(h) = 1 and D(h) in (14) is
symmetric around c1). Alternatively, c2 provides a measure
of the spread of the D(h) curve and hence prescribes the
degree of intermittency. For this reason, c2 is referred to as
the ‘‘intermittency coefficient.’’ The limiting case of c2 = 0,
that is the case of a monofractal, leads to a delta function
D(h) = d(h � c1), and hence gives a single Hölder exponent
H = c1 (the same exponent H as in equation (10)). This
means there is no intermittency: the function will have the
same degree of local roughness (irregularity) everywhere.
For a multifractal (c2 > 0), however, a range of local
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fluctuation strengths will be inhomogeneously distributed
throughout the signal, with the minimum and maximum
Hölder exponents given by hmin/max = c1 �

ffiffiffiffiffiffiffi
2c2
p

(where the
D(h) curve crosses below 0). So with increasing c2 there is a
wider range of local fluctuation strengths present in the
signal, and hence a greater degree of intermittency.

4. Results

4.1. Sediment Transport Scaling

[32] Bed load sediment transport fluctuations were ana-
lyzed using the multifractal formalism. Fluctuations were
computed by applying a differencing filter on the accumu-
lated sediment series Sc(t), i.e., equation (8) with the generic
function X(t) replaced now by Sc(t) and using as differenc-
ing filters wavelets of increasing order gN(t), where N = 2, 3,
and 4. It is noted that by using the third derivative of the
Gaussian, g3(t), on the accumulated sediment series gives
fluctuations that represent second-order increments of the
bed load transport rates; that is, they capture the local rate of
change in the sediment transport rates. This filtering guar-
antees removal of linear trends in the rate of sediment
transport series, which, if present, can influence the results.
Indeed such rate changes were found present during the 20 h
duration of our data collection [see Fienberg et al., 2008,
Figure 3] and thus the g3(t) was adopted for our analysis.
However, it is noted that the use of lower-order wavelets
does not significantly change the estimates of the param-
eters as can be seen from the detailed Table 2. Having
defined the fluctuations, the statistical moments M(q, a)
were then computed (equation (5)), and are shown as a
function of scale in Figure 5, for pan 3 (see Figure 1).
Similar results were obtained for the other pans, except for
pans 1 and 5 which suffered from wall effects and showed
no good scaling range. Three different regimes can be
distinguished for both the low and high discharge: a
small-scale regime (scales below 1 min) which is judged
to be noise dominated (see section 2.1); a log-log linear

scaling regime in the temporal range of approximately 1 to
10 min; and then a short transitional regime before a
leveling off of the moments is reached. Here we focus on
the longer scaling regime between 1 min and 10 min
marked by the dashed lines in Figure 5. The scaling
exponents of the various moment orders, t(q), were esti-
mated using linear regression within this scaling range and
are shown for both discharges in Figure 5 (bottom). It can
be seen that both curves deviate from linear behavior and
hence depart from simple scaling and instead demonstrate
multiscaling. The parameters c1 and c2 found by fitting the
quadratic model (equation (13)) to these curves are pre-
sented in Table 3, along with a summary of the scaling
range and parameters for the other pans for which uninter-
rupted data were available. It is noted that the quadratic fit is
very good and the fitted curves are indistinguishable from
the measured points.
[33] This scaling of the moments reflects the scaling of

the pdf of sediment fluctuations. Figure 6 shows the pdf’s of
the sediment transport rates (defined as accumulations over
an interval divided by the length of that interval) for 2-min
and 10-min intervals for both high and low discharge. It can
be seen that for both flow conditions, the very skewed and
fat-tailed pdf at 2 min changes to a much more symmetrical
pdf at 10 min, although in the case of the low flow, there is
still some skewness present even at the larger sampling
time. It is recalled that the parameters c1 and c2 control this
pdf change over scales through the rescaling kernel (equa-
tion (12)). An easy way to observe the relative narrowing of
the pdf with increasing scale is via the coefficient of
variation Cv computed from the data, which is plotted in
Figure 7 as a function of scale. The decreasing values of Cv

with increasing scale show that the width (spread) of the pdf
changes with scale in a different manner compared to the
mean (it reduces more quickly), in agreement with earlier
observations by Kuhnle and Southard [1988], and hence
reinforces the conclusion that sediment transport fluctua-
tions exhibit multiscaling. A monoscaling function would
have constant Cv as mean and standard deviation would
rescale similarly (see equation (6)).
[34] Concentrating on the first-order (q = 1) statistical

moment, which is the mean sediment accumulation in an
interval Dt (scale a in the previous notation), we note that it
scales as Dtt(1) where t(1) = c1 � c2/2 from equation (13).
Using the values of c1 and c2 (Table 3) for low flows, it
implies that within the scaling range of 1 and 10 min the
mean amount of accumulated sediment (hS(t, Dt)i)
increases as approximately

ffiffiffiffiffiffi
Dt
p

. If one doubles the sam-
pling interval, for example, the amount of sediment accu-
mulated does not double but increases only by a factor of
about 1.41. When considering the mean sediment transport
rate, (hS(t, Dt)/Dti), the above results imply that it scales as
(Dt)�0.5 or that the bed load transport rate decreases with
increasing sampling interval Dt. In other words, doubling
the sampling interval results in a transport rate that is
approximately 0.7 (= 1/

ffiffiffi
2
p

) times smaller.
[35] For high flow rates, the estimated value of t(1) is

approximately 1.1 (using the values of c1 and c2 from Table
3 in equation (13)) implying that within the scaling range of
1 and 10 min, the mean amount of accumulated sediment
increases as approximately (Dt)1.1. In this case, doubling
the sampling interval increases accumulated sediment by a

Table 2. Multifractal Parameters Estimated for Low and High

Flows Using Different Gaussian Waveletsa

Shields Stress Pan Scaling Range (min) Wavelet c1 c2

Q = 4300 L/s
0.085 2 1.2–10 g2 0.57 0.12

2 1.2–10 g3 0.56 0.14
2 1.2–10 g4 0.54 0.12
3 1.2–10 g2 0.52 0.11
3 1.2–10 g3 0.49 0.13
3 1.2–10 g4 0.48 0.13
4 1–8 g2 0.49 0.10
4 1–8 g3 0.47 0.10
4 1–8 g4 0.45 0.10

Q = 5500 L/s
0.196 2 1–10 g2 1.04 0.09

2 1–10 g3 1.07 0.09
2 1–10 g4 1.09 0.10
3 1–10 g2 1.04 0.11
3 1–10 g3 1.07 0.10
3 1–10 g4 1.09 0.11
4 1–10 g2 1.09 0.11
4 1–10 g3 1.12 0.11
4 1–10 g4 1.14 0.11

aSee text for definitions.
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factor of about 2.1. Considering the mean sediment trans-
port rate, one sees that in the high-flow conditions the rate
does not remain constant with sampling interval (within the
range of sampling interval of 1 to 10 min) but rather slightly
increases by a factor of approximately 1.1 (= 20.10).
[36] The above scaling applies only to the mean and is

controlled by the value of (c1 � c2/2). As discussed in
sections 3.2 and 3.4, our analysis allows one to quantify
how higher-order statistical moments change with sampling
interval in a similar way, for example the second moment
about the origin changes as a power law on scale with an
exponent 2(c1 � c2), etc., as dictated by equations (6) and
(13).
[37] Turning to the singularity spectrum D(h) which

characterizes more directly the abrupt fluctuations of the
sediment transport series, we recall that it can be computed
from the scaling exponents t(q) via the Legendre transform
(equation (7) or directly from equation (14) using the fitted
parameters c1 and c2). Figure 8a shows the D(h) spectrum
for the sediment transport in pan 3, calculated from the
quadratic model fit using the parameters in Table 3. It can
be seen that at the low discharge, the sediment transport
series is both rougher on the average and more intermittent

(lower c1 and higher c2, respectively). Conversely, the high-
discharge case results in a much smoother and less inter-
mittent sediment transport series (higher c1 and lower c2,
respectively). As it can be seen from Figure 8a, for low flow
rates, hmin is approximately zero, and hmax is slightly larger
than 1. This implies that there are clustered regions in the
sediment transport rate series where very high fluctuations
are expected over very small intervals (a value of h = 0
corresponds to a discontinuous signal) while there are also

Figure 5. (top) Statistical moments of the fluctuations of the sediment transport series as a function of
scale and (bottom) the scaling exponents t(q) estimated from the log-log linear regressions within the
scaling regions. Notice the deviation of t(q) from the linear line establishing the presence of multifractality.
(left) For low-transport conditions and (right) for high-transport conditions.

Table 3. Summary of Statistical Scaling Analysis Results for the

Bed Load Sediment Seriesa

Pan Scaling Range (min) Shields Stress t(2) � 2t(1) c1 c2

Q = 4300 L/s
2 1.2–10 �0.20 0.56 0.14
3 1.2–10 0.085 �0.19 0.49 0.13
4 1–8 �0.15 0.47 0.10

Q = 5500 L/s
2 1–10 �0.13 1.07 0.09
3 1–10 0.196 �0.16 1.07 0.10
4 1–10 �0.15 1.12 0.11
aSee text for definition of variables.
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regions that are very smooth (a value of h = 1 corresponds
to a signal with continuous first derivative). For high flow
rates the values of hmin and hmax are approximately 0.8 and
1.5, implying that the sediment transport series is very
smooth overall but there are limited clustered regions where
some abrupt fluctuations at small scales are encountered
(signal slightly nondifferentiable as h < 1) while the
majority of the series is very smooth. One would expect
that these bursts in the sediment transport series are
connected to high fluctuations in the bed elevation series
which would allow to a lesser or larger degree a collective
mobilization of gravel particles. In section 4.2 a multifractal
analysis to characterize the roughness and intermittency of
bed elevation fluctuations is presented.

4.2. Bed Elevation Scaling

[38] Spatial bed elevation fluctuations have been previ-
ously analyzed in terms of their scaling properties, and
deviation from simple scaling has been reported [Nikora
and Walsh, 2004]. Here the temporal fluctuations of bed
elevation were analyzed with the wavelet-based multiscale
framework, and scaling of the moments was documented
within the range of scales from approximately 1 to 10 min
(see Figure 9), which coincides with the scaling range
observed in the sediment transport series and suggests a
close link between the dynamics of the two series. Above
the characteristic scale of 10 min, the moments leveled off
and the statistical quantities became independent of time
scale. The scaling exponents t(q) for these moments are
shown in Figure 9, for the high- and low-discharge experi-
ments. As other authors have reported [e.g., see Nikora and
Walsh, 2004], a deviation from simple scaling is observed
for both discharge rates indicating the presence of temporal
heterogeneity in the local roughness (what we have called
‘‘intermittency’’) in bed elevation fluctuations. The param-
eters c1 and c2 fitted to the t(q) curves of the bed elevation
fluctuation series are displayed in Table 4, and the
corresponding singularity spectra D(h) are presented in
Figure 8b. Similar to the sediment transport fluctuations,
we observe that bed elevation fluctuations are rougher on an
average in the low-discharge case than in the high-discharge
case (c1 = 0.57 versus c1 = 0.68), although to a lesser extent

than in the sediment series. However, considering the
degree of intermittency in the bed elevation fluctuations,
we see that it is higher at the high-transport case (a wider
D(h) spectrum and a larger c2 value) with a coefficient of
intermittency c2 = 0.13, versus a narrower D(h) and c2 =
0.06 in the case of low transport. This is reverse from what
is observed in the sediment transport fluctuations (see also
Figure 8a) and calls for an explanation based on further
experimentation and mechanistic modeling.

5. Discussion

[39] The simultaneous collection of bed load transport
and bed elevation data in a field-scale channel is the major
strength of the experimental setup used in this work. The
large channel geometry, and high temporal resolution of the
data, allowed robust statistical analysis over a wide range of
temporal scales. Despite the more comprehensive data sets
collected as part of the StreamLab06 experiments our
analysis here is concentrated on two data sets at two
different flow rates, as these are the only data currently

Figure 7. Coefficient of variation of the bed load sediment
transport series.

Figure 6. Probability distribution functions of the sediment transport rate (flux) for sampling intervals
of 2 and 10 min for (left) low- and (right) high-discharge rates. The probability distributions have been
shifted to zero mean for comparison.
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Figure 8. Fitted quadratic singularity spectra D(h) obtained for (a) bed load sediment transport series
and (b) bed elevation fluctuation series for the low- and high-discharge cases, respectively.

Figure 9. (top) Statistical moments of the fluctuations of the bed elevation time series as a function of
scale and (bottom) the scaling exponents t(q) estimated from the log-log linear regressions within the
scaling regions. Notice the deviation of t(q) from the linear line establishing the presence of
multifractality. (left) For low-transport conditions and (right) for high-transport conditions.
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available for analysis. The mixed grain size distribution of
the feed material, while beneficial for mimicking a natural
gravel stream, makes it more difficult to discern the influ-
ences of spatial grain size sorting [Iseya and Ikeda, 1987;
Kuhnle and Southard, 1988; Cudden and Hoey, 2003; Frey
et al., 2003] from those of bed topography and collective
grain motion [Gomez et al., 1989; Jerolmack and Mohrig,
2005; Ancey et al., 2008] on sediment transport fluctuations.
Also, for this experiment we do not have any data regarding
armoring of the streambed over the duration of the experi-
ments, or the grain size distributions of individual sediment
pulses. With these limitations in mind, in this section we
place our experimental results and analysis in the context of
laboratory and field studies of sediment transport fluctua-
tions in uniform and mixed grain size channels.
[40] The multiscaling analysis demonstrates how the

statistical moments of bed load transport rate depend on
the time scale of observation. To illustrate, we first examine
the behavior of the mean transport rate (the first moment).
Estimating mean sediment transport rate is essential for
measuring the material flux through a river, and for model
input and/or calibration. For the low-discharge run (t*b =
0.085), mean transport rate decreased with sampling inter-
val, while at higher discharge (t*b = 0.196), the trend
reversed: mean transport rate slightly increased with sam-
pling interval over a comparable time range. A similar trend
was discovered by Bunte and Abt [2005], who studied the
effect of sampling interval on bed load transport rates
measured using Helley-Smith samplers deployed in a mixed
gravel-cobble stream of a size comparable to our experi-
ments. They found that in moderate to high flows (50%
bankfull to almost bankfull conditions), 2 min sampling led
to an average transport rate 2 to 5 times lower than that
found with 10 min sampling. However, at lower flows
(close to the incipient gravel motion), 2 min sampling
overestimated the transport rates at 10 min sampling by a
factor of almost 3. Although not directly comparable, the
trends observed are qualitatively the same as our experi-
ments (Figure 10). Bunte and Abt [2005] attribute the
higher-discharge trend to the effect of large but infrequent
transport events associated with the crests of bed forms:
small sampling intervals underestimate mean transport be-
cause they are likely to miss these events. They suggest that
the reversal in trend for the low-discharge observations is
the result of sampling and computational difficulties, rather
than a ‘‘real’’ effect. Our high-resolution experiments dem-
onstrate that this trend reversal might in fact be real.
[41] It is stressed that it is difficult to quantitatively

compare the field results to our laboratory experiments,
due to differences in transport and lack of the detailed field

data. Bunte and Abt [2005] do not report Shields stress, but
they report that their low-flow observations correspond to
incipient sediment motion which is supported by our
calculation of their critical Shields stress (t* = 0.047) using
their reported bankfull flow characteristics. Our low-flow
experiment had a Shields stress almost twice the critical
value, making it comparable in terms of stress to their
moderate flow observations. Thus it seems that in both
the study of Bunte and Abt and our study, suggest a reversal
in trend, from decreasing to increasing mean transport rate
with sampling interval, as bed stress increases. The fact that
the reversal appears to occur for different stress values in the

Table 4. Summary of Statistical Scaling Analysis Results for the

Bed Elevation Time Seriesa

Probe Scaling Range (min) Shields Stress t(2) � 2t(1) c1 c2

Q = 4300 L/s
4 1–10 0.085 �0.04 0.57 0.06
5 1–10 �0.06 0.53 0.08

Q = 5500 L/s
2 0.5–8 �0.18 0.65 0.12
3 0.5–8 0.196 �0.19 0.68 0.14
4 0.5–8 �0.20 0.76 0.13
aSee text for definition of variables.

Figure 10. Geometric means at different sampling times
from (a) field experiments (reproduced from Bunte and Abt
[2005]) and (b) theoretical results from this study.
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field and the laboratory may be the result of the multiple
intricacies of sediment transport and grain size sorting of
heterogeneous mixtures in turbulent flows. Clearly, experi-
ments systematically document how the statistics of trans-
port rate change with bed stress over a wide range of values
would be helpful in illuminating this point.
[42] Several field and laboratory experiments have docu-

mented sediment transport fluctuations in mixed grain size
sediments. Iseya and Ikeda [1987] found strong longitudinal
grain size sorting in mixed gravel and sand experiments,
which caused periodic fluctuations in transport rate due to
changing local sediment supply. Such periodic pulses in
gravel-sand mixtures have also been reported by Kuhnle
and Southard [1988] and Frey et al. [2003]. These experi-
ments cannot be directly compared to our results, however,
because they had limited bed topography and/or antidunes,
while our experimental channel allowed for the growth of
large bed forms in subcritical flow. These studies suggest
that the creation and destruction of sediment patches of
different grain sizes [see also Cudden and Hoey, 2003] due
to longitudinal grain size sorting within the channel likely
contributed somewhat to the observed transport fluctuations
in our experiments, but are not capable of explaining all of
this variability.
[43] Sediment transport rates became smoother and less

intermittent with increasing bed stress in our experiments, in
agreement with previous observations. Near the threshold of
motion, grains are in partial transport because local bed
stress fluctuates above and below the threshold value. These
turbulent fluctuations, along with grain-to-grain interactions
at the bed, result in intermittent and collective motion of
grains, leading to nonrandom transport rate fluctuations
with heavy tails [Ancey et al., 2008]. In a mixed grain size
bed, size selective transport often occurs which may en-
hance this effect [Kuhnle and Southard, 1988]. The experi-
ments of Ancey et al. [2008] demonstrate that such
fluctuations can occur even in glass spheres of uniform
size, with little or no bed topography. As bed stress is
increased such that the local stress fluctuations are always
above the critical value, all grains become entrained in the
flow as the intermittent, collective motions of grains gives
way to continuous transport [Iseya and Ikeda, 1987; Kuhnle
and Southard, 1988; Ancey et al., 2008; Strom et al., 2004].
While this effect has been documented qualitatively by
previous authors, our results quantify these changes in the
statistics of sediment fluctuations with bed shear stress.
[44] Bed elevation also became smoother with increasing

transport, meaning that the magnitude of high-frequency
fluctuations at small scales was reduced overall. At low-
flow conditions, topographic fluctuations were of the order
of the grain scale (Figure 3), supporting the idea that grain-
grain interactions (and perhaps longitudinal grain size sort-
ing) dominated transport fluctuations as described above.
With increasing bed stress, and presumably full mobility of
all grains in transport based on Shields stress calculations,
the bed organized into large-scale bed forms (Figure 4).
Data indicate that higher-frequency (smaller-scale) topogra-
phy, likely representing clusters of grains, became less
prevalent at higher flows where bed topography was dom-
inated by dune forms. Interestingly, although the bed
became smoother overall from low to high discharge,
intermittency increased. In other words, high small-scale

frequency fluctuations in bed topography became less
prevalent overall, but also less uniformly distributed. This
may be due to irregular clusters of grains superimposed on
larger scale, more regular dune features. However, obser-
vations of grains on the bed were not made and so these
ideas remain speculative at this stage. Our experiments
highlight the need to simultaneously document bed topog-
raphy, bed load transport rates and individual particle
motions (e.g., as those of Schmeeckle et al. [2001],
Papanicolaou et al. [2002], and Ancey et al. [2006]) in
order to further our understanding of what contributes to
transport fluctuations at the smallest to largest scales.
[45] The scaling ranges of both transport rates and bed

elevation series are similar with a leveling off, or saturation,
at approximately the same time scales, indicating that
fluctuations in transport are intimately related to bed topog-
raphy. While the nature of these dependencies is still
unclear, a practical result may be obtained. The scale-
dependent nature of transport (within 1 and 10 min in this
study) means that measured rates at different time intervals
are not directly comparable. In our experiments, both
transport and bed elevation exhibit no time dependence
when measured over intervals greater than 10 to 15 min. In
other words, if we measure for a period of time that is larger
than the time scale associated with the migration of the
largest topographic feature, we can obtain mean values for
bed topography and transport rate that have no time depen-
dence [Fienberg et al., 2008]. From a practical point of
view, this is the mean transport rate one should try to obtain
in the field. Measurements of bed topography from a river
could be used to determine the upper scaling limit of
fluctuations, which determines the time scale over which
one should deploy a sampler to obtain a representative
‘‘mean’’ bed load transport value. As discussed by Fienberg
et al. [2008], this approach is possible in flumes and small
streams where the time scale is of the order of tens of
minutes. Since the size of bed forms scales with river depth,
however, this approach quickly becomes impractical as river
size increases: deployment of bed load samplers for long
durations can result in overfilling and clogging [e.g., Bunte
and Abt, 2005], or integrating over changing flow condi-
tions. In this case, determining the scale-dependent nature
of transport rate becomes critical.

6. Conclusions

[46] In this paper we introduce a formalism, typically
used in turbulence studies, to quantify two properties in
sediment transport and concurrent bed elevation series: the
‘‘average roughness’’ of the series (depicting the average
strength of local abrupt fluctuations in the signal) and the
‘‘intermittency’’ (depicting the temporal heterogeneity of
fluctuations of different strength). In the bed load sediment
transport rates, we documented the presence of a rougher
and more intermittent behavior at low-transport conditions
(dimensionless bed shear stress of about twice the critical
value) transiting to a smoother and less intermittent behav-
ior at high-transport conditions (dimensionless shear stress
of about five times the critical value).
[47] Apart from simply quantifying roughness and inter-

mittency of the sediment transport rates, the results of our
analysis provide a framework for quantifying how the
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probability distribution of sediment transport rates changes
with sampling interval and thus have important practical
implications. (It is interesting to note that the change of pdf
with scale is parameterized in terms of the roughness and
intermittency parameters which characterize the burstiness
of the series.) Specifically, our analysis demonstrated that
the statistics of bed load sediment transport rates depend
strongly on scale (sampling interval) and this dependence
varies with the discharge conditions. Our results agree with
the field observations reported by Bunte and Abt [2005] for
mean bed load rates and call for a more systematic study to
precisely quantify this scale dependence in terms of grain
size sorting and bed shear stress. It is noted that the
theoretical framework we propose here offers the ability
to go beyond the mean and compare the whole probability
density function, including extreme values or quantiles, at
different scales. This is important for example when the pdf
of sediment transport rates has been estimated from data at
one particular sampling interval and an extreme exceedance
quantile (say, relevant to an ecological smaller-scale func-
tional disturbance) needs to be estimated. Our methodology
can bridge this gap in scales and also provide a framework
with which comparison of sediment rates sampled with
different instruments can be made.
[48] A problem of continuous interest in the literature is

the relation of microscale (particle-scale) dynamics to the
macroscale behavior of sediment transport [e.g.,Drake et al.,
1988; Papanicolaou et al., 2002; Schmeeckle et al., 2001;
Schmeeckle and Nelson, 2003; Ancey et al., 2006, 2008].
Although not precisely quantified in this paper, it is worth
noting that the multiscale statistical behavior of sediment
transport rates (as quantified here via the signal roughness
and intermittency) seems consistent with known particle-
scale dynamics. For example, at low flows, a rougher but
more temporally homogeneous (less intermittent) bed ele-
vation series was documented, indicative of the dominance
of high-frequency localized grain clusters; this bed micro-
topography apparently gave rise to sediment transport rates
that are almost of equal roughness but are more inhomoge-
neous in time (more intermittent) (see Figure 8). This might
be due to the collective motion of grains responding to local
bed stress fluctuating above and below the critical value. It
appears that as bed stress increased, grain patches became
less prevalent and more irregular (roughness in bed eleva-
tions decreased but intermittency increased) as the bed
organized into large-scale dunes, and bed load transport
became smoother and more homogeneous in time as en-
trainment of all grains commenced. This speaks for the
collective or cooperative behavior of particle movement that
has different dynamics at low and high flows and depends on
the presence or absence of self-formed structures on the bed
[e.g., Drake et al., 1988; Ancey et al., 2008].
[49] We see our study as a first step in the direction of

understanding the scale dependency of sediment transport
rates over the continuum of flow discharge conditions and
grain size distributions and relating the statistics of bed
elevations to the statistics of bed load sediment transport.
More controlled experiments have to be performed and
analyzed with different particle sizes (from a single particle
size to a broad particle size distribution and for gravel and
sand beds) and a spectrum of discharge rates, to fully
characterize the intermittency of bed load sediment trans-

port rates and how it relates to that of the bed elevation
fluctuations, and (eventually) to particle size dynamics.
Also, the documented statistical structure of sediment trans-
port rates can be seen as providing an additional model
diagnostic that mechanistic models should be able to
reproduce, and as such, it is interesting to ask as to whether
any known sediment transport model can reproduce the
multiscaling characteristics reported in this study.
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Nonlinearity and complexity in gravel bed dynamics
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Abstract The dynamics of river bed evolution are known

to be notoriously complex affected by near-bed turbulence,

the collective motion of clusters of particles of different

sizes, and the formation of bedforms and other large-scale

features. In this paper, we present the results of a study

aiming to quantify the inherent nonlinearity and com-

plexity in gravel bed dynamics. The data analyzed are bed

elevation fluctuations collected via submersible sonar

transducers at 0.1 Hz frequency in two different settings of

low and high discharge in a controlled laboratory experi-

ment. We employed surrogate series analysis and the

transportation distance metric in the phase-space to test for

nonlinearity and the finite size Lyapunov exponent (FSLE)

methodology to test for complexity. Our analysis docu-

ments linearity and underlying dynamics similar to that of

deterministic diffusion for bed elevations at low discharge

conditions. These dynamics transit to a pronounced non-

linearity and more complexity for high discharge, akin to

that of a multiplicative cascading process used to charac-

terize fully developed turbulence. Knowing the degree of

nonlinearity and complexity in the temporal dynamics of

bed elevation fluctuations can provide insight into model

formulation and also into the feedbacks between near-bed

turbulence, sediment transport and bedform development.

Keywords Nonlinearity � Complexity � Bedforms �
Finite size Lyapunov exponent (FSLE) � Diffusion

1 Introduction

The evolution of alluvial river beds is the result of a number

of often strongly nonlinear processes which give rise to the

extraordinary large variety of patterns observed in nature. In

gravel bed rivers, where the dominant form of sediment

transport is bedload, both field observations (Drake et al.

1988) and laboratory experiments (Kirkbride 1993; Nelson

et al. 1995) suggest that most of the transport occurs by the

collective motion of clusters of particles mobilized by tur-

bulent sweep events and outward interactions, while a

relatively smaller contribution is associated with bursts (see

also review of Best 1993). Clearly, the bed evolution is

likely to be strongly affected by the intermittent process

whereby coherent turbulent structures are randomly gen-

erated, grow and decay in the near-wall region.

Coherent structure dynamics, in turn, depend on the

range of scales characterizing a given bed topography, and

the flow variability at a given point contains both locally

derived flow structures and structures inherited from

upstream (Hardy et al. 2007). The bed evolution is further

complicated by the formation of either free bedforms (e.g.,

Gomez et al. 1989), arising as a result of the instability of a

cohesionless bed subject to a turbulent flow, or bedforms

forced by geometrical constraints (e.g., channel curvature)

(Seminara 1998). Finally, the heterogeneous character of

the sediment leads to patterns associated with a spatial and
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temporal rearrangement of the grain size distribution of the

sediments (Parker 1991) which are strongly related to the

different mobility of particles having different diameter

(Wilcock and McArdell 1993, 1997).

It then clearly appears that river bed evolution, even in

the simplest case of a flat bed configuration, is an extre-

mely complex phenomenon whose understanding needs the

use of refined theoretical, experimental and data analysis

techniques.

Several contributions have been so far devoted to the

study of the spatial properties of water-worked gravel bed

surfaces measured both in the laboratory and in the field

(e.g., see Nikora and Walsh 2004, and references therein).

In addition to conventional statistical parameters (i.e.,

standard deviation, skewness and kurtosis) of the bed ele-

vation spatial distribution, second-order and higher-order

structure functions have been proved particularly helpful

for exploring the statistical properties and potential multi-

scaling behavior of bed elevations fields (Aberle and

Nikora 2006). In a recent study, the multiscale statistical

structure of the temporal evolution of bed elevation fluc-

tuations at several locations on the evolving gravel bed

under steady-state conditions has also been analyzed and

the presence of a multiscaling behavior has been reported

(Singh et al. 2008).

In the present contribution, a different type of analysis

of temporal elevation series is performed aiming at

quantifying the nonlinearity and complexity in gravel bed

dynamics. It is noted that these dynamics are internally

generated by the system itself rather than by an external

stochastic forcing, since the discharge is kept constant and

the system is under steady state conditions. To the best of

our knowledge, the only other study that attempted a

similar analysis is that of Gomez and Phillips (1999) who

analyzed sediment transport rates (interestingly collected

from a controlled laboratory experiment conducted in the

same flume almost 20 years ago; see Hubbell et al. 1987).

The overall goal of that study was to identify determin-

istic sources of uncertainty, or unexplained variation, in

the time series of bedload transport rates by computing

how much of the observed variability (quantified in terms

of Kolmogorov entropy) was not explained by bedform

migration effects. The assumption was made that the

variability (entropy) due to bed migration would be fully

captured by a Hamamori probability distribution. It is

noted that the Hamamori distribution is derived from

sediment movement over a purely geometrical self-similar

bed morphology (Hamamori 1962) and does not account

for the natural variability in bedform shapes and sizes. It

is also restricted to sediment transport rates that are at

most four times the mean rate—not the case in most

observed series including the series analyzed in Gomez

and Phillips (1999).

The purpose of the present study is to revisit the problem

of quantifying the deterministic complexity in gravel bed

dynamics with an assumption-free methodology and using

more powerful techniques recently developed in the study

of nonlinear systems (e.g., Aurell et al. 1997). The adopted

methodologies have been proven to give a deep insight

in other complex geophysical processes such as fluid

turbulence (Aurell et al. 1996a; Boffetta et al. 2002),

atmospheric boundary layer dynamics (Basu et al. 2002)

and dispersive mixing in porous media (Kleinfelter et al.

2005), among others.

The paper is organized as follows. In Sect. 2 we briefly

describe the bed elevation data collected in two laboratory

experiments under low and high discharge conditions.

Section 3 introduces the mathematical methodology used

first to identify the presence or absence of inherent non-

linearity in time series and second the finite size Lyapunov

exponent (FSLE) methodology to quantify the complexity

and predictability of processes exhibiting many scales of

motion. In Sect. 4, results of the analysis of the temporal

sequences of bed elevation data series are presented.

Finally, Sect. 5 presents concluding remarks and sugges-

tions for future research.

2 Experimental data

The data examined in the present contribution were col-

lected during a series of experiments conducted in the Main

Channel facility at the St. Anthony Falls Laboratory,

University of Minnesota. The channel is 2.74-m wide and

has a maximum depth of 1.8 m. It is a partial-recirculating

flume in that it has the ability to recirculate the sediment

while the water flows through the flume without recircu-

lation. Water for the channel was drawn directly from the

Mississippi River, with a maximum discharge capacity of

8,000 l/s. The channel has a 55-m long test section and, in

the experiments reported here, a poorly sorted gravel bed

extended over the last 20 m of this test section. The gravel

used in these experiments had a broad particle size distri-

bution characterized by d50 = 11.3 mm, d16 = 4.27 mm

and d84 = 23.07 mm. More details on this experimental

setting can be found in Singh et al. (2008).

Measurements of bed elevation and sediment transport

were taken at a range of discharges corresponding to dif-

ferent bed shear stresses. Here we focus our attention on

the series of bed elevations collected under two different

discharges: a low discharge case, with a discharge of

4,300 l/s, corresponding to a dimensionless bed stress of

about twice the critical value (Shields stress = 0.085 using

median diameter) and a high discharge, 5,500 l/s, corre-

sponding to a Shields stress about five times the critical

value (Shields stress = 0.196). For both bed stress
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conditions, the flume was allowed to run long enough prior

to data collection such that a dynamic equilibrium was

achieved in transport and slope adjustment of the water

surface and bed. Determination of the dynamic equilibrium

state was made by checking that the 60-min average sed-

iment flux was stabilized to an almost constant value

during the flume run. The bed elevation was then recorded

over a span of approximately 20 h for each experiment, by

using submersible sonar transducers, with a frequency of

0.1 Hz and a vertical precision of *1 mm. Figure 1 dis-

plays the time series of bed elevations measured at a

location aligned with the main channel axis for both the

low (Fig. 1a) and the high (Fig. 1c) discharge conditions

over a period of 10 h during which the bed-elevation and

sediment flux series were stationary. The low bed stress run

(Fig. 1a) produced a nearly plane channel bed, with only

limited topographic variations, i.e. without obvious large

scale structures in the bed elevation (the standard deviation

in the bed is 10.06 mm, compared to the initial d50 grain

size of 11.3 mm). On the contrary, the higher stress run

(Fig. 1c) generated substantial bed variability at large scale

in the form of dunes, with intermediate to particle-scale

fluctuations superimposed on these larger-scale features. In

this study we focus on comparing these two runs in terms

of the complexity of the underlying forming processes

imprinted in the time series of bed elevation fluctuations.

The analysis methodologies we employed are briefly

described below.

3 Analysis methodologies

3.1 Test for nonlinearity

Nonlinearity is a necessary condition for deterministic chaos

and thus methodologies for testing whether a time series has

been generated by a linear or inherently nonlinear process

have gained considerable attention in the literature. By

inherent nonlinear process it is meant a process whose non-

linearity is not external, i.e., the result of a static nonlinear

transformation applied on an otherwise linear underlying

process, but it is weaved into its dynamics such as for

example in a series arising as a result of a multiplicative

cascade generator, a popular phenomenological model for

turbulence (e.g., Frisch 1995). Detection of nonlinearity is

not a trivial task and several methods are available, as for

example based on ‘‘reversibility’’, information-theoretic

approaches, singular value decomposition, and the use of

‘‘surrogates’’ (e.g., see a review in Basu and Foufoula-

Georgiou 2002 and references therein). Here we adopt a

surrogate-based methodology. Surrogate series maintain the

probability density function (pdf) and correlation structure

(and thus spectrum) of the original series but destroy any

inherent nonlinearity since the process of generating the

surrogates randomizes the phases in the Fourier space.

The method we used for surrogate series generation is

the iterative amplitude adjusted Fourier transform (IAAFT)

method of Schreiber and Schmitz (1996). This method is an

improvement of the earlier amplitude adjusted Fourier

transform (AAFT) method of Theiler et al. (1992), and

iteratively adjusts both the pdf and linear correlation

structure to minimize their deviation from the original

series. The reader is referred to the original publications for

details to supplement the brief exposition presented below.

The surrogate series {sn} is assumed to be generated by

a process of the form

sn ¼ SðynÞ; yn ¼
XM
i¼1

aiyn�1 þ
XN

i¼1

bign�1; ð1Þ

where S could be any invertible nonlinear function, {yn} is

the underlying linear process, {an} and {bn} are constants,

and {gn} is Gaussian white noise. The steps involved in the

generation of surrogate series are as follows:

1. Randomly shuffle the data points of the original series

xo
n

� �
to destroy any correlation or nonlinear relation-

ship, while keeping the pdf unchanged. The reshuffled

series is the starting point for the iteration s
ðoÞ
n

n o
:

2. Construct the discrete Fourier transform of the series at

the ith iteration s
ðiÞ
n

n o
; and adjust the amplitudes to

recreate the power spectrum of the original data. Keep the

phases unchanged. Perform inverse Fourier transform.
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Fig. 1 Bed elevation time series for a low discharge (4,300 l/s; bed

elevation mean is 27.38 mm and standard deviation 10.06 mm) and c
high discharge (5,500 l/s; bed elevation mean is 185.51 mm and

standard deviation 66.61 mm). Surrogate series for b low and d high

discharge. Notice that although it is difficult to distinguish any

difference between the original and the surrogate series, the surrogate

series in high discharge has linear underlying dynamics while the

original series is shown to be highly nonlinear (see Fig. 2)
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3. The pdf will no longer be correct. Transform the data

to the correct pdf by rank ordering and replacing each

value with the value in the original series xo
n

� �
with

the same rank. This will result in an updated series

s
ðiþ1Þ
n

n o
:

4. Repeat steps 2 and 3 until discrepancy in the power

spectrum is below a threshold, or the sequence stops

changing (reaches a fixed point). In this manner a

surrogate data series can be generated with an identical

pdf and optimally similar power spectrum to the

original series.

Figure 1b and 1d shows two realizations of the surrogate

series corresponding to the bed elevation series for low and

high flow discharge. It is noted that in both cases it is

difficult to distinguish visually any difference between the

original series and their surrogates (compare Fig. 1a to 1b

and 1c to 1d. It is reminded that the original and surrogate

series share the same pdf and correlation structure or

spectrum, but the surrogate series contain only linear cor-

relation). However, as it will be demonstrated later, our

methodologies depict important differences in the case of

high discharge, emphasizing the presence of inherent

nonlinearity in the bed forming process.

Once an ensemble of surrogate series is generated, a

probabilistic metric of the ‘‘distance’’ between each one

of those series to the original series xo
n

� �
and between

multiple realizations of the surrogate series snf g ¼
xi

n

� �
; i ¼ 1; . . .;Ns is formed. If the original series were

linear, these two distance metrics would overlap as one

would not be able to discriminate the original series from

members of the ensemble of surrogates; however, if they

do not overlap, nonlinearity in the original series can be

inferred with confidence.

Following Basu and Foufoula-Georgiou (2002), we use

the transportation distance functions doi ¼ dðxo
n; x

i
nÞ and

dij ¼ dðxi
n; x

j
nÞ; ði 6¼ jÞ to measure, respectively, the differ-

ence in the long term behavior between the original data set

and the ith surrogate data set and the mutual distances

between surrogates. The idea is to transform two given

scalar time series (x, y) in vector time series (X, Y) by

phase-space reconstruction using an embedding dimension

(e) and an integer delay (s), thus obtaining an e-dimen-

sional embedding spaceRe which captures the dynamics of

the x and y systems’ attractors (Moeckel and Murray 1997).

The details of determining embedding dimension and delay

can be found in Kennel et al. (1992), Hegger et al. (1999).

In practice, a box in the reconstructed phase space, Re;
containing both the X and Y vector time series is divided

into a finite number Bk, k = 1,…,b of sub boxes, each

characterized by the discretized probability measures pk

and qk defined as

pk ¼
Xb

l¼1

lkl; qk ¼
Xb

l¼1

lkl; l ¼ 1; . . .; b ð2Þ

where lkl C 0 defines the amount of ‘‘material’’

(information) shipped from box Bk to box Bl. These

constraints ensure that the initial and final probability

distributions are preserved and allow us to determine the

set M(p, q) [with p = (p1,…,pb) and q = (ql,…,qb)] of all

transportation plans. The transportation function is then

obtained by minimizing (e.g., through the network simplex

algorithm) the transportation cost

dðp; qÞ ¼ inf
l2Mðp;qÞ

Xb

k;l¼1

lkldkl ð3Þ

where dkl is the taxi cab metric (Moeckel and Murray 1997)

normalized to the embedding dimension between the cen-

tres of Bk and Bl. If the pdf of the transportation distances

doi between the original series and the surrogates is distinct

from the pdf of the mutual distances dij between the sur-

rogates, nonlinearity is inferred. Details of the

methodology and examples of its application to known

linear and nonlinear series, e.g., autoregressive series,

Lorenz series, stochastic Van der Pol oscillator series, and

the Santa Fe Institute competition series, can be found in

Basu and Foufoula-Georgiou (2002).

3.2 Quantification of complexity

It is well known that many natural systems, although

deterministic, are characterized by a limited degree of

predictability owing to the presence of deterministic chaos

which makes small errors in the initial conditions to grow

exponentially fast with time (e.g., Lorenz 1969). In the

traditional sense, predictability is assessed via computation

of the maximum Lyapunov exponent which dictates that

the predictability time is

Tp �
1

kmax

ln
D
d

ð4Þ

where kmax is the leading (or maximum) Lyapunov

exponent, measuring the average exponential rate of

separation of nearby trajectories, d is the size of the

initial (strictly infinitesimal) perturbation, and D is the (still

small) accepted error tolerance. The above formula holds

only for infinitesimal perturbations, and, by construction, it

cannot assess the predictability in systems with many

scales of variability, such as turbulence which possesses a

hierarchy of eddy turnover times. In those multiscale

systems the predictability time Tp is determined by the

nonlinear mechanism responsible for the error growth and

it is not captured by kmax which is governed by the

linearized equations of motion, given the assumption of
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small perturbations. To address these issues, Aurell et al.

(1996b) proposed a generalization of the maximum

Lyapunov exponent method. Specifically, they introduced

the quantity Tp(d, D) which is the time it takes for a finite

perturbation to grow from an initial size d (in general not

infinitesimal) to a tolerance level D. The so-called finite

size Lyapounov exponent (FSLE) k(d, D) is then the

average of some function of this predictability time, such

that if both d and D are infinitesimally small one would

recover the usual Lyapunov exponent:

kðd;DÞ ¼ 1

Tpðd;DÞ

� �
ln

D
d

� �
: ð5Þ

Various methodologies are available for computing

finite-size Lyapunov exponent (see Aurell et al. 1997). In

the present contribution we have adopted the method of

Boffetta et al. (1998).

4 Results and discussion

4.1 Nonlinearity

The results of nonlinearity tests carried out on the two time

series of bed elevations are reported in Fig. 2. For low

discharge conditions (Fig. 2a), the pdf of the transportation

distance between the original series and the surrogates

overlaps the one obtained by considering multiple real-

izations of the surrogates. On the other hand, Fig. 2b shows

that for the high discharge case the pdfs of the transpor-

tation distance between each surrogate series and the

original time series and between multiple realizations of

surrogates are completely different, suggesting that strong

nonlinearities are inherent in the processes which shaped

the bed morphodynamics. These nonlinearities are likely to

be connected to the irregular and unsteady large-scale

bedforms, mainly dunes, observed in this high flow

experiment, promoting the formation of patterns of sorting

and leading to a strong reworking of the sediment bed

(Klaassen 1990; Blom et al. 2003).

To shed light into the above findings, we proceed with the

following analysis guided by some recent findings in Singh

et al. (2008). We synthetically generated two series with

known underlying dynamics: a fractional Brownian motion

(fBm) series and a multiplicative cascade series. The fBm

series (with the Hurst exponent H = 0.5) is known to have

linear underlying dynamics, arising from the integration of

white noise. A multiplicative cascade series, on the other

hand, arises from a nonlinear (multiplicative) mechanism of

energy transfer from larger to smaller scales and thus pos-

sesses clearly nonlinear underlying dynamics. These latter

dynamics cannot be rendered linear by any external trans-

formation but rather are intrinsically embedded in all scales

of variability of the process. In this work, we generated

multiplicative cascade series using the random wavelet

cascade (RWC) model (e.g., Arneodo et al. 1997) parame-

terized by two coefficients: c1 and c2. These two parameters

dictate how the energy breaks down from larger to smaller

scales, i.e., they characterize the probability distribution of

the multiplicative weights of the cascade generator. Here we

set c1 = 0.7 and c2 = 0.1 on the basis of the results recently

obtained by Singh et al. (2008). This study employed a

wavelet-based multifractal formalism and reported that the

spectrum of scaling exponents of the same bed elevation

fluctuation series analyzed here is well described by a qua-

dratic model with c1 and c2 ranging in the intervals 0.53–0.76

and 0.06–0.14, respectively.

For visual comparison, Fig. 3 shows the fluctuations

(computed as first order differences) of the original bed

elevation series at low discharge (Fig 3a), the generated

fBm series with H = 0.5 and the same standard deviation

as the original series (Fig. 3b), the original bed elevation

series at high discharge (Fig. 3c) and the generated RWC

series (Fig. 3d) with c1 = 0.7 and c2 = 0.1 It is noted that

there is much more ‘‘clustering’’ in the bed elevation series

at high discharge than at low discharge which mathemati-

cally is depicted by the larger parameter c2 (0.1 at high

discharge vs. 0 at low discharge). More details of this

multifractal analysis and interpretation of the parameters c1

and c2 can be found in Singh et al. (2008).
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Fig. 2 Probability density

function (pdf) of the

transportation distances

between the original series and

the surrogates (broken lines),

and among the surrogates (solid
lines) for a low discharge, and b
high discharge runs. Notice the

linear underlying dynamics in

the case of low discharge

(overlapping pdfs) and the

nonlinear dynamics in the case

of high discharge (distinct pdfs)
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The nonlinearity test described in Sect. 3 was applied to

these two generated series. As was expected, the results of

the test shown in Fig. 4 correctly depict the inherent line-

arity of the fBm series and the strong nonlinearity of the

RWC series. Comparison of Figs. 2 and 4 gives more

confidence to conclude the presence of linear underlying

dynamics in gravel bed formation at low discharge condi-

tions which progressively evolve to strongly nonlinear

dynamics at high flow conditions (i.e., when the bed shear

stress is well above the critical value for incipient motion

of sediments). The complexity analysis to follow will shed

more light to those conclusions.

4.2 Complexity and predictability

As discussed before, bed elevation fluctuations are known

to exhibit multiple scales of variability (e.g., see Nikora

and Walsh 2004; Singh et al. 2008) and thus the FSLE

approach is a more appropriate methodology for quanti-

fying complexity, than is the standard maximum Lyapunov

exponent analysis.

The delay time and embedding dimension adopted in the

analysis of the bed elevation series for low and high dis-

charge were chosen to be d = 10 and e = 3 following the

mutual information and false nearest neighbor approaches,

respectively (see Kantz and Schreiber 1997), and these

algorithms were implemented using the TISEAN package

(Hegger et al. 1999). Figure 5a displays the Lyapunov

exponent for the two series as a function of the initial

perturbation size d = 1 mm, while Fig. 5b shows the

predictability time Tp (in seconds) for the same two series

as a function of the prescribed tolerance level D (D = rd,

where r is the so-called threshold factor and is assumed to

be as H2 in this work. (For more details about the threshold

factor see Aurell et al. 1997.)

The following observations are worthwhile. First, from

Fig. 5b it is observed that the high-discharge bed elevation

series is less predictable (more complex) than the series at

low-discharge. This is not surprising given the previous

results which inferred a pronounced inherent nonlinearity

in the high-discharge bed elevation series and simpler

linear dynamics for the case of low discharge. It is also

interesting to observe that for an initial error of d = 1 mm

(measurement precision) the predictability time associated

to a tolerance level of the order of the coarser sediment

grain size (�d84 = 23.07 mm) is of the order of 2 9 102

and 4 9 103 seconds for high and low flow condition here

examined, an information which can be used to assess the
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Fig. 3 Fluctuations (first order differences) of a measured bed

elevation series for low discharge (4,300 l/s), b generated fBm series

(H = 0.5), c measured bed elevation series for high discharge

(5,500 l/s), and d generated random wavelet cascade (RWC) series

with parameters c1 = 0.7 and c2 = 0.1
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Fig. 4 a Probability density function (pdf) of the transportation

distances between the synthetically generated fractional Brownian

motion series (fBm) with H = 0.5 and the surrogates (broken lines)

and among the surrogates (solid lines); b same but for synthetically

generated random wavelet cascade (RWC) series with c1 = 0.7 and

c2 = 0.1. The comparison clearly depicts the expected linearity of the

fBm series (overlapping pdfs) and the inherent nonlinearity of the

RWC series (distinct pdfs). Notice the similarity with the results of

Fig. 2 which displays the same analysis for the original bed elevation

series at low and high discharge conditions, respectively
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performance of mechanistic models of sediment transport.

Second, from Fig. 5a it is interesting to observe that for

larger d, the FSLE has a slope of -2.0, i.e., k(d) � d-2, a

behavior consistent with that of deterministic diffusion

(e.g., Aurell et al. 1997). To verify this assertion, we

generated a series of equal length to the bed elevation

series, using the 1D Lagrangian map

xnþ1 ¼ xn þ a sinð2pxnÞ ð6Þ

which is a well-known model for deterministic diffusion,

and performed the FSLE on this series. Figure 6 shows the

theoretically expected behavior of the size-dependent

Lyapunov exponent for this series, that is, k(d) � const for

small values of d, while k(d) � d-2 for larger values of d.

The similarity of this behavior to that of Fig. 5a for the

low-discharge bed elevation series is worth noting and calls

for further exploration.

It is encouraging that for the low-discharge series the

linearity inference (Fig. 2a), the similarity to a fBm with

H = 0.5 (compare Figs. 3a, 3b and 4a to 2a), and the

inference that the complexity of this series is similar to that

of deterministic diffusion (compare Figs. 5a, 6), are all

consistent with each other. It is also encouraging that for

the high-discharge elevation series, the presence of strong

nonlinearity (Fig. 2b), similar to that of a multiplicative

cascade series (Fig. 4b) and the higher complexity (lower

predictability) of this series (Fig. 5b), are consistent to each

other and also consistent with the multifractal analysis

results of this series in Singh et al. (2008). An interesting

result is that the predictability time seems to follow a

power law relationship with the tolerance level of predic-

tion in both low and high discharge conditions, that is

Tp�Db ð7Þ

where b is approximately 2 for low discharge and 1.25 for

high discharge (directly quantifying the lesser degree of

predictability of bed elevation series at high discharge). This

relationship can be of practical significance (sets the upper

limit of prediction) and should also be reproducible by

mechanistic models of sediment entrainment and transport.

5 Concluding remarks

The goal of this paper was to gain insight into the com-

plexity of the processes governing the temporal evolution

of gravel bed elevation by objectively analyzing data from

a controlled experimental setting. Specifically, we analyzed

bed elevation series under low and high discharge condi-

tions (i.e., with a bed shear stress slightly higher or

significantly higher than the critical value for incipient

sediment motion) to quantify the presence of inherent

Fig. 5 a Finite size Lyapunov exponent (FSLE) k(d) as a function of

perturbation d for bed elevation at low discharge (circle) and high

discharge (square). The line of slope -2 (deterministic diffusive

behavior) is also shown; b Predictability time Tp, based on FSLE, as a

function of prediction error tolerance D for bed elevation at low

discharge (circle) and high discharge (square). The initial perturba-

tion was specified to be d = 1 mm
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Fig. 6 FSLE for deterministic diffusion generated by the 1D

Lagrangian map xnþ1 ¼ xn þ a sinð2pxnÞ; with a = 0.8, correspond-

ing to a diffusion coefficient D = 0.18
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nonlinearity and the degree of complexity (the higher the

complexity the lesser the degree of predictability of the

series). We used the phase-space transportation distance

metric to quantify the presence of nonlinearity in the series

and the finite size Lyapounov exponent (FSLE) method-

ology to quantify complexity.

Overall, our results indicate that under higher discharge

conditions, the presence of bedforms and substantial bed

variability at all scales (from grain size to well-formed

dunes) leads to bed elevation series whose nonlinearity and

complexity are demonstrably more pronounced compared

to the bed elevation series under low discharge. For low

discharge conditions, in the substantial absence of bed-

forms, the bed elevation series was found statistically

indistinguishable from a series with linear underlying

dynamics and also exhibiting a behavior similar to that of

deterministic diffusion. Conversely, for high discharge

conditions, the temporal evolution of bed elevation was

clearly nonlinear and, in fact, it showed a behavior similar

to that of a multiplicative cascade process, which is

extensively used to model turbulent velocity fluctuations.

Given that bedforms are shaped by the near-bed turbulence

which is expected to posses nonlinear and multi-scale

structure for both low and high discharge, the differences

found in the nonlinearity and complexity of bed elevation

fluctuations in the two different discharges is interesting

and requires further study. They highlight the nontrivial

(and mostly unknown) two-way interactions between tur-

bulent flow, sediment transport and bedforms and call for

further experiments and analysis under a continuum of

discharges and turbulence regimes.

We consider this study as a first step towards a more

comprehensive study aimed to: (1) understand the complex

multiscale dynamics of bed elevation and the resulting

sediment transport series; (2) make inferences about the

inherent predictability, or expected upper limit to predic-

tion, by any mechanistic model of sediment transport; and

(3) parameterize this complexity in terms of macroscopic

flow and sediment properties (e.g., mean bed shear stress,

grain size distribution) to provide useful information for

physical model development.
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[1] Bedrock erosion in mountain river channels ultimately sets the erosion rate of the
surrounding hillslopes and the rate of sediment supply to the channels. The supply of
coarse bed sediment acts as a dampening effect on further erosion by depositing an
alluvial cover that temporarily obscures the bedrock. For landscapes where the residence
time of the alluvial bed cover is comparable to the timescale of bedrock incision,
coarse sediment supply and transport generate a strong negative feedback on
fluvial downcutting and the coupled process of hillslope-channel erosion is inherently
self-buffering. Here we study a simple model of self-buffered bedrock channel
erosion that incorporates the spreading of bed sediment cover downstream in a way that
allows for a broad-tailed, power law probability distribution of transport velocities of
bed sediment over the long-term. This leads us to consider a nonlocal transport law
(fractional advection) parameterized by a scaling exponent 0 � a < 1 which collapses
to local advection for a ! 1. For strong sediment buffering, we find that nonlocality
1� a has a direct control on the power law scaling of channel slope Swith upstream area A,
giving S � A�(1�a)/2 at steady state. Empirical observations of slope-area scaling
are consistent with a < 1 and nonlocal transport. In general, the model predicts linear,
logarithmic, or power law stream profiles depending on the extent of buffering, the degree
of nonlocality, and the scaling of the bedrock erosion law. It also predicts, somewhat
counterintuitively, that bed cover should thicken with distance x downstream slower
than linearly as xa, i.e., the more nonlocal the bed sediment spreading process (a ! 0),
the slower the bed cover increases downstream. We deduce that long-range,
heterogeneous transport of coarse sediment in mixed bedrock-alluvial rivers may be a key
element of landscape scaling and an important factor in landscape dynamics.

Citation: Stark, C. P., E. Foufoula-Georgiou, and V. Ganti (2009), A nonlocal theory of sediment buffering and bedrock channel

evolution, J. Geophys. Res., 114, F01029, doi:10.1029/2008JF000981.

1. Introduction

[2] Mountain river channels with naked bedrock beds are
rare [Tinkler and Wohl, 1998]. Most have an alluvial cover
of coarse, bedload-grade sediments; this cover can be
meters to tens of meters thick or more and can persist for
thousands of years after deposition before the bedrock is
exposed once again to erosion [Turowski et al., 2008] (the
more appropriate term for most ‘‘bedrock rivers’’ should be
‘‘mixed bedrock-alluvial rivers’’). Nevertheless, most of the
theoretical treatment of mountain river erosion has focused
on true bedrock channels [Dietrich et al., 2003; Stock and
Montgomery, 1999; Snyder et al., 2003; Whipple and
Tucker, 1999; Whipple, 2004; Tucker and Bras, 2000; Sklar
and Dietrich, 1998, 2001; Stark, 2006; Wobus et al., 2006]
and the role of alluvial bed cover in the buffering of channel

erosion has been sparsely studied [e.g., Finnegan et al.,
2007; Sklar and Dietrich, 2004, 2006].
[3] Alluvial bed cover develops through the coupled

processes of hillslope erosion, channel incision and channel
transport. Broadly speaking, hillslope erosion is slave to
channel erosion (particularly on long timescales) with the
average rate of catchment denudation essentially driven by
the rate of downcutting in the channels. The greater the
downcutting rate, the greater the flux of sediment into the
channels, and therefore the greater the likely temporary
storage of bedload-grade sediment along the channels.
[4] A continuum description of this kind understates the

problem: on the short-term or storm event timescale, the
patterns and rates of sediment supply and transport are strongly
heterogeneous, and the transient nature of bed sediment
storage is more pronounced. Mass-wasting events supplying
coarse material to the channels often occur asynchronously to
the high-stage flows capable of transporting such material
[Dadson, 2004; Gabet et al., 2008]; the volume of mass-
wasted material may require hundreds to thousands or more
flood events to completely flux the coarse sediment through
the drainage network; the asynchroneity is exacerbated when
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the mass-wasting events are triggered by earthquakes that
deliver sediment independently of the storm events that
generate the river flows capable of significant bed sediment
transport [e.g., Dadson et al., 2004; Harp and Jibson, 1996];
earthquake-driven mass wasting can saturate mountain river
channels with coarse debris for very long periods of time, both
by immediately generating landslides and debris flows and by
priming the hillslopes for widespread failure during later heavy
rainfall events [e.g., Lin et al., 2003].
[5] Therefore, while bedrock incision in mountain rivers

drives erosion of the surrounding hillslopes, it also impedes
further incision by drawing coarse hillslope sediment onto
the channel bed. This self-limiting, negative feedback pro-
cess can be thought of as ‘‘sediment buffering.’’ The purpose
of this paper is to present a simple model for mountain river
erosion that incorporates sediment buffering, i.e., a model to
describe the evolution of a mixed bedrock-alluvial channel in
which bed sediment cover may be the rate-limiting factor.
[6] The model addresses a second key issue in mountain

rivers whose importance becomes clear when attempting to
treat the heterogeneous transport of bed sediment through a
catchment: the long-term motion of coarse sediment par-
ticles is not a spatially limited process that can be estimated
by computing local bedload motions at each channel cross
section. In reality, grains of bed sediment of variable mass
are transported with a broad range of particle velocities over
a wide range of distances by numerous flood discharges
of varying magnitude [Stark et al., 2000]. Although the
composite, long-term probability distribution of transport
distances is not yet known empirically, studies such as those
ofHassan and Church [1991] and Church and Hassan [1992]
have recorded semiheavy (exponential or gamma) probabil-
ity density functions (pdfs) of particle transport distances
after one or two floods, and on theoretical grounds it is
reasonable to deduce that it is heavy tailed. Probability dis-
tributions with heavy, power law tails arise in nature for one
of (at least) three reasons: (1) because the governing pro-
cess is self-similar, (2) through the mixing of distributions

of constituent properties (Appendix A2), or (3) through sum-
mation of quantities with arbitary shape, broad-tailed distri-
butions and convergence to a stable law pdf according to
the Lévy limit theorem [Lévy, 1937; Feller, 1971]. All three
phenomena are likely to pertain to the distributions of bed
particle motions in mixed bedrock-alluvial rivers.
[7] The implication of a power-law tail is that the bed

sediment acting to buffer bedrock erosion is spread from its
hillslope supply points in a way that deviates from a simple
advection process. Instead, the spreading process is probably
strongly heterogenous, nonclassical, and best described using
a fractional advection model [e.g., Baeumer et al., 2001].
This heterogeneity needs to be incorporated in models of
mixed bedrock-alluvial channel evolution, because its long-
range properties will significantly affect the pattern of sedi-
ment distribution across the catchment and may ultimately
determine the scaling relationships between channel gradient
and upstream area.

2. Principles

[8] There are two key elements to the model: (1) the
coupled process of bed sediment buffering and bedrock
erosion and (2) the nonlocal spreading downstream of bed
sediment. There are two key innovations that make the
model tractable: (1) the conceit that the erosion of both
sediment and bedrock can be treated in a consistent manner
by writing the rates of both in terms of unit stream power
and (2) the application of fractional calculus to the descrip-
tion of nonlocal advection of bed sediment.
[9] The governing equations are derived in detail in

section 3 and are summarized here to stress the explicit
coupling of the bed cover thickness and the temporal
evolution of the channel profile. The rate of bedrock
channel incision is given by

� @h
@t
� hrock

W
x
� B

hsed

� �
; ð1Þ

where h is the elevation of channel bedrock profile (subject
here to zero rock uplift rate), W is unit stream power, x is
downstream distance (here implicitly giving channel width
scale), t is time, B(x, t) is the bed cover thickness, and hrock
and hsed are bedrock and sediment erodibilities, respectively.
The downstream spreading of coarse bed sediment is

x
@B

@t
� �v0

@

@x
x2I1�ax

B

x

� �� �
� x

@h

@t
ð2Þ

where v0 is a reference transport speed of bed sediment
and 1 � a is the degree of nonlocality of this transport
(spreading) process, specifically, a is the exponent in the
heavy-tailed probability distribution of transport velocities
p(v) that is encapsulated in the fractional integral Ix

1�a{�}.

3. Theory

3.1. Bed Cover Buffering

[10] Consider the time interval Dt over which the bed
sediment cover of thickness B is ‘‘eroded,’’ the bedrock bed
is exposed, and then the bedrock itself is eroded (Figure 1)

Figure 1. Schematic erosion of bed sediment cover and
bedrock.
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by �Dh � 0 (h is measured positive upward); the net
bedrock erosion during Dt is therefore Dz = B � Dh.
Define l as the fraction of time spent in eroding sediment
and xraw as the raw (unscaled by material erodibilities) rate
of erosion. The time spent eroding the bedrock is

1� lð ÞDt ¼ �Dh

hrockxraw
ð3Þ

and the time spent ‘‘eroding’’ the sediment is

lDt ¼ B

hsedxraw
; ð4Þ

so that

Dt ¼ �Dh

hrock
þ B

hsed

� �
1

xraw
; ð5Þ

where hrock and hsed are the respective erodibilities of rock
and bed sediment. Rearranging, we obtain the actual
bedrock erosion rate xa

�Dh

Dt
! �@th ¼ xa ¼ hrockxraw �

hrock
hsed

B

Dt
: ð6Þ

If the bedrock is undergoing vertical motion, the frame of
reference for h is moving and the rate of lowering of the
profile �@th must also include a term giving the rate of
uplift (see below).

3.2. Dimensionless Bed Cover

[11] The cross-sectional area of the channel (Figure 2)
taken up by bed sediment is

As x; tð Þ ¼ wB x; tð Þ ¼ wdC x; tð Þ; ð7Þ

where w and d are the width and depth of the channel and B
is the bed cover thickness, which can be expressed in terms
of the dimensionless bed cover C as

B x; tð Þ ¼ dC: ð8Þ

The parameter C(x, t) is effectively the fraction of channel
cross-sectional area occupied by bed sediment, so it can be
thought of (loosely) as a sediment concentration in the flow
at the channel cross section at a distance downstream x.

3.3. Nonlocal Bed Sediment Transport

[12] If grains of sediment pass through a channel cross-
section x with a constant velocity (or random velocities
following a probability distribution with a light tail), then
C(x, t) can be approximated by the number of particles in a
thin strip of downstream width Dx. However, if the particle
velocities follow a distribution with a heavy tail then the
narrow strip Dx is too small to statistically capture particles
that originate from far away transported at great speed. Thus
one needs to enlarge the width of the strip to accommodate
the heavy-tailed pdf of velocities.
[13] This is equivalent to saying that instead of consider-

ing a local flux f(x) determined by the local particle
concentration and velocities, one should consider a non-
local, compound flux

f* x; tð Þ ¼
Z x

0

g lð Þf x� l; tð Þdl; ð9Þ

where the weighting function g(l) should account for the
likelihood of an incoming particle arriving from a distance
l upstream of a location x. For a velocity distribution with
a power law tail with exponent a (Appendix A2)

P V � vð Þ � v�a 0 � a < 1 ð10Þ

the weights take the form of a power law on lag

g lð Þ � l�a ð11Þ

and the nonlocal flux (volume per unit channel cross-
sectional area per unit time) is equivalent (Appendix A1)
to the fractionally integrated flux

f* x; tð Þ ¼ v0

x1�a0

I1�ax C x; tð Þf g; ð12Þ

Figure 2. Model geometry shown in (a) downstream profile and (b) cross section.
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where v0 is a reference speed. It is worth noting that if we
take the limit as a ! 1 we recover the local flux f(x, t)
(simple advection). The corresponding sediment discharge
(volume per unit time) through a channel cross section of
mean flow width w and depth d at a distance x
downstream is

Qs x; tð Þ ¼ wdf*: ð13Þ

[14] A heavy-tailed distribution of bed particle velocities
(equation (10)) is used here to model (without distinction)
both a power law pdf of velocities during a single flood and
a power law pdf of particle transport distances over multiple
floods and a long timescale. Such a heavy-tailed pdf is
likely given the heterogeneous, composite nature of the
stochastic process of sediment transport in mountain rivers,
and given the ease with which heavy-tailed pdfs can arise
through the mixing of lighter tailed pdfs (see Appendix A2
for an example of the mixing of exponential and gamma
distributions of grain size and transport distance to give a
composite particle velocity pdf with a power law tail).

3.4. Bedrock Erosion Model

[15] To make the linkage in a simple way between stream
flow, stream power, bedrock erosion, raw bedrock channel
incision, sediment-buffered channel incision and ultimately
the channel slope-upstream-area relation, we assume here
a linear model of channel bedrock erosion as a function of
unit stream power per unit channel width w. The unit stream
power at the characteristic flood discharge Q is

W Qð Þ ¼ rgQ @xhj j; ð14Þ

whose units are W/m or energy dissipated per unit time per
unit distance downstream [Rhoads, 1987]. If bedrock
erosion is linearly proportional to the rate of energy
dissipation per unit area W/w, then the amount of vertical
lowering during flood events of discharge Q, duration tf and

annual frequency f, and reference bedrock erodibility g
(whose reciprocal has units of J/m3), is

xraw ¼ f tf g
W
w
¼ f tf grg

Q @xhj j
w

; ð15Þ

which can be simplified by defining a flood effectiveness
term

m ¼ tf grg; ð16Þ

which has units of reciprocal velocity (seconds per meter).
For downstream always-negative gradients the raw rate of
erosion per year becomes

xraw ¼ f m
Q

w
�@xhð Þ: ð17Þ

The sediment-buffered, actual rate of bedrock erosion, for
bedrock with erodibility hr = hrock and sediment cover with
erodibility hs = hsed comes from combining equation (6)
with equation (17), and assuming f = 1/Dt,

xa ¼ f hr m
Q

w
�@xhð Þ � 1

hs
B

� �
: ð18Þ

This is our first governing equation.

3.5. Sediment Supply

[16] Sediment supply from coupled erosion of the main
channel, its tributaries and all surrounding hillslopes yields
a total input of coarse sediment per unit downstream
distance of

8 x; tð Þ ¼ c
dAc

dx
xa ¼ cWxa; ð19Þ

where Ac(x) is the catchment area and W(x) is an effective
catchment width (Figure 3). The prefactor c is the coarse
fraction of eroded material that becomes bed sediment in
our model; the remaining proportion of sediment is assumed
to be suspended or wash load.

3.6. Mass Balance

[17] Conservation of nonlocal bed sediment flux
(equation (13)) gives

@tAs ¼ �@xQs þ 8 ¼ �@x wdf*f g þ cWxa; ð20Þ

where @x{�} is the divergence operator and As is the bed-
sediment cross-sectional area (Figure 2b). This is our second
governing equation.
[18] As a cross-check, lets see what would happen if there

were no fractional advection and no source term

@t x2C
� �

¼ �v0@x x2C
� �

; ð21Þ

which simplifies to

D Asf g ¼ @tAs þ v0@xAs ¼ 0; ð22Þ

Figure 3. Nested catchment geometry used in model. The
drainage network shown here is schematic.
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which means that in the Lagrangian frame of the flow of
sediment moving at speed v0 downstream, the cross-
sectional volume per unit distance downstream As is
constant.

3.7. Rock Uplift Rate

[19] The vertical reference frame is set by the pattern of
relative base level change (‘‘uplift’’) u(x, t) so that the
absolute elevation of the river profile bedrock base is

@th ¼ u x; tð Þ � xa: ð23Þ

For the remainder of this paper we will assume a uniform
and constant uplift rate u(x, t) = u0 over the domain 0 �
x � xl.

4. Implementation

[20] The model is implemented in an idealized catchment
geometry with simple hydraulic geometry and scaling
(Figures 2 and 3).

4.1. Hydraulic Geometry

[21] The characteristic flood discharge Q(x) is assumed
for simplicity to scale linearly with drainage area

Q xð Þ ¼ Q0

x

x0

� �2

: ð24Þ

Noninteger scaling (Hack’s law) could be employed here if
required. Uniformly constant downstream flow speed is
assumed, along with a roughly rectangular channel cross
section, an implicit Chézy formulation of steady open
channel flow resistance and consequent hydraulic geometry,
which means that the flow width (Figure 2b) scales as root
discharge

w Q xð Þð Þ ¼ w0

ffiffiffiffiffiffiffiffiffiffi
Q xð Þ
Q0

s
¼ w0

ffiffiffiffiffi
x2

x20

s
¼ w0

x0
x ð25Þ

as does flow depth

d Q xð Þð Þ ¼ d0

ffiffiffiffiffiffiffiffiffiffi
Q xð Þ
Q0

s
¼ d0

ffiffiffiffiffi
x2

x20

s
¼ d0

x0
x: ð26Þ

The scaling of discharge per unit channel width is important

Q

w
¼ Q0

x

x0

� �2
 !�

w0

x0
x

� �
¼ Q0

w0x0

� �
x ð27Þ

because it determines the scaling in the raw erosion rate
calculation (equation (18)).

4.2. Catchment Geometry

[22] Catchment widening with downstream distance is the
arc length for the ‘‘pie-shaped’’ drainage basin (Figure 3)

W xð Þ ¼ W0

x0
x: ð28Þ

The catchment area is the integral over x

Ac xð Þ ¼ W0

2x0
x2: ð29Þ

4.3. Model Dynamics

[23] We can reduce the model equations (18) and (20) to a
coupled pair of partial differential equations by incorporat-
ing the pattern of rock uplift, which in this treatment is
assumed to be spatiotemporally uniform (equation (23)).
The PDE pair is a closed form description of the evolution
of the bedrock river profile over time and space.
[24] The constitutive equation, which describes bed-

sediment buffered channel bedrock erosion xa, is

u0 � @th ¼ f hrx
mQ0

w0x0

� �
�@xhð Þ � d0

hsx0

� �
C

� �
: ð30Þ

The conservation equation, which describes the hillslope
supply and downstream river channel spreading of bed
sediment, is

x2@tC ¼ �v0@x
1

x1�a0

x2I1�ax C

� �
þ cW0x0

w0d0

� �
x u0 � @thð Þ:

ð31Þ

[25] The formulation and solution of such a coupled
system of fractional advection and partial differential equa-
tions (with nonlinear terms) is wholly original. To date, the
focus in the literature has been on fractional dispersion [e.g.,
Benson, 1998] and where nonlocal advection has been
addressed [Baeumer et al., 2001; Zhang et al., 2007] it
has taken a different form (Appendix A3).

5. Steady State Solution

[26] If we assume that the time scale of bedrock channel
evolution is large compared to the equilibration timescale of
the bed sediment, th � tc, then C is effectively instantly
equilibrated and therefore constant at the timescale of
bedrock channel evolution. This implies that

@t x2C
� �

¼ x2@tC ¼ 0: ð32Þ

Erosion rates balance the mass input everywhere at steady
state, so that (equation (23))

xa ¼ u0 , �@th ¼ 0: ð33Þ

From equation (31) we have

@x
1

x1�a0

x2I1�ax C

� �
¼ cW0x0

v0w0d0

� �
u0x: ð34Þ

Integrating out gives

x2I1�ax C ¼ cW0x
2�a
0

v0w0d0

� �
u0

Z x

xhc

zdz: ð35Þ
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The drainage divide x = 0 is the lower limit of the fractional
integration Ix

a{�} (see Appendix) and xhc is the hillslope-
channel transition length scale. The fractional differentation
and integration operations here are associative and this
equation can be rearranged to give

C x; t !1ð Þ ¼ cW0x
2�a
0

v0w0d0

� �
u0@

1�a
x

x2 � x2hc
2x2

� �
: ð36Þ

Since 0 � a < 1 this is a fractional derivative. For simplic-
ity, we assume that the hillslope-channel transition length
scale is xhc � 0 so that we have

C x; t !1ð Þ ¼ 1

G að Þ
cW0x0

2w0d0

� �
u0

v0

� �
x

x0

� �a�1
: ð37Þ

[27] This closed form result for the dimensionless bed
cover is illustrated in Figure 4a for three values of a and the
example set of model parameters given in section 8. In the
limit as a ! 1, fractional integration is turned off and we
recover the result derived above for the nonfractional case
with xhc = 0

C x; t !1ð Þ ¼ cW0x0

2w0d0

� �
u0

v0

� �
: ð38Þ

The bed sediment thickness for any a is derived by
combining equations (8), (26) and (37)

B x; t !1ð Þ ¼ 1

G að Þ
cW0x0

2w0

� �
u0

v0

� �
x

x0

� �a

: ð39Þ

This result is illustrated in Figure 4b for three values of a
and the example set of model parameters given in section 8.

5.1. Channel Slope

[28] Combining equations (30) and (33), we find the
channel gradient at steady state can be written as

�@xhð Þ ¼ w0x0

f hrmQ0

� �
1

x
u0 þ f

hr
hs

� �
d0

x0

� �
xC

� �
: ð40Þ

Substitution of the dimensionless bed cover C(x, t ! 1)
given by equation (37) gives

�@xh x; t !1ð Þ ¼ w0x0

f hrmQ0

� �
1

x

�
(
u0 þ f

hr
hs

� �
d0

x0

� �
1

G að Þ
cW0x

2
0

2w0d0

� �
u0

v0

� �
x

x0

� �a
)
; ð41Þ

Figure 4. Steady state solutions for (a) dimensionless bed sediment cover C(x, t ! 1), (b) bed
sediment thickness B(x, t ! 1), (c) channel gradient �@xh(x, t ! 1), and (d) channel bedrock bed
elevation h(x, t!1) for three models with a = 0.1 (long-dashed line), a = 1/2 (solid line), and a = 0.9
(short-dashed line).

F01029 STARK ET AL.: A NONLOCAL THEORY OF BEDROCK CHANNEL EVOLUTION

6 of 14

F01029



which simplifies to

�@xh x; t !1ð Þ¼ w0x0

hrmQ0

� �
u0

v0

� �

�
(

v0x
�a

f x1�a0

� �
þ 1

G að Þ
hr
hs

� �
cW0

2w0

� �)
x

x0

� �a�1
:

ð42Þ

Several key aspects of model behavior can be gleaned
from this equation. The two bracketed terms describe the
respective importance of raw (left) versus buffered (right)
bedrock erosion. If buffering is very weak, the right-hand
bracketed term vanishes and the rate of channel bedrock
incision is given simply by the raw rate of erosion
(equation (15)); the channel slope has a hyperbolic decay
that originates in the simple erosion law scaling:

�@xh x; t !1ð Þ � w0u0

f hrmQ0

� �
x

x0

� ��1
: ð43Þ

On the other hand, if buffering is strong, or if we simply
examine the asymptotic limit for large x downstream, we
find that channel slope is a power law decay

�@xh x!1; t !1ð Þ � 1

G að Þ
cW0x0

2hsmQ0

� �
u0

v0

� �
x

x0

� �a�1
; ð44Þ

with exponent a � 1 such that the decay is bounded
between x0 and x�1. In other words, at the limiting values
of a, we find the model predicts a constant gradient (and a
linear river profile) for purely local bed sediment transport
and a = 1, whereas it predicts a hyperbolic decay in slope
(and a logarithmic river profile) for extremal nonlocal
transport (a = 0) (see Figure 4c).

5.2. Channel Elevation

[29] For the case of negligible bed buffering, integration
of equation (43) with h(x0) = h0 results in the river profile

h x; t !1ð Þ � h0 1� w0u0

f hrmQ0

� �
log

x

x0

� �� �
: ð45Þ

For the case of significant bed buffering, and/or for large x,
integration of equation (44) results instead in the profile

h x; t !1ð Þ � h0 1� 1

G að Þ
cW0x0

2ahsmQ0

� �
u0

v0

� �
x

x0

� �a� �
: ð46Þ

This closed form result is illustrated in Figure 4d for three
values of a and the example set of model parameters given
in section 8.

5.3. Mass Balance

[30] The nonlocal sediment flux at steady state can be
found by substituting the solution for dimensionless bed
cover C(x, t!1) given by equation (37) into the fractional
advection flux equation (12), which gives

f* x; t !1ð Þ ¼ 1

G að Þ
cW0x0

2w0d0

� �
u0I

1�a
x xa�1
� �

ð47Þ

and thus

f* x; t !1ð Þ ¼ cW0x0

2w0d0

� �
u0: ð48Þ

The sediment discharge is then

Qs x; t !1ð Þ ¼ wdf* ¼ w0d0

x20

� �
cW0x0

2w0d0

� �
u0x

2 ð49Þ

and thus

Qs x; t !1ð Þ ¼ cW0

2x0

� �
u0x

2; ð50Þ

which is consistent with simple mass balance, since this
gives

Qs x; t !1ð Þ ¼ cAcu0: ð51Þ

Alternatively, we can integrate out the divergence in the
second PDE,

@xQs ¼ 8 xð Þ; ð52Þ

so that using equation (19) yields

Qs x; t !1ð Þ ¼ cW0

x0

� �
u0

Z x

0

zdz; ð53Þ

which gives the same result.

5.4. Slope-Area Scaling

[31] A key result of our model is the scaling of slope

S ¼ �@xh; ð54Þ

with area

A ¼ Ac ¼
W0

2x0
x2; ð55Þ

which we find is

S � A� 1�að Þ=2: ð56Þ

In other words, the scaling exponent in the standard form of
this equation

S � A�q ð57Þ

is

q ¼ 1� a
2

: ð58Þ

[32] The implication is that if sediment buffering by
fractional advection (in the simple scaling form presented
here) were the only control on slope-area scaling, slopes
would decrease no faster than A�1/2

0 � a < 1 , 1

2
� q > 0: ð59Þ
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Empirical studies of slope-area scaling [e.g., Gupta and
Waymire, 1989; Tarboton et al., 1989; Sklar and Dietrich,
1998; Whipple, 2004] typically find exponents around 1/2
or higher, which indicates that (1) advection is likely
strongly nonlocal and (2) some of our model scaling
simplifications, particularly in the treatment of hydraulic
geometry, will need to be reexamined in future model
developments to allow q > 1/2. Nevertheless, the main
conclusion to draw is that our sediment buffering model
offers an alternative explanation to the standard interpreta-
tion of slope-area power law scaling originating in a stream
power law for bedrock erosion rate [e.g., Montgomery,
2001; Whipple and Tucker, 1999].

6. Time-Dependent Behavior

[33] The trick of assuming that C instantly adjusts to
prevailing conditions on timescales th� tc can be extended
to allow solution of the time-dependent behavior of bedrock
channel evolution h(x, t). In the conservation equation (31),
the dimensionless sediment cover is effectively constant
over time, so that the sediment cross-sectional area is also
constant

@tAs ¼ 0 ð60Þ

in equation (20). Thus the sediment discharge increases only
over space (downstream) and not time by the sediment
supply function

@xQs ¼ 8 xð Þ; ð61Þ

which expands, using equations (19), (23), and (28), into

@xQs ¼
cW0

x0

� �
u0 � @thð Þx: ð62Þ

In terms of the sediment flux, this equation can be written
using equation (13) as

@x wdf*f g ¼ cW0

x0

� �
u0 � @thð Þx; ð63Þ

which expands, using equations (25) and (26), to

@x
w0d0

x20
x2f*

� �
¼ cW0

x0

� �
u0 � @thð Þx; ð64Þ

and then using equation (12) to

v0
w0d0

x3�a0

� �
@x x2I1�ax C
� �

¼ cW0

x0

� �
u0 � @thð Þx ð65Þ

or

v0@x
1

x1�a0

x2I1�ax C

� �
¼ cW0x0

w0d0

� �
u0 � @thð Þx: ð66Þ

Integrating out we obtain

v0

x1�a0

x2I1�ax C ¼ cW0x0

w0d0

� �Z x

0

u0 � @thð Þzdz; ð67Þ

which is a useful form for numerical solution (section 7). It
is always true that

C ¼ @1�ax I1�ax C
� �

; ð68Þ

which allows rearrangement of equation (67) to give the
dimensionless sediment cover in an explicit form

C x; t � tcð Þ ¼ x1�a0

v0

� �
cW0x0

w0d0

� �
@1�ax

1

x2

Z x

0

u0 � @thð Þzdz
� �

:

ð69Þ

This equation records how the (relative) bed cover comes
about from the combined effects of upstream integration of
sediment supply and the downstream spreading of this
sediment by fractional advection.

7. Numerical Method

[34] An approximate solution for the evolution of C(x, t)
over time can be written in a way that avoids differentiation
and provides sufficient stability to achieve numerical solu-
tion. This is achieved by integrating out equation (67)

1

G 1� að Þ

Z x

0

x� zð Þ�aC zð Þdz
� �

¼ �x�2 x1�a0

v0

� �
cW0x0

w0d0

� �Z x

0

zDth zð Þdz; ð70Þ

where Dth is the discretization of @th with time step Dt.
Using the Grünwald-Letnikov discrete approximation
(equation (A6)) of the fractional integration in the left-hand
side of this equation, we obtain the discrete form

Dx

x0

� �1�a Xx=Dx

k¼0

G 1� aþ kð Þ
k!G 1� að Þ C x� kDx½ �

¼ �x�2 1

v0

� �
cW0x0

w0d0

� �Xn
k¼0

k Dxð Þ2Dth kDx½ �: ð71Þ

Discretization of equation (30) is more straightforward,

Dth x; tð Þ � f
x

x0

hrmQ0

w0

� �
@xhþ

hr
hs

� �
d0C

� �
Dt: ð72Þ

Solution of the model is accomplished iteratively over a
linear domain 0 � x � xl divided into a series of n nodes at
intervals Dx and thus located at distances xk = kDx
downstream. At each time step t ! t + Dt, a set of 2n
simultaneous equations (a pair for each node k 2 [1, n]
using equations (71) and (72)) is derived and solved to
obtain successive values of dimensionless bed cover
{C[kDx, t]} and bedrock elevation {h[kDx, t]}. The number
of terms in the equations for bed cover increases steadily
across the domain (equation (71)), which makes solution an
order n problem and computation very slow for large, finely
resolved profiles. A more efficient means of solution is
likely to be found in the future.
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[35] The boundary conditions are: (1) zero sediment
influx from the drainage divide (left boundary) at x = 0
and (2) the elevation beyond the solution domain is held at
zero h(x � xl) = 0. The initial conditions are: (1) the initial
dimensionless bed cover is zero C(x, 0) = 0 and (2) the
initial bed slope is small and constant across the domain,
�@xh = const. Numerical solution of the successive simul-
taneous equations was achieved in a mixed symbolic and
numerical fashion using Mathematica version 6.

8. Numerical Experiment

[36] We conducted several numerical experiments to
verify the theoretical conclusions reached in sections 5
and 6, and to test the finite difference scheme derived in
section 7. One of these experiments is presented here
(Figures 5 and 6).

8.1. Uniform Block Uplift and Evolution to
Steady State

[37] The intention of this experiment was to simulate the
evolution of a mountain river channel in a moderately active
tectonic and climatic environment. The following parame-
ters were chosen:

a ¼ 1=2

x0 ¼ 1� 103 m

Q0 ¼ 2 m3=s

w0 ¼ 10=
ffiffiffi
5
p

m

d0 ¼ 1=
ffiffiffi
5
p

m

c ¼ 1=3

W0 ¼ 1� 103 m

v0 ¼ 100 m=a

u0 ¼ 1� 10�3 m=a

f ¼ 1� 10�2 years�1

m ¼ 5000 s=m

hr ¼ 0:1

hs ¼ 10

h0 ¼ 20 m

xl ¼ 20� 103 m

n ¼ 100

Dx ¼ xl=n ¼ 200 m

Dt ¼ 40� 103 years

[38] These numbers define a model environment with the
following properties. The catchment is xl = 20 km long and
W0

x0
xl = 20 km wide (equation (28)) with a downstream fault

boundary (Figure 3), which slips at a rate u(xl, t) = u0 =
1 mm/a and which imposes a 1 mm/a rock uplift rate across
the whole catchment. The erosion driven by this relative
change in base level is mediated by the material properties
m, hr and hs, and by the frequency of characteristic discharge
f, which is expressed as the number of such flood days per
year; here f = 10�2 years�1 or 1 day of 24-hour sustained
discharge Q(x0) = Q0 about every 100 years. Sediment is
supplied from the hillslopes and channels across the whole

catchment at a rate set by the bedrock lowering rate along
the main stream (Figures 2 and 3). The fraction of sediment
transported as bedload is assumed to be a constant (across
the catchment and downstream in the river) at c = 1/3.
[39] At the reference catchment scale x = x0 = 1 km, the

characteristic flood discharge is Q0 = 2 cumecs, which is
assumed to have a constant hydraulic geometry with flow
width w(x0) = w0 = 10/

ffiffiffi
5
p

m and flow depth d(x0) = d0 =
1/

ffiffiffi
5
p

m for the anticipated bed slope and friction (more
realistic hydraulic behavior would ultimately affect the
scaling properties of the solutions, albeit weakly). The
nested subcatchment width at this reference scale is W0 =
1 km. The drainage area at x = xl is Ac(xl) = 200 km2 and
the characteristic discharge from this area is Q(xl) =
400 cumecs.
[40] The initial geometry of the landscape is a linear river

bed profile (see Figures 6c and 6d) with a gradient of
�@xh = 0.1% and an initial elevation of h0 = 20 m at the
drainage divide (x = 0); the hillslopes and tributary
channels are assumed to have already equilibrated with
the mainstream geometry at t = 0.
[41] The time-space evolution was resolved over a uni-

form ‘‘grid’’ (vector) of n = 100 points with spacing Dx =
xl/n = 200 m and a time step of Dt = 40 ky. steady state was
approximately achieved in about 750 ky.

8.2. Results

[42] The finite difference numerical solutions confirmed
the theoretical predictions and demonstrated that the model
is essentially a strongly overdamped, weakly oscillatory
system that evolves stably to a steady state balance between
rock uplift and mixed bedrock-alluvial channel erosion.
Graphs of the model variables over x and t are shown in
Figures 5 and 6. The numerical solutions (solid lines)
converge to the closed form, steady state solutions (dashed
lines) in all cases (see Figure 4 for comparison). These
results are discussed in more detail in the next section.

9. Discussion and Conclusions

[43] We have formulated a model of bedrock river inci-
sion with sediment buffering that capitalizes on the follow-
ing two innovations: (1) a single rate equation to describe
both bed sediment cover removal and bedrock erosion in
terms of work done on the bed and (2) treatment of the
heterogeneous spreading of bed sediment using a fractional
advection equation (which includes simple advection as a
limiting case). Fractional advection was adopted to model
the broad range of transport distances that bed sediment
particles probably experience on the long-term, i.e., to deal
with the combined effect of stochastic variability in grain
size, bed armoring, transient depositional patterns, channel
hydraulic geometry, flood discharge, and boundary shear
stress, that likely generates a heavy-tailed probability dis-
tribution of particle motions (heavy-tailed pdfs of flood
discharge are particularly extensively documented [e.g.,
Dodov and Foufoula-Georgiou, 2004; Gupta et al., 1994;
Lague et al., 2005; Molnar et al., 2006]). In such circum-
stances the classical notion of flux, and of advection and
dispersion, does not work, because it assumes that local
computation of the particle concentration gradient suffices
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to estimate the numbers of particles passing by. No local
computation can account for all the influxes of sediment
from upstream if, on the same timescale, both short-range
and long-range motions have nonvanishing probability.
Instead, a nonlocal computation is needed to perform the
distance-weighted sum of particle supply [Benson, 1998;
Cushman and Ginn, 2000; Berkowitz et al., 2002]. We have
chosen fractional calculus to calculate this nonlocal flux,
and we formulated a fractional advection equation that
binds this nonlocal flux to the erosion of bedrock, to the
buffering of the erosion rate by sediment cover, and to the
hillslope-channel linked process of sediment supply.
[44] By assuming a simplified channel and catchment

geometry, we have obtained closed form, steady state
solutions of the two governing equations for sediment cover
thickness, channel bed elevation and channel gradient as a
function of downstream distance. These analytical solutions
provide useful insights into the model behavior and its
implications for bedrock rivers. For example, we find that
if sediment buffering is very weak, a steady state logarith-
mic bedrock river profile is obtained (the log form originates
in an assumption of simple scaling in the hydraulic geometry

and in the stream power model of bedrock incision); more
general scaling forms would give a power law profile. If
significant buffering of bed erosion is present, nonlocal
advection of sediment results in a power law profile whose
scaling exponent is set by the degree of fractional advection
Lévy exponent a. These results are illustrated in Figure 4
where a = 0.9 is close to local advection and a = 0.1
signifies a high degree of nonlocal behavior.
[45] An important model result is that at steady state the

nonlocal bed sediment flux (Figure 6a) reaches a constant
value all along the river (equation (48)), which is equivalent
to saying that the sediment discharge per unit channel cross-
sectional area, Qs/wd, reaches a constant. Since the flux is
the distance-weighted summation of mobile bed sediment
upstream calculated through the fractional integral of
dimensionless bed sediment Ix

1�a{C(x)} (equation (12)),
the variable C(x) must decrease downstream as a power
law C(x) � xa�1 (equation (37)). The nonintuitive conse-
quence is that bed sediment cover thickens more slowly
than linearly downstream as B(x) � xa, since 0 � a < 1.
[46] Perhaps the most important model result is that

strong sediment buffering overwhelms the scaling effect

Figure 5. River profile evolution over time from an initial linear gradient to a steady state power law
form obtained by numerical solution for (a) dimensionless bed cover C(x, t), (b) bed cover thickness
B(x, t), (c) rate of change of dimensionless bed cover @tC(x, t), and (d) bedrock channel incision rate
�@th(x, t). Model parameters for this numerical simulation are given in section 8. Solid lines are
numerical solutions at successive time steps; the dashed lines are the asymptotic, closed form solutions
at steady state.
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of the underlying bedrock incision law [Stark et al., 2000].
For heavy sediment cover, or simply at sufficient distance
downstream, the asymptotic scaling of slope with upstream
area is determined instead by the scaling of the fractional
advection process, namely S � A�(1�a)/2. power law scaling
of slope versus area is consistent with many empirical
studies of topographic scaling [e.g., Tarboton et al., 1989;
Sklar and Dietrich, 1998; Whipple, 2004], for which S �
A�q defines a ‘‘concavity index’’ [Flint, 1974] equal to q =
(1 � a)/2. Since typically observed values of this index are
around q � 1/2, the empirical data are consistent with a
strongly nonlocal process of sediment buffering for which
a ! 0. In fact, the simple model scaling assumptions used
here (section 4) force an upper bound on our predicted
concavity index of q � 1/2 since a � 0 [Lévy, 1937;
Feller, 1971; Benson, 1998]. However, a more general
treatment of catchment and channel hydraulic scaling
would relax this bound to permit higher values of q > 1/2
as observed in many analyses of digital elevation models.
In any case, our model provides a radical alternative to the
standard interpretation [e.g., Montgomery, 2001; Whipple,
2004] of this scaling that the concavity index is the ratio
of the exponents in a stream power formulation of bedrock
incision rate. A careful examination of slope-area scaling
in the context of the pattern and duration of bed sediment

cover in mixed bedrock-alluvial rivers may provide a
means of testing these alternative models.
[47] Finally, the temporal evolution of the proposed

coupled system of governing equations provides insight
into the dynamics of bedrock incision. Our one-dimensional
results indicate that the bedrock sediment incision interplay
results in a nonlinear but highly damped system which has
well behaved steady state solutions. The transient effect of
powerful perturbations on this model system, particularly
when extended to two dimensions (a full network), is an
issue that requires further study.

Appendix A

A1. Fractional Calculus

[48] Fractional integration of order q is defined as con-
volution with a power law ‘‘memory’’ kernel, which we
write as

Iqx ff g ¼ 1

G qð Þ

Z x

0

f zð Þ
x� zð Þ1�q

dz: ðA1Þ

The lower limit of the integral at x = 0 defines (in this study)
the drainage divide. Fractional differentation is derived from

Figure 6. River profile evolution (continued from Figure 5) for (a) nonlocal bed sediment flux f*(x, t),
(b) sediment discharge Qs(x, t), (c) bedrock channel gradient �@xh(x, t), and (d) bedrock channel
elevation (river profile) h(x, t). Solid lines are numerical solutions at successive time steps; the dashed
lines are the asymptotic, closed form solutions at steady state.
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this convolution: in its Riemann-Liouville form the fractional
derivative operator of order q is

@qx ff g ¼ 1

G 1� qð Þ
d

dx

Z x

0

f zð Þ
x� zð Þq dz

� �
ðA2Þ

for 0 � q < 1.
[49] Application of the fractional integral operator of

order 1 � a to a power function of order b gives

I1�ax xb
� �

¼ G b þ 1ð Þ
G b � að Þ x

b�aþ1 ðA3Þ

and the fractional derivative of the same function is

@1�ax xb
� �

¼ G b þ 1ð Þ
G b þ að Þ x

bþa�1; ðA4Þ

and so the fractional derivative of order 1 � a of a constant
(b = 0) is

@1�ax cf g ¼ c

G að Þ x
a�1: ðA5Þ

[50] The idea of nonlocal transport of particles can be
expressed as a hopping process where the hop length
belongs to a heavy-tailed probability distribution: after many
hops, the Lévy limit theorem [Lévy, 1937; Feller, 1971;
Stark et al., 2000] predicts that the pdf of transport distance
will have a Lévy stable distribution whose tail decays as a
power law. The motion of particles in an aggregate sense can
be expressed as a convolution of the initial spread of
particles with a power law kernel with the same scaling
[e.g., Cushman and Ginn 2000]. Therefore the fractional
integral equation (A1) is a macroscopic description of a
nonlocal hopping process. Further details can be found in,
for example, Benson [1998], Benson et al. [2000a, 2000b],
Feller [1971], Gorenflo and Mainardi [1997, 1999, 1998b,
1998a], Gorenflo [1997], Gorenflo et al. [1999], Mainardi
et al. [1998], Lévy [1937], Mantegna [1994], Meerschaert
et al. [1999], Miller and Ross [1993], Oldham and Spanier
[1974], Podlubny [1999], Saichev and Zaslavsky [1997],
Samko et al. [1993], Samorodnitsky and Taqqu [1994]. If
the power law tail is truncated, the formalism of continuous
time randomwalks (CTRW) ismore applicable [e.g.,Berkowitz
et al., 2002; Mantegna and Stanley, 1994].
[51] The Grünwald-Letnikov discrete approximation

of the fractional integral operator is [Grünwald, 1867;
Podlubny, 1999]

Igx ff g ¼ lim
Dx!0

Dxð Þg
Xx=Dx

k¼0

G g þ kð Þ
k!G gð Þ f x� kDxð Þ: ðA6Þ

A2. Power Law Pdfs Via Mixing Distributions

[52] A common approach to treating distributions of
empirical data is to assume the quantity in question belongs
to a single pdf of parametric form, reducing the task to
finding this form and inferring its parameters. In reality,

physical data typically involve quantities derived from
several ‘‘parent’’ quantities that are themselves distributed;
even if the parent random variables belong to pdfs of
classical form, the derived random variable likely will not.
It is therefore safe to assume that most natural data are the
result of the transformation and mixing of multiple random
variables.
[53] Mixing can easily give rise to a power law pdf. For

example, if one assumes that the distribution of sediment
transport distances for a given grain size D is exponential
then one can write

P X � x jDð Þ ¼ exp �x=lDð Þ: ðA7Þ

The mean transport distance is the coefficient lD which we
assume is inversely proportional to grain size [Hassan and
Church, 1991],

lD ¼ k=D: ðA8Þ

We further assume a gamma distribution of grain sizes

f D ja;Dmð Þ ¼ aa

G að ÞDm
a D

a�1 exp �a D

Dm

� �
; ðA9Þ

whose mean (not median) is Dm and whose shape parameter
is a � 0. Combining these equations we obtain the transport
distance distribution of a grain of arbitrary (randomly
selected) size

P X � xð Þ ¼ 1þ Dm

ak

� �
x

� ��a
; ðA10Þ

which is a generalized Pareto distribution. For larger hop
distances x � ak/Dm the transport probability decays as a
power law. If the duration and intensity of transport events
are single valued, the distribution of particle velocities will
asymptotically be as given in equation (10). If event
duration and intensity (bed shear stress) are stochastic
variables, further mixing will occur and the power law tail
will change shape further. Summation of multiple hops will
drive the long-term distribution toward a Lévy stable law
with 0 � a � 2.

A3. Connection to FADE Models

[54] The nonlocal flux equation (12) is a form of frac-
tional advection that differs from the fractional advection-
dispersion equations (FADE) tailored to treat contaminant
transport problems in porous media [e.g., Benson, 1998;
Benson et al., 2000a, 2000b]. In such FADE models, a
fractional derivative operator is used in the dispersion term
only, i.e., such models describe fractional dispersion driven
by classical advection. The sole published FADE model that
considers nonlocality in both the advection and dispersion
terms is that of Baeumer et al. [2001]. Their model consid-
ers the classical advection-dispersion equation to hold
locally for each particle, but at rates that vary broadly as
the particle samples (during the history of its motion) more
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and more of the heterogeneities of the porous medium. This
formulation leads Baeumer et al. [2001] to consider model
time as a random variable (‘‘operational time’’) and to
extend the standard ADE to a combined fractional advection
and fractional dispersion (FAFD) model through a stochas-
tic operation known as subordination.
[55] The fractional advection component of the model

presented here can be considered a special case of the FAFD
model of Baeumer et al. [2001] in which, for the purpose of
clarity, the dispersion term is set to zero. In the future, our
model could be extended to include either classical or
fractional dispersion, but the scaling effect on sediment
buffering is likely to be very similar to that of the fractional
advection already included in the model.

Notation

Model Variables
t time (years).
x distance downstream from divide (m).

Q(x) characteristic discharge (m3/s).
w(x) flow width at characteristic discharge (m).
d(x) flow depth at characteristic discharge (m).
W(x) catchment width (m).
Ac(x) catchment area (m2).
h(x, t) elevation of bedrock channel profile (m).
W(Q) unit stream power (W/m).

xa(x, t) sediment-buffered bedrock erosion rate
(m/a).

�@th(x, t) rate of bed lowering (m/a).
�@xh(x, t) downstream bed and energy slope

(dimensionless).
B(x, t) bed sediment cover thickness (m).
C(x, t) relative bed cover (dimensionless).
As(x) bed sediment cross-sectional area (m2).

8(x, t) sediment supply by hillslope erosion
(m2/a).

f*(x, t) downstream bed sediment flux (m/a).
Qs(x) annual bed sediment discharge (m3/a).
u(x, t) uplift rate pattern (m/a).

Model Parameters
a bed cover fractional advection exponent

(dimensionless).
x0 reference downstream distance (m).
Q0 characteristic water discharge at x0 (m

3/s).
w0 channel flow width at x0, Q0 (m).
d0 channel flow depth at x0, Q0 (m).
W0 catchment width at x0 (m).
c coarse (bed) fraction of sediment supply

(dimensionless).
v0 reference annual bedload speed (m/a).
u0 uplift rate (regionally uniform) (m/a).
f annual frequency of Q0 flows (1/a).
r density of water (kg/m3).
g acceleration due to gravity (m/s2).
g reference erodibility (m3/J).
tf duration of Q0 flood event (s).
m flood effectiveness (s/m).

hr = hrock bedrock erodibility (dimensionless).
hs = hsed bed sediment erodibility (dimensionless).

h0 initial bed elevation at divide x = 0 (m).

xl downstream limit distance (fault boundary)
(m).

n number of resolved points along profile
(dimensionless).

Dx point spacing along profile (m).
Dt numerical solution time step (years).
q slope-area scaling exponent

(dimensionless).
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Abstract 
Field studies have documented that the average 

bedload transport rate in gravel bed streams depends on the 
sampling time (or integration time) over which this average 
is computed. In this paper we use sediment transport data 
from a controlled laboratory experiment to document and 
quantify the dependence on sampling time not only of the 
mean but of the whole probability density function (pdf) of 
sediment transport rates in a gravel bed stream. We 
demonstrate that the higher moments (variance and 
skewness) scale differently than the mean and we provide a 
concise parameterization of this statistical scale-
dependence. The results indicate that the mean sediment 
transport rate in moderate flows decreases with increasing 
sampling time, in agreement with results reported in field 
studies. The proposed methodology provides a framework 
within which to seek universal scaling relationships, 
compare results of different samplers, and also interpret 
extremes.   

1. Introduction 
In a recent study Bunte and Abt (2005) have provided an 
excellent account of the problem of sampling time 
dependence of gravel bedload transport rate and its 
importance for interpreting estimates from different 
samplers. They also provided a detailed quantification of 
this dependence for a range of flows in a gravel-bedded 
stream. Their results indicated that in moderate to high 
flows flows (50% bankfull to almost bankfull conditions) 2 
min sampling led to an average transport rate 2 to 5 times 
lower than that found with 10 min sampling. However, at 
lower flows (close to the incipient gravel motion) 2 min 
sampling overestimated the transport rates at 10 min 
sampling by a factor of almost 3. The fact that bedload 
discharge measurements depend on both sampling time and 
mean flow rate was also shown by the field measurements 
at different time scales documented by Ergenzinger et al. 
(1994).In this study we restrict our analysis to the sampling 
time dependence in the low flow case, with results from a 
higher flow experiment to be presented by the authors in a 
follow-up work (Singh et al., 2008). The explanation of the 
sampling interval dependence at low flow has generally 
been that the instantaneous sediment transport rates exhibit 
rare but very high fluctuations (due to the irregular and 

stochastic nature of particle movement on the bed) and thus 
integrating over variable time intervals changes the chance 
of sampling these high fluctuations. Translating this to a 
statistical interpretation, at very small sampling intervals 
the chance of sampling very high fluctuations is small and 
thus the pdf of sediment transport rates is highly skewed 
(only a small number of very high values is present); as the 
sampling interval increases however, more of these high 
fluctuations are likely to be sampled. Although most studies 
have been concerned only with how the mean changes with 
the sampling interval, it is also of interest to study the 
whole pdf and quantify how the shape (or the higher order 
statistical moments) of this pdf change as the scale 
(sampling interval) changes. This is important as often it is 
not only the mean but the variability of the sediment 
transport rates, including extreme quantiles, that is 
important in many ecological studies, e.g., studies that 
incorporate the effect of bedload sediment on stream 
habitat.   

The sampling-time dependence of bedload 
transport rates has important practical implications for 
bedload measurements in the field. Several researchers (e.g. 
Gomez et al. 1989, Kuhnle 1996, Wilcock 2001) have 
argued for sampling durations that are long enough to 
smooth out fluctuations and measure the “true mean” 
transport rate for a particular level of flow. But determining 
the time period that fits this criterion requires knowledge of 
the way in which the statistics of the transport rate vary 
with sampling interval. In addition, practical limitations can 
restrict sampling time to be less than this ideal: the 
sampling instrument used may have a limited capacity 
(such as a Helley-Smith type sampler), or variations in flow 
rate may mean that the system can not be considered stable 
over such a long period. In such situations, interpreting 
results and comparing measurements with different 
sampling times requires a quantitative understanding of the 
dependence of bedload transport on temporal scale. 

The first objective of this study is to use the results 
of a controlled and well-instrumented experimental set-up, 
described in Section 2, to reproduce some of the effects of 
sampling interval that have been observed in the field. By 
continuously measuring the mass of transported gravel 
bedload through an experimental flume at high temporal 
resolution, and then averaging over different time intervals, 
it is possible to simulate sampling the transport rate over 
different time periods. The second objective is to develop a 
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theoretical framework for quantifying the variations in the 
statistical properties of bedload transport with changing 
sampling interval. This framework is outlined in section 3, 
and is focused on the ideas of scale-invariance, or the 
search for statistical quantities that remain the same with 
change of scale or can be transformed from one scale to 
another in a straightforward way. Of course, in this work 
the scale to which we refer is the temporal scale, i.e. the 
sampling time of the bedload transport. The results of 
applying this framework to the experimental data are 
presented in section 4, and the implications are discussed in 
section 5. 

2. Data Used In This Study 

2.1 Experimental set-up and data processing 
In order to investigate the dependence of bedload sediment 
transport on sampling time, we examine experimental data 
from the Main Channel facility at the St. Anthony Falls 
Laboratory, University of Minnesota. These experiments 
were conducted as part of a larger-scale experimental 
program (called StreamLab06) supported by the National 
Center for Earth-surface Dynamics (NCED) at the 
University of Minnesota.  The flume used in this study is 
2.74 m wide and 55 m long, with a maximum depth of 1.8 
m. Gravel with a median particle size (d50) of 11.3 mm was 
placed in a 20m long mobile-bed section of the 55 m long 
channel. The grain size distribution for the bed material is 
shown in Figure 1. A constant discharge of water at 4300 
liters per second was released into the flume. This was 
estimated to generate a dimensionless bed stress of about 
twice the critical value required to move the bedload 
sediment (Shields stress = 0.085 using median gravel 
diameter). At the downstream end of the test section was 
located a bedload trap, consisting of 5 weighing pans of 
equal size that spanned the width of the channel, as seen in 
Figure 2. Any bedload sediment transported to the end of 
the test-section of the channel would fall into the weigh 
pans, which automatically recorded the mass they contained 
every 1.1 seconds. Upon filling with a maximum of 20 kg 
the weigh pans would tip to release the sediment into the 
collection hopper located below and reset the weigh pan.   
The flume is a partial-recirculating flume; it has the ability 
to recirculate gravel while water flows through the flume 
without recirculation. A large collection hopper located 
underneath the weigh pans serves to collect and store gravel 
dumped out of the weigh drums and also serves as the 
material source for the recirculation system. The rate of 
gravel removal out of this hopper and delivered to the 
upstream end of the flume via a large pump is set by 
adjusting the rotation speed of a large helix, which serves to 
push gravel laterally out of the hopper and into the 
recirculation line. In this way, the collection hopper and 
helix serve to buffer small fluctuations in sediment flux out 
of the flume and provide a more steady “feed-type” 
delivery of sediment to the upstream end. Because the 
physical size of the collection hopper is finite, the auger 

speed (upstream feed rate) was adjusted to match the actual 
transport in the flume such that we would always observe 
storage of gravel in the hopper. 

 

Figure 1 Grain Size Distribution of the bed surface. 
 
Before any measurements were taken, the water 

supply in the flume was turned on to 4300 liters per second 
and was allowed to run 15 hr to develop a dynamic 
equilibrium in transport and slope adjustment of the water 
surface and bed. Determination of the dynamic equilibrium 
state was made by checking that the 60 min average flux 
was stabilized to an almost constant value during the flume 
run. The bedload transport data were then recorded 
continuously for approximately 16 hours through the rest of 
the experiment.  

 
 
Figure 2. Weighing Pans located at the downstream end 
of the test channel. The experiment was conducted at 
the St. Anthony Falls Laboratory, National Center for 
Earth-surface Dynamics, University of Minnesota.  
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The raw sediment accumulation data was pre-
processed prior to the analysis presented here. The pre-

processing involves removal of weigh pan dumping events 
from the data and translating the data set into a continuous

 accumulation of sediment ( ( )cS t ) time series for each 

weigh pan over the duration of the experiment. An example 
of this series can be seen in Figure 3. A single tipping event 
requires the removal of no more than eight data points (~8.8 
seconds) of the record. On average, a single weigh pan 
tipped every 1.5 hr. Overall, the data affected by the weigh 
pan tipping constitutes less than 0.15% of the total data 
record and is, thus, negligible. The sediment accumulation 
S(t,t) measured over a sampling interval t is then simply  

)()(),( tSttSttS cc  .      (1) 

 

 
 

Figure 3 Time series of the total accumulated sediment 
Sc(t) 

 
If the sampling interval t is taken to be very small, such as 
the original 1.1 sec resolution of the data series, one 
observes a large number of negative values of S(t,t), as 
shown in Figure 4a. These negative values are clearly not 
physically plausible since by the experimental design 
(Figure 2) the sediment can only pass in one direction, 
down onto the weigh pans, and hence S(t,t) should only 
be positive. Thus, these negative sediment accumulations 
are attributed to the mechanical noise produced by: the 
natural oscillation of the weigh pans after being hit by the 
falling gravel; the fluctuating water surface over the pan; 
and the vibration caused by the large gravel pump which 
was placed near to the weigh pans (for further discussion of 
the errors associated with weigh pans and possible 
processing techniques, see Laronne et al., 2003). This noise 
can be smoothed out by considering longer sampling 

intervals t. It was found that the occurrence of negative 
values of S(t,t), and hence the significance of the noise 
relative to the signal, was greatly reduced once the temporal 
scale t was increased to about  2 min. Figure 4b shows 
the time series S(t,t) for t = 2 min. Hence to avoid noise 
distortion, we will mainly interpret results for temporal 
aggregation scales longer than 2 min. 

 

 
 

 
 

Figure 4. The time series of the sediment, S(t), 
accumulated over sampling intervals t of: (a) 1.1 
seconds and (b) 2 min. 
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2.2 Statistical distribution of the data.   
To begin investigating the statistical properties of bedload 
transport and it’s dependence on sampling interval, 
consider the sediment transport rate, given by (S(t, t) /t). 
The pdfs of the sediment transport rate, calculated at 
sampling intervals of 2, 5, 10, and 15 min, are shown in 
Figure 5. At the smallest scale, t = 2 min, the probability 
distribution is wider, with a higher mean and standard 
deviation than at the longer sampling intervals. As the 
sampling interval increases, the mean decreases slightly and 
the standard deviation decreases more significantly, as the 

distributions become more tightly peaked at longer 
sampling time. Note that the pdf remains negatively skewed 
at the larger temporal scales. One measure of the shape of 
the probability distribution is the coefficient of variation, 
Cv, which is the ratio of the standard deviation to the mean, 




vC . For the sediment transport rate, Cv decreases 

with increasing temporal scale, as shown in Figure 6. So 
the width of the pdf, relative to the mean, diminishes with 
increasing sampling time.  

 
 
 

 
 
Figure 5. Probability density function of sediment transport rate for different sampling intervals  (2, 5, 10, 15 min), 
with mean and standard deviation listed (units of g/s). 

c)t = 10 min d)t = 15 min 

a) t = 2 min b) t = 5 min 
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Figure 6. The coefficient of variation of sediment 
transport rate as a function of temporal scale t 
(sampling interval). 

3. Framework of Analysis 
If the sediment transport rate (S(t,t) /t) was 

independent of the sampling interval, the mean of the 
accumulated sediment S(t,t) would depend linearly ont; 
that is, in twice as large a sampling interval, on the average 
twice as much sediment would be accumulated,. In practice, 
however, it has been found that the mean of S(t,t) 
depends on t in a way that has not yet been statistically 
characterized. The purpose of this paper is to explore 
whether this dependence falls under any scale invariance 
characterization, widely found in turbulence and other 
geophysical processes (e.g., see Parisi and Frisch 1985; 
Lovejoy et al., 1993; Gupta et al. 1994; Foufoula-Georgiou 
1998; Sornette and Ouillon 2005; Venugopal et al. 2006, 
Lashermes and Foufoula-Georgiou, 2007). 

Let us define the q-th statistical moment < S(t)q > 
as the expectation value of the q-th power of S(t,t), which 
is estimated by 

 



N

t

qq ttS
N

tS
1

),(
1

)( ,        (2) 

where N is the total number of data points available at the 
scale t. The 1st statistical moment is the mean and the 2nd 
statistical moment is a measure of the variability about the 
origin. Combined, the statistical moments < S(t)q > for all 
q completely capture the shape of the pdf. Statistical 
scaling, or scale invariance, requires that < S(t)q > is a 
power law function of the scale, that is  

  )()( qq ttS  ,                                (3) 

where (q) is the scaling exponent, which is independent of 
t and depends only on the order of the moment q . For a 

scale-invariant variable, the function (q) therefore 
completely determines how the pdf of the variable changes 
with scale. For example, the mean will vary as sampling 

interval to the power of (1). The simplest form of scaling, 
known as simple scaling or monoscaling, is when the 
scaling exponents are a linear function of the moment order 
i.e. when (q) = Hq. In this case the single parameter H 
characterizes how the whole pdf changes over scales, so 

that if  ),( ttSP   is the pdf of sediment transport at scale 

t, the pdf at a second scale t’ is given by (e.g., Kumar 
and Foufoula-Georgiou 1993) 
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That is, the pdf at sampling interval t’ is simply the 

original pdf normalized by a factor 

H
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If (q) is nonlinear, known as multiscaling, more than one 
parameter is required to define the behavior of the 
probability distribution change over scales. In fact, equation 
(4) takes on a more complicated form and involves a 
convolution of the pdf at the previous scales with a kernel 
that depends on the ratio of scales (e.g., Castaing and 
Dubrulle 1995; see also Venugopal et al. 2006). 
Concentrating on the second order moments, one can 
quantify the relative change in shape of the pdf with the 
coefficient of variation, Cv. Note that Cv is expressed in 
terms of the first and second moments as 
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In the presence of scaling (equation 3) this results in 

    )1(2)2(2 1   tCv ,       (6) 

which, for the multiscaling case, indicates that the 
coefficient of variation changes across scales as a function 
of (2)-2(1). On the contrary, for simple scaling (q) is 
linear and hence (2) = 2(1), so that equation (6) means 
that Cv will be a constant across scales. The variation in the 
shape of the pdf with scale could also be quantified in more 
detail by higher order dimensionless moments, such as 
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 (e.g., Mahrt 1988). 

 4. Results 
To quantify the scale-dependence of bedload transport, this 
multiscale analysis methodology was applied to the 
experimental sediment transport series described in section 
2. The statistical moments  < S(t)q > are displayed as a 
function of t on a log-log plot in Figure 7. If the sediment 
transport series are scale invariant, we would expect to see 
a linear relationship in this figure, since the power law 
relationship between < S(t)q > and t expressed in 
equation (3) is linear on a log-log plot. Figure 7 indeed 
shows a linear relationship between the statistical moments 
and temporal scale over the range of approximately 1 min 
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to 15 min (indicated by the dashed lines on the figure), and 
hence implies a scale invariant regime within this range. At 
sampling times shorter than 1 min, the statistical moments 
do not decrease as would be implied by the scale invariant 
system, and in fact increase at short enough scales. This 
behavior of the statistics at short time-scales is interpreted 
as being dominated by the mechanical noise, discussed in 
section 2.1, which can be identified by the high frequency 
of occurrence of negative values in the sediment 
accumulation rate, which by experimental design should 
only be positive. At sampling times t > 15 min, the 
statistical moments also deviate from the log-log linear 
relationship, eventually leveling out to be relatively 
constant with sampling time. This is seen as reaching a 
critical scale, around 15-30 min, at which the largest 
fluctuations of the series are sampled regularly and above 
which the statistics of the flow are stable.   

 

Figure 7 Statistical moments <S(t)q> of the sediment 
flux as a function of temporal scale (sampling interval), 
for the range of moment orders q = 0.5, 1, 1.5, 2.0, 2.5, 
3.0. The vertical dashed lines mark the limits of the 
scaling range. 

 
Figure 8 The scaling exponents (q) as a function of the 
moment order q (computed values from the sediment 

transport series are shown as points for q=0 to 3 in 
increments of 0.5 and the solid line is the fitted 
quadratic approximation). Deviation from 
monofractality is depicted by the deviation from the 
straight line.   

 
Within the scaling regime, it can be observed from 

Figure 7 that the statistical moments have different slopes. 
Estimating these slopes by least squares fitting gives the 
scaling exponents (q) for all moment orders q, which are 
plotted in Figure 8. Concentrating on first order (q = 1) 
statistical moment, which is in fact the mean of S(t,t), we 
see that (1) ≈ 0.5. This implies that within the scaling 
range the mean amount of sediment accumulated increases 

as approximately t , so for example, if one doubles the 
sampling interval the amount of mean sediment 
accumulated does not double but only increases by a factor 
of about 1.41. When considering the mean sediment 
transport rate, (S(t,t) /t), this implies that  
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,    (7) 

or that the bedload transport rate decreases with increasing 
sampling interval t. In other words, doubling the sampling 
interval results in a transport rate which is approximately 

0.7 (= 21 ) times smaller. 

If one then considers the statistical moments of order q 
higher than 1, Figure 8 indicates that their scaling 
exponents (q) do not increase as a linear power of q (the 
theoretical linear relationship is shown as a dashed line in 
the figure for comparison). So (2) is slightly less than 
twice (1), etc. Therefore, the simple scaling described by 
equation (4) does not hold, and a multiscaling framework is 
required. This is consistent with the fact that we saw in 
section 2.2 that Cv decreased with scale, corresponding to 
the pdf narrowing with increasing sampling time: using 
equation (6), a decreasing Cv implies that (2) is less that 
2(1). 

Knowledge of the (q) curve allows the complete 
rescaling of the pdf with changing sampling interval. It is 
often convenient to parameterize (q) in order to describe 
the scaling properties of the data in a parsimonious way. 
Although several nonlinear parameterizations of (q) are 
possible, a typical parameterization results from assuming 
that (q) accepts a polynomial expansion of the form 
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!32
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c
qccq ,               (8) 

with the constants ci, i = 0, 1, 2, 3,... as the model 
parameters. In this work, due to the uncertainty in 
estimation of higher order moments from limited data, the 
polynomial is truncated at the second order i.e. it is 
assumed to be quadratic and all ci are assumed to be zero 
for i > 2. This quadratic approximation, which is consistent 
with the so-called lognormal multiplicative cascade model 
(e.g., see Arneodo et al., 1998b), has been found adequate 
for modeling several geophysical processes including 
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atmospheric boundary layer flows (e.g., Basu et al. 2006) 
and high resolution temporal rainfall (Venugopal et al. 
2006), among others. The constant c0 = (0) is the scaling 
exponent of the zeroth-order moment, which will be equal 
to zero if the support fills the space, as is the case here. This 
leaves two parameters, c1 and c2, to describe the scaling, 
which can be obtained by fitting a second degree 
polynomial to the (q) curve. A least squares fitting was 
performed on the experimental data, and resulted in c1  
0.56 and c2  0.05 (for comparison, for fully developed 
turbulence c1  1/3 and c2 0.025). The (q) curve fitted 
with this parameterization is shown as the solid curve in 
Figure 8, and can be seen to approximate very well the 
empirical curve. Assuming this model, the mean of the 
sediment accumulation is seen to scale as 

  2/21)( ccttS  , which is dominated by the c1 

value, while the scaling of the coefficient of variation is 

given by   2)1( 2 c
v tC  . Hence, the parameter c2 

determines the widening of the pdf with decreasing scale. 
Scaling of higher order moments (and the whole pdf) can 
also be derived in terms of the two parameters c1 and c2 
(e.g., see Venugopal et al., 2006 for an application to 
rainfall series).  

5. Discussion and Conclusions 
In this study the sampling-time dependence of the 

statistics of bedload transport has been examined, and the 
statistical moments have been found to change as power 
law functions of sampling time within a range of scales 
between 1 and 15 min. At temporal scales larger than 
around 30 min the statistics were observed to stabilize and 
become constant with sampling interval. This indicates that, 
at least for this system, the ideal way to measure bedload 
transport rates, to avoid any issues of scale-dependence, 
would be to use a sampling interval of 30 min or greater. 
While this would certainly be possible in a controlled 
laboratory experiment such as the one presented here, in 
field studies this approach may not be practical, since we 
expect that the critical sampling time will scale up with the 
dimension of the system, and so may require very long 
sampling times in large rivers. Such long sampling times 
may not be feasible if the bedload sampler has a finite 
capacity or if the flow conditions in the river change within 
this time. For this reason further research into the scale 
dependence of bedload transport is required, not only to 
determine the upper limit of variations with scale, but also 
to quantify the scale-dependence at shorter sampling times, 
in order to allow the correction of statistics in the cases 
when long sampling times are not feasible.  
In this work we have outlined a framework to facilitate 
further investigation into sampling-time dependence, using 
the statistical moments of sediment transport to identify 
regimes of scale-invariance and scaling exponents (q) to 
quantify the changes in the probability distribution with 
scale. The quadratic parameterization of (q), equation (7), 
allows description of the continuum of scaling exponents 
with just two parameters. This should become increasingly 

useful in future studies as experiments are performed in a 
range of differing conditions and researchers attempt to 
identify how the scale-dependence of bedload transport 
varies with parameters such as flow rate and sediment size-
distribution. In this study, under low flow conditions and 
with a gravel bed of median particle size of 11.3mm, c1 was 
0.56 and c2 was estimated to be 0.05, indicating that the 
mean amount of sediment transported increased as 
approximately the square-root of sampling time. This 
means that the sediment transport rate decreased as the 
inverse of the square-root of sampling time (within the 
scaling range). However, there is no reason to expect this 
behavior to be universal for sediment transport. The flow 
rate and geometry in this experiment produced a moderate 
dimensionless shear stress of approximately twice the 
critical values for the median grain size. Preliminary 
analysis of data from an experiment with a higher flow rate, 
and hence higher bed-stress, indicate a reversal of this 
scaling behavior, with the mean sediment transport rate 
increasing with sampling interval through a similar scaling 
regime. These results will be presented in a further 
publication (Singh et al. 2008), along with analysis of the 
relationship between the modes of sediment transport and 
the features of the bed elevation, which may explain some 
of the characteristic scales of the sediment transport. 

Another long-term goal for further research is to 
understand the cause of the observed scaling, and its 
connection to the particle-scale dynamics. We believe that 
the scaling we see is not completely driven by the near bed 
turbulence, for the reason that the two-point statistics of the 
sediment transport rates (not presented here) do not show 
long range dependence, which would be characteristic of 
the multiplicative mechanism of eddy energy transfer in 
turbulence (Arneodo et al. 1998a). Instead, there is no long-
range correlation, implying a different mechanism giving 
rise to the observed scaling, which we suggest might be 
particle interactions and emergent collective behavior.  Of 
course, the grain size pdf and the shear stress are both 
important factors that influence such particle-scale 
dynamics and thus would effect the statistics of the 
resulting sediment transport rates.   Exactly what type of 
particle-scale dynamics describes the observed statistics 
remains an open question which we plan to investigate in 
the future. 
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[1] We propose a methodology for upscaling biomass in a
river using a combination of dimensional analysis and
hydro-geomorphologic scaling laws. We first demonstrate
the use of dimensional analysis for determining local scaling
relationships between Nostoc biomass and hydrologic and
geomorphic variables. We then combine these relationships
with hydraulic geometry and streamflow scaling in order to
upscale biomass from point to reach-averaged quantities. The
methodology is demonstrated through an illustrative example
using an 18 year dataset of seasonal monitoring of biomass of
a stream cyanobacterium (Nostoc parmeloides) in a northern
California river. Citation: Barnes, E. A., M. E. Power,

E. Foufoula-Georgiou, M. Hondzo, and W. E. Dietrich (2007),

Upscaling river biomass using dimensional analysis and

hydrogeomorphic scaling, Geophys. Res. Lett., 34, L24S26,

doi:10.1029/2007GL031931.

1. Introduction

[2] Several studies have related stream periphyton bio-
mass to local physico-chemical characteristics [e.g., Lowe et
al., 1986; Mulholland et al., 2001; Biggs and Gerbeaux,
1993; Biggs and Hickey, 1994; Biggs, 1995] as well as to
local hydrologic regimes and trophic interactions [e.g.,
Power et al., 1996; Wootton et al., 1996; Power and
Stewart, 1987; Clausen, 1997]. Algae and cyanobacteria
that make up the autotrophic component of periphyton are
heterogeneously distributed down river networks, so it
remains difficult to quantify their reach or basin-wide
abundance, distribution and metabolism. Good estimates
of the abundance of algae and cyanobacteria (the primary
producers that often dominate periphyton) in rivers and
streams are critical for management and restoration of
watersheds and water supplies, as well as basic understand-
ing of major energy sources for river food webs.
[3] Nostoc, a genus of nitrogen-fixing cyanobacteria, is

an important component of periphyton in temperate streams
and rivers throughout the world [Prosperi, 1989; Dodds et
al., 1995]. Where abundant, it is likely a major source of
biologically available nitrogen in ecosystems [Dodds et al.,
1995]. We demonstrate that a high percentage of the local

variability in the height of epiplithic Nostoc parmeloides
(45% to 71%) can be explained by hydrologic and geomor-
phic variables, appropriately grouped via dimensional anal-
ysis. We also propose a methodology for combining these
local relationships with stream geometry and streamflow
scaling to estimate reach-average biomass and its uncertainty.
Since these hydro-geomorphic variables can be readily
extracted (or computed via hydraulics) from high resolution
topography, e.g., LiDaR airborne laser altimetry, the pro-
posed framework offers an attractive way of estimating and
upscaling biomass even in regions for which limited biolog-
ical sampling is available.

2. Study System and Database

[4] An 18 year data set includes measurements of Nostoc
height and physical stream variables at three cross-stream
transects located approximately one kilometer apart along
the South Fork Eel River within the Angelo Coast Range
Reserve in northern California (Figure 1). The South Fork
Eel River experiences a Mediterranean hydrologic regime,
with winter floods and summer drought. Further description
of this site is given by Power [1990, 1992]. Colonies of
Nostoc parmeloides Kutzing grow attached to bedrock,
boulder, and cobble substrates on the river bed. Our index
of biomass is ‘height’ measuring the diameter of a colony if
it was spherical, or the major diameter of an ear-shaped,
midge-infested colony.
[5] Cross-stream transects were benchmarked at both

ends with nails in trees or bedrock (nail to nail distance
varied less than 1 cm over repeated surveys). At 0.5 m or
1.0 m intervals across the transect, water depth was mea-
sured, and surface velocity was estimated. The modal height
of Nostoc colonies within an estimated 10 � 10 cm2 area
around each sampling point on the substrate was recorded
(Power [1992] and Power and Stewart [1987] give further
methodological details). Nostoc height and stream cross-
sectional variables were measured 3 to 20 times each year
from 1988–2005 during the growing season (April–August).
Table 1 shows the different variables used in this study
along with their definitions. It is noted that Nostoc biomass
can be predicted from the height of the colony through
empirical relationships (e.g., M. E. Power, unpublished
data, 2006) but these relationships are not directly used in
the present study.
[6] Solar radiation (RAD)wasmeasured at the ORLAND2.A

weather station (operated by the University of California)
approximately 80 miles from the transects. River discharge was
measured at the USGS Branscomb gauge (USGS 11475500), a
decommissioned USGS gauge that was reactivated in 1990 by
Angelo Reserve researchers, and is located just south of transect
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1. Gaps in the hydrologic record from this stationwere filled with
a scaling relationship between discharge at USGS Elder Creek
gaugin station (USGS 11475560) 4 km away from the Bran-
scomb gauge on a major tributary of the South Fork Eel.

3. Terminology and Framework of Analysis

[7] All variables considered in this study are referenced
by a location along the river network (s), a location (x)
across the considered transect (stream cross-section) and
time (t) (see Figure 1). If we denote such a generic variable
by x(s, x, t), s can be an indexed variable representing the
transects 1, 2, and 3; x varies between zero (at the left most
position of the cross-section of the transect) and B(t), where
B(t) represents the cross-section wetted channel width at
time t.

[8] Given the limited data available to quantify environ-
mental controls, a representative quantity for the whole
transect is defined as the arithmetic average over all data
across the transect. We denote the cross-sectional-averaged
quantity with an overbar,

x s; tð Þ ¼ 1

B tð Þ

Z B tð Þ

0

x s; x; tð Þdx: ð1Þ

We relate cross-sectional averaged Nostoc colony height,
H(s, t), to groups of key geomorphic, hydrologic, and other
environmental variables which can be observed or esti-
mated. In general, at any transect

H s; tð Þ ¼ f1 Vg s�; t�
� �

;Vh s�; t�
� �

;Ve s�; t�
� �� �

ð2Þ

Figure 1. Three transects (1, 2, 3) in the South Fork Eel River, Mendocino County, CA. Transect 1 is the southern most
(farthest upstream), while transect 3 is the northern most (farthest downstream) transect. The inset shows a cross-section
with relevant variables.
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where f1 is a function, Vg denotes a vector of geomorphic
variables, Vh a vector of hydrologic variables, and Ve a
vector of other environmental variables such as light,
temperature and nutrient concentration. In the above
relationship, s± denotes a location in the vicinity of location
s (it would be mostly upstream although a dependence on an
immediately downstream junction might be possible), and
t� denotes time t and previous times, e.g. dependence on
maximum flow in the previous week or dependence on light
not only during the specific day of measurement, but during
a previous period of time. A dependence on a vector of
biotic variables, Vb(s

±, t�), such as grazing could also be
added in the above equation but it is not considered in this
study.
[9] We assume the geomorphic vector Vg to be composed

of B (channel width) and Z (channel-averaged depth)
(Figure 1); the hydrologic vector Vf to be composed of Q
(cross-section average flow) and Qmax (maximum flow over
a pre-specified antecedent period), and the environmental
vector Ve to be composed of RAD (daily radiation in W/m2)
and water density as a function of temperature (r). From
this point on, the time dependence of each variable is
implicitly assumed in each equation.

4. Dimensional Analysis

[10] The theory of dimensional analysis is elaborated in
many textbooks [e.g., Potter et al., 2002]. The purpose of
the analysis is to formulate useful dimensionless groups of
variables to describe a process and to establish a basis for
similarity between the processes on different time and space
scales [Warnaars et al., 2007]. In this paper we use this
technique to determine dimensionless groups that provide a
basis for explaining Nostoc height at different years and
transects. The variables chosen for our relationship and their
dimensions are given in Table 1. Our generic scaling
function takes the following form:

H ¼ f2 Z
a
;Bb;U

c
;RADd;U

e

max; r
h

� �
: ð3Þ

Although a multivariate regression that includes all
variables in (3) is possible, the use of dimensional analysis
has the advantage of reducing the number of independent
variables and resulting in dimension-free parameters.
[11] Inserting the corresponding dimensions (Table 1)

into (3), and combining equal dimensions, we obtain:

L ¼ Laþbþc�3hþeMdþhT�c�3d�e ð4Þ

where L is the dimension of length, M is the dimension of
mass and T is the dimension of time. Solving for the above
exponents, we derive the dimensionless model to be

H

Z

� �
¼ k

B

Z

� �a
U

Umax

� �b
RAD

rU
3

 !g

: ð5Þ

The first dimensionless group to the right of the equal sign
represents an important geomorphic characteristic of the
stream cross-section: width (B) to depth (Z) ratio. As the
width to depth ratio of the channel increases, light becomes
more available to Nostoc, which, as a nitrogen-fixing
autotroph, has a high demand for photosynthetically derived
carbon energy. The next dimensionless group captures the
cyanobacterium’s dependence on moderate (numerator) and
high (denominator) stream velocities. Under moderate flow
velocities, Nostoc, like other attached stream autotrophs,
benefits from increasing velocities (increasing flows
increase delivery of nutrients and removal of waste
products) up to a certain threshold, beyond which scouring,
detachment and export occur [Whitford and Schumacher,
1964; Hondzo and Wang, 2002]. The final dimensionless
group is the ratio between solar power (RAD) and stream
power per unit stream bed area (rU3). The exponents a, b,
g and constant k must be determined by fitting (5) with our
data.

5. Scaling of Nostoc Height

[12] During spring, Nostoc colonies re-establish follow-
ing winter flood scour, and colonies grow, then senesce,
during summer. We separated the analysis into two groups:
biomass establishment in the spring (April–May) and
growth accrual in the summer (June–August). We estimated
the parameters of (5) using a weighted linear regression on
the logs, with the best fit defined as the minimum sum of
squares of the errors and weights inversely proportional to
the number of measurements that season. Different time
lags were investigated for the definition of Umax (see Table 1
for definition), and the highest R2 was obtained for a time
lag of 45 days.
[13] Comparing our data and the proposed scaling rela-

tionship (5), we found that the third dimensionless group
(RAD/rU3) contributed an insignificant amount to explain-
ing the variability of the data and it was eliminated from the
model. Figure 2 shows the results for transects 1, 2 and 3
over the two seasons. Table 2 shows the results of six other
scaling relationships for various seasons and transect
combinations. It appears that transects 1 and 2 behave quite

Table 1. Definitions of Variables

Variable Dimensions Units Rangea Description

H (t) L m 0.001–0.10 (0.005) [0.005] transect-average Nostoc height at time t
Z(t) L m 0.06–0.70 (0.28) [0.26] transect-average water depth at time t
U (t) LT�1 m/s 0.05–1.61 (0.45) [0.42] transect-average velocity at time t
B(t) L m 3.00–27.0 (13.5) [8.31] width of transect at time t
RAD MT�3 kg/s3 186–715 (260) [303] average solar radiation (past 45 days)
r(t) ML�3 kg/m3 992–998 (996.33) [995.51] water density (/ temp) at time t

Umax LT�1 m/s 0.04–6.88 (1.32) [0.48] transect-maximum velocity (past 45 days)
aSpring median in parentheses, summer median in brackets.
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similarly, for 71% of their variability over all seasons was
accounted for. Nostoc height at transect 3 did not follow
the trend depicted by transects 1 and 2, and there are two
possible reasons for this. First, transect 3 is located down-
stream of a major tributary. Second, while transects 1 and 2
have similar valley geometries (symmetric with a slope of
approximately 1:8) and thus receive comparable amounts of
direct sunlight each day, the flat topography flanking the
western shore of transect 3 increased its daily period of
insolation. The RAD variable was not able to account for
these differences as it was not transect specific and our results
show that this radiation variability is not explainable via
channel geometry alone (see Table 2 where a lower R2 was
found especially in the summer for transect 3).

6. A Framework for Upscaling Local Biomass

[14] Consider a hypothetical stream reach of 2 km length
for which Nostoc height observations are available only at a
few locations. How is one to estimate the Nostoc biomass
along the entire stream from the available observations?
[15] Suppose that the Nostoc cross-sectional average

colony height is scaled by the previously discussed local
relationship (5):

H sð Þ ¼ k 	 B sð Þa	Z sð Þ1�a	 U sð Þ
Umax sð Þ

� �b

ð6Þ

The reach-averaged biomass over a stream reach of length
Ds, hH(Ds)i, is defined as

H Dsð Þ

 �

¼ 1

Ds

Z s0þDs

s0

H sð Þds: ð7Þ

Due to the nonlinearity of (6), hH(Ds)i cannot be estimated
from (6) and (7) by substituting in the reach-averaged
quantities hB(s)i, hZ(s)i, etc. Instead, one must perform

integration of (7) by properly acknowledging how each of
the variables varies along the stream.
[16] Leopold and Maddock [1953] demonstrated that

B(s), Z(s) and U (s) relate to streamflow Q(s) at location s
via the so-called hydraulic geometry (HG) relationships:

B sð Þ / Q sð Þm1 ð8Þ

Z sð Þ / Q sð Þm2 ð9Þ

U sð Þ / Q sð Þm3 ð10Þ

where m1 + m2 + m3 = 1. These relationships apply to a
specific location for varying flows (at-a-station HG) or at
several locations along a stream for a flow of specific
frequency (downstream HG). Since our interest is in
integration along a stretch of the stream at a specific instant
of time, the downstream HG is relevant for all quantities
except for the maximum velocity Umax(s) which is
considered to result from an extreme flood (e.g., of a
specified exceedance probability) at each location and thus
(at-a-station HG), Umax(s) / Qmax(s)m

0
3 needs to be

employed. The exponents m1, m2, m3 and m03 can be
estimated locally (if high resolution topography data are
available) or determined using regional relationships [e.g.,
see Singh, 2003]. Substituting these scaling relationships
into (6), one obtains

H sð Þ ¼ k 0 	 Q sð ÞM1Qmax sð Þ�M2 ð11Þ

where M1 = m1a + m2(1 � a) + m3b and M2 = m03b. By
further introducing the known discharge-drainage area
scaling relationships [e.g., see Gupta and Dawdy, 1995]

Q sð Þ / A sð Þq1 ð12Þ

Qmax sð Þ / A sð Þq2 ð13Þ

where q1 and q2 are exponents dependent on flood
frequency and watershed characteristics, we obtain

H sð Þ ¼ k 00 	 A sð Þp ð14Þ

where p = q1M1 � q2M2. Equation (14) is an approximation
of Nostoc height at a single transect as a function of

Figure 2. Nostoc height over three transects in the spring
and summer (April–August) over the 18 years of record.
Weighted least squares results in the scaling relationship
H

Z

� 

= 1.7 � 10

�4 B

Z

� 

1.41 U

Umax

� 

0.43

with an R
2
= 0.45.

Table 2. Scaling Relationships With R2 Values for Combinations

of Transects and Seasonsa

Transects and Seasons a b k R2

T-1,2,3 spring & summer 1.41 0.43 1.7 � 10�4 0.45
T-1,2 spring & summer 1.54 0.54 1.8 � 10�4 0.71
T-3 spring & summer 0.90 0.47 6.9 � 10�4 0.21
T-1,2 spring 1.70 0.69 0.6 � 10�4 0.83
T-3 spring 0.14 0.40 172.8 � 10�4 0.57
T-1,2 summer 1.79 0.62 0.8 � 10�4 0.71
T-3 summer 0.61 0.52 18.0 � 10�4 0.22

aFunctions are of the form H

Z

� 

= k B

Z

� 

a U

Umax

� 

b. The amount of

variability accounted for by scaling is determined by the R2 value, as
defined by Draper and Smith [1981].
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upstream drainage area A(s) only, which is easy to extract
from maps or digital elevation models. As such, it
represents a derived ‘‘biological’’ scaling relationship akin
to the hydrologic scaling relationships discussed above,
which have found extensive use in hydrology (prediction in
ungauged basins and regionalization).
[17] Equation 14 can be further explored for upscaling

purposes by noting that A(s) can be related to length L(s)
(from the watershed divide to location s) using a variant of
Hack’s law [e.g., Rigon et al., 1996] for nested basins, A(s)
/ L(s)d. Combining this with (14) and inserting it into (7),
we obtain

H Dsð Þ

 �

¼ k* 	 L
mþ1 s0 þDsð Þ � Lmþ1 s0ð Þ½ �

mþ 1ð ÞDs
: ð15Þ

where m = d(q1M1 � q2M2).
[18] The above relationship quantifies the dependence of

reach-averaged biomass on reach length Ds, where the
reach starts at an arbitrary location s0. Assuming without
loss of generality that s0 = 0 (i.e. L(s0) = 0 and L(Ds) = Ds),
and considering two reaches of lengths Ds1 and Ds2, the
above relationship results in

H Ds1ð Þ

 �
H Ds2ð Þ

 � ¼ Ds1

Ds2

� �m

ð16Þ

As an illustrative example, let m1 = 0.5, m2 = 0.4, m3 = 0.1
and m03 = 0.3 (as defined by Leopold and Maddock [1953];
see also Singh [2003]), q1 = 1 and q2 = 0.7 [see Gupta and
Dawdy, 1995, Table V], d = 0.58 (as extracted by us for the
Eel River basin using LiDaR data), a = 1.41 and b = 0.43
(spring and summer Nostoc in Table 1); then the final scaling
exponent is m = 0.3. Thus, ifDs1 = 2 km andDs2 = 1 km the
above equation implies that Nostoc biomass per unit stream
length scales by a factor of 20 .3 = 1.2. In other words,
starting from a given reference point and going downstream,
a stream reach twice as long has total Nostoc biomass not
twice, but 2.4 times larger. Of course, biomass cannot grow
unbounded and a physically-imposed upper limit will
constrain the range of applicability of the above scaling
relationship. Determining this upper limit (empirically or
mechanistically) is an issue that requires careful study.
[19] There is uncertainty associated with each HG and

flow scaling exponent, and this uncertainty is separate from
the errors associated with the dimensionless model’s bio-
mass predictions. To better understand the effects of HG
related uncertainties, we performed first order analysis of
variance [see Benjamin and Cornell, 1970] on (15) with
respect to the HG exponents m1, m2, m3, m

0
3. Using the

values given above, and letting Ds = 1 km, we find that a
5% uncertainty (standard deviation) in each scaling
exponent leads to a 17% uncertainty in the reach-averaged
biomass. Of course, as in any uncertainty analysis, it is
expected that considering the uncertainly of all variables
involved in the model will reduce the power of the
predictive relationship.

7. Conclusions and Caveats

[20] We have demonstrated that cyanobacterial biomass
scales with hydrologic and geomorphic local variables in a
river network (5). Moreover, combining this scaling rela-

tionship with hydraulic geometry and other geomorphic and
hydrologic scaling laws resulted in a simple nonlinear
scaling relationship of transect-averaged biomass with
upstream drainage area (14) and stream-averaged biomass
with stream length (16). The proposed methodology,
which can be further refined in its assumptions, e.g., to
consider spatial inhomogeneity in the scaling of HG [see
Dodov and Foufoula-Georgiou, 2004], can potentially be
implemented across different drainage basins and abun-
dances of biota. Being able to upscale local relationships
aids in the understanding of the impacts of organisms on
ecosystems (e.g. nitrogen loading to river ecosystems by
Nostoc) as well as how populations are affected by
landscape dynamics and heterogeneity. It also aids in efforts
to improve (target) field sampling to develop mechan-
istically-based predictive models of biota at the reach or
basin-wide scale by empirically determining the key
controlling variables.
[21] In our upscaling example, the HG scaling exponents

were assigned ‘‘mean regional’’ values for illustration
purposes only. Values specific to each reach should be used
to obtain more accurate estimates and thus increase the
overall power of the predictive relationships, including uncer-
tainty can be quantified within the proposed framework.
[22] The distribution and abundance of any species reflect

not only whether the environment provides essential resour-
ces and tolerable conditions (Fundamental Niche), but also
potentially limiting ecological interactions (Realized Niche)
[Hutchinson, 1957]. Nostoc may be more predictable from
physical features of its environment than more edible
periphyton, because toxic secondary compounds and a
tough, mucilaginous sheath deter grazing on this cyano-
bacterium [Dodds et al., 1995]. Future field work in our
system will estimate Nostoc biomass over larger areas of the
river bed, and relate reach-level biomass to hydraulic
scaling parameters and to per-area rates of biological
activity (e.g., nitrogen fixation).

[23] Acknowledgments. This research was supported by NCED, an
NSF SCT funded by the Office of Integrative Activities under agreement
EAR-0120914. We thank the University of California Natural Reserve
System and the Angelo and Steel families for providing a protected site for
this research.

References
Benjamin, J. R., and C. Cornell (1970), Probability, Statistics and Decision
for Civil Engineers, McGraw-Hill, New York.

Biggs, B. (1995), The contribution of disturbance, catchment geology and
land use on the habitat template of periphyton in stream ecosystems,
Freshwater Biol., 33, 419–438.

Biggs, B., and P. Gerbeaux (1993), Periphyton development in relation to
macro-scale (geology) and micro-scale (velocity) limiters in two gravel-
bed rivers, New Zealand, N. Z. J. Mar. Freshwater Res., 27, 39–53.

Biggs, B., and C. Hickey (1994), Periphyton responses to a hydraulic
gradient in a regulated river in New Zealand, Freshwater Biol., 32,
49–59.

Clausen, B. B. (1997), Relationships between benthic biota and hydrologi-
cal indices in New Zealand streams, Freshwater Biol., 38, 327–342.

Dodds, W., A. Gudder, and D. Mullenbauer (1995), The ecology of Nostoc,
J. Phycol., 31, 2–18.

Dodov, B., and E. Foufoula-Georgiou (2004), Generalized hydraulic geo-
metry: Derivation based on a multiscaling formalism, Water Resour. Res.,
40, W06302, doi:10.1029/2003WR002082.

Draper, N., and H. Smith (1981), Applied Regression Analysis, 2nd ed.,
John Wiley, New York.

Gupta, V., and D. R. Dawdy (1995), Physical interpretations of regional
variations in the scaling exponents of flood quantiles, Hydrol. Processes,
9, 347–361.

L24S26 BARNES ET AL.: SCALING BIOMASS BY STREAM GEOMORPHOLOGY L24S26

5 of 6



Hondzo, M., and H. Wang (2002), Effects of turbulence on growth and
metabolism of periphyton in a laboratory flume, Water Resour. Res.,
38(12), 1277, doi:10.1029/2002WR001409.

Hutchinson, G. E. (1957), Concluding remarks, Cold Spring Harbor Symp.
Quant. Biol., 22, 415–427.

Leopold, L., and T. J. Maddock (1953), The hydraulic geometry of stream
channels and some physiographic implications, U. S. Geol. Surv. Prof.
Pap., 252, 57 pp.

Lowe, R., S. Golladay, and J. Webster (1986), Periphyton response to
nutrient manipulation in a clear-cut and forested watershed, Bull. North
Am. Benthol. Soc., 3(2), 77.

Mulholland, P. J., et al. (2001), Inter-biome comparison of factors control-
ling stream metabolism, Freshwater Biol., 46, 1503–1517.

Potter, M., D. Wiggert, M. Hondzo, and T. Shih (2002), Mechanics of
Fluids, 3rd ed., Brooks/Cole, Pacific Grove, Calif.

Power, M. E. (1990), Effects of fish in river food webs, Science, 250, 811–
814.

Power, M. (1992), Hydrologic and trophic controls of seasonal algal
blooms in northern California rivers, Arch. Hydrobiol., 125, 385–410.

Power, M., and A. Stewart (1987), Disturbance and recovery of an algal
assemblage following flooding in an Oklahoma (USA) stream, Am. Mid-
land Nat., 117, 333–345.

Power, M., M. Parker, and J. Wootton (1996), Disturbance and food chain
length in rivers, in Food Webs: Integration of Patterns and Dynamics,
edited by G. A. Polis and K. O. Winemiller, pp. 286–297, Chapman and
Hall, New York.

Prosperi, C. (1989), The life cycle of Nostoc cordubensis (Nostocaceae,
Cyanophyta), Phycologia, 28, 501–503.

Rigon, R., I. Rodriguez-Iturbe, A. Maritan, A. Giacometti, D. Tarboton, and
A. Rinaldo (1996), On Hack’s law, Water Resour. Res., 32, 3367–3374.

Singh, V. P. (2003), On the theories of hydraulic geometry, Int. J. Sediment
Res., 18(3), 196–218.

Warnaars, T., M. Hondzo, and M. Power (2007), Abiotic controls on per-
iphyton accrual and metabolism in streams: Scaling by dimensionless
numbers, Water Resour. Res. , 43, W08425, doi:10.1029/
2006WR005002.

Whitford, L., and G. Schumacher (1964), Effect of a current respiration and
mineral uptake in Spirogyra and Oedogonium, Ecology, 45, 168–170.

Wootton, J., M. Parker, and M. Power (1996), Effects of disturbance on
river food webs, Science, 273, 1558–1560.

�����������������������
E. A. Barnes, Department of Atmospheric Sciences, University of

Washington, 311 ATG Building, Box 351640, Seattle, WA 98195, USA.
(eabarnes@atmos.washington.edu)
E. Foufoula-Georgiou and M. Hondzo, St. Anthony Falls Laboratory,

National Center for Earth-Surface Dynamics, University of Minnesota, 2
Third Avenue SE, Minneapolis, MN 55414, USA.
W. E. Dietrich, Department of Earth and Planetary Science, University of

California, Berkeley, 307 McCone Hall, Berkeley, CA 94720-4767, USA.
M. E. Power, Department of Integrative Biology, University of California,

Berkeley, 4184 Valley Life Sciences Building, Berkeley, CA 94720-3140,
USA.

L24S26 BARNES ET AL.: SCALING BIOMASS BY STREAM GEOMORPHOLOGY L24S26

6 of 6



Channel network extraction from high resolution topography using

wavelets

Bruno Lashermes,1 Efi Foufoula-Georgiou,1 and William E. Dietrich2

Received 10 July 2007; revised 28 August 2007; accepted 6 September 2007; published 17 October 2007.

[1] The availability of high resolution topography from
LIDAR offers new opportunities for objectively extracting
the channels directly from a DEM using local topographic
information, instead of inferring them indirectly based on
global criteria, such as area or area-slope threshold
relationships. Here we introduce the use of wavelet filtering
to delineate threshold curvatures for defining valleys and
threshold slope-direction-change for defining probable
channeled portions of the valleys. This approach exploits
the topographic signatures uniquely found in high resolution
topography, and reveals the fuzzy topographic transition in
which local weakly convergent areas lie at the transition
between hillslopes and valleys. Citation: Lashermes, B.,

E. Foufoula-Georgiou, and W. E. Dietrich (2007), Channel network

extraction from high resolution topography using wavelets,

Geophys. Res. Lett., 34, L23S04, doi:10.1029/2007GL031140.

1. Introduction

[2] The automatic extraction of geomorphologic features
from Digital Elevation Models (DEMs) has been a subject
of considerable research over the past several decades. The
two main challenges in channel network extraction algo-
rithms from traditional DEMs have been: handling multiple
direction flows [e.g., Costa-Gabral and Burges, 1994;
Tarboton, 1997] and deciding where the channel begins
[e.g.,Montgomery and Dietrich, 1988, 1989, 1992; Tarboton
et al., 1991; Montgomery and Foufoula-Georgiou, 1993;
Giannoni et al., 2005; Hancock and Evans, 2006; Lin et al.,
2006]. Several criteria have been proposed for determining
channel initiation from DEMs and these include a threshold
on drainage area, a threshold on local slope, a combination of
area and slope, and also a threshold on local curvature (e.g.,
see review byRodriguez-Iturbe andRinaldo [1997, chapter 1,
and references therein], and Heine et al. [2004]). The
resolution of the available DEMs and also the noise in the
elevation data can considerably influence the accuracy, and
thus interpretation, of the numerically computed local gra-
dients and curvatures. In fact, ‘‘local’’ gradients and curva-
tures from typical 90m or 30 mDEMs represent anything but
local properties and in most landscapes these scales are
already too large to be useful in detecting channel initiation
[e.g., Montgomery and Foufoula-Georgiou, 1993]. It is also
expected that the resolution-dependent estimates of local

gradients which are drivers of geomorphic transport laws
[e.g., see Dietrich et al., 2003] might result in resolution-
dependent sediment fluxes (e.g., see Stark and Stark [2001]
and a recent study by Passalacqua et al. [2006]).
[3] High resolution (1 to 3 m data spacing) elevation data

derived from airborne laser swath mapping (ALSM) now
offer the opportunity to use direct topographic ‘‘signatures’’
of river incision and channel banks to map directly the
channel network. In the uplands of tectonically active areas,
the channel banks in steep small tributaries are typically cut
against bedrock and lack sharp topographic boundaries
relative to the hillslope. In this case, the primary topographic
signature of active channel incision is the characteristic ‘‘V’’
shaped valleys (as compared to broadly curved valley axes).
These channels rarely are plotted as ‘‘blue lines’’ on United
States Geological Survey maps and are difficult to see in
aerial photographs due to vegetation, yet they border most of
the hillslopes, convey much of the sediment down to low
gradient larger rivers, and constitute much of the total
channel network [e.g., Stock and Dietrich, 2003]. Here we
introduce the use of wavelet analysis to locally filter elevation
data and to detect thresholds in topographic curvature and
slope-direction change for defining valleys and probable
channelized portions of the valley.We also propose that these
topographic signatures may offer new metrics for model
comparison with real landscapes.

2. Computation of Local Gradients, Curvatures,
and Slope-Direction Change at Multiple Scales
Using Wavelets

[4] We take advantage of the well-known property of the
convolution product:

@

@x
h*gð Þ ¼ @h

@x *
g ¼ h*

@g

@x
ð1Þ

which implies that smoothing a function h with a kernel g
and then taking derivatives (left most term) is equivalent to
taking derivatives of the function and smoothing these
derivatives with the kernel g (middle term) or equivalent to
smoothing the function h directly with the derivative of the
kernel g (right most term). It is noted that computing first
and second order derivatives from 1 m or 2 m elevation data
using finite differences results in considerable noise and
smoothing is usually required to reduce the noise. This is
typically done by either first smoothing the topography and
then computing derivatives [e.g., Roering et al., 1999] or
computing derivatives from the original high resolution
topography and then smoothing these derivatives by
averaging (e.g., Tucker et al. [2001], see also the review
paper of Schmidt et al. [2003]). These methods correspond
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to the left-most and middle terms of equation (1). Here we
take advantage of the third term of the above equality which
naturally introduces us to using wavelets for efficient
computation of local slopes and curvatures of elevation
surfaces. Specifically, the first and second derivatives of
elevation heights h(x, y) in the x direction (similar
expressions hold for the y direction) can be written as:

rx;sh x; yð Þ ¼ h � gx1;s;x;y
� �

x; yð Þ ð2Þ

r2
x;sh x; yð Þ ¼ h � gx2;s;x;y

� �
x; yð Þ; ð3Þ

where g1,s,x,y
x and g2,s,x,y

x are the first and second derivatives
of a 2D Gaussian function of standard deviation s and
centered at location (x, y):

g0;s;x;y u; vð Þ ¼ 1

2ps2
exp � u� xð Þ2þ v� yð Þ2

2s2

" #
ð4Þ

The functions g1,s,x,y
x and g2,s,x,y

x are proper wavelets [e.g.,
Mallat, 1999] and g2,s,x,y

x is the so-called Mexican hat
wavelet popular in many geophysical applications [e.g., see
Foufoula-Georgiou and Kumar, 1994]. Thus the gradients
and curvatures defined by equations (2) and (3) are simply
(apart from a normalization) the 2D continuous wavelet
transforms (CWT) of the function h(x, y) with two different
wavelets. Defining the ‘‘scale’’ associated to a wavelet as
the inverse of its band-pass frequency [e.g., Mallat, 1999;
Kumar and Foufoula-Georgiou, 1997] it can be shown that
the smoothing scale corresponding to g1,s,x,y

x (gradients) is

a = ps and to g2,s,x,y
x (curvatures) a =

ffiffiffi
2
p

ps, while the
scale of topography smoothing is a = 4s, (see Table 1). For
the rest of the paper, we adopt the notation of a for scale and
compute the modulus of the steepest slope ma(x, y), its
direction qa(x, y), and also the local curvature ga (x, y) at
scale a and at pixel (x, y) as:

ma x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhx;a x; yð Þ
� �2 þ rhy;a x; yð Þ

� �2q
ð5Þ

ga x; yð Þ ¼ r2
x;ah x; yð Þ þ r2

y;ah x; yð Þ ð6Þ

and

qa x; yð Þ ¼ bpþ arctan
ry;ah x; yð Þ
rx;ah x; yð Þ

	 

ð7Þ

where b = 0 if, rx,ah(x, y) > 0, b = 1 if rx,ah(x, y) < 0
and ry,ah(x, y) > 0 and b = �1 if rx,ah(x, y) < 0 and
ry,ah(x, y) < 0.
[5] Channel incision in uplands topography leads to hill-

slopes on opposite sides that typically face each other
obliquely, giving rise to ‘‘V’’ shaped topographic contour
lines.We can use this signature to delineate the axis of valleys

and the likely pathway of channels with limited floodplain
area on their boundaries. We compute the derivative of the
slope direction qa(x, y) as

dqa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxqað Þ2 þ dyqa

� �2q
ð8Þ

where dxqa = (@qa/@x)dx and dyqa = (@qa/@y)dy are
numerically estimated with finite differences. It is noted
that the slope direction qa is defined modulo 2p and is
counterclockwise oriented. qa ranges between �p to +p and
takes the value 0 when the slope exactly ‘‘points to the
East’’. So qa has an abrupt 2p variation when crossing the
westward direction (this is not a continuous function) and
the numerical derivative will exhibit a large value that is not
due to a real direction change. To overcome this numerical
issue, a direction q0a with a different zero origin (q0a = 0 when
the slope points to the North) is computed as well as its
numerical derivative dq0a. One then only needs to define the
direction derivative as min(dqa, dq

0
a) in order to remove the

spurious large values due to shifting between �p and p
values. The quantity min(dqa, dq

0
a) will be also referred to as

dqa in the sequel.
[6] We propose here that from the wavelet-filtered ele-

vation data we can use the probability density function (pdf)
of curvature to detect a threshold below which well-defined
valleys are absent. Furthermore, we suggest that a similar
threshold exists in the pdf of the slope-direction change that
delineates the transition from ‘‘U’’ shaped valleys to ‘‘V’’
shaped river canyons. These two analyses can be used to
define valleys associated with channel incision, and, hence,
the likely channel network.

3. Statistical Signatures of Geomorphic
Transitions

[7] We use the ALSM data (
2.6 m average bare earth
data spacing, gridded to 1 m) acquired by NCALM for the
South Fork Eel River in the coastal mountains of Northern
California (available at data distribution archive http://
www.ncalm.org/) to explore the use of our proposed meth-
ods. The site is a 2.8 km2 mostly forested tributary that lies
just north of the Angelo Coast Range Reserve, 
3 km
downstream from the junction of Ten Mile Creek and the
South Fork Eel River. It receives about 1900 mm of strongly
seasonal rainfall. The mainstem draining the watershed is
steeper than 8% and all of its tributaries are steeper than
20%. These channels border hillslopes which are commonly
pockmarked with amphitheater shaped topographic steps
recording the deformation of the surface associated with
extensive deep-seated landsliding. Some fine-scale topo-
graphic roughness is an artifact of dense impenetrable brush
the tops of which are treated as bare earth, leading to an
‘‘acne’’ appearance of local areas. Based on channel slope
[Stock and Dietrich, 2003] and field observations in similar
terrain in the area, the channel network is cut by a
combination of river incision and debris flow scour, perhaps
tied to the periodic movement and release of sediment
associated with movement of the large landslides (see also
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Gangodagamage et al. [2007] for a quantitative analysis of
the roughness of valley morphology in the basin).

3.1. Multiscale Variability of Curvature and
Interpretation

[8] The standard deviation of the probability density
function (pdf) of local curvature computed for the study
watershed at different scales is shown in Figure 1. An
abrupt transition emerges at a scale of approximately 12 m
(parameter of the analyzing wavelet is s = 3 m; see Table 1).
For scales smaller than 12 m, curvature variability rapidly
increases with decreasing smoothing scale. This rapid in-
crease in variability we attribute to the topographic roughness
created by poor bare earth data in brushy areas, and to fine
scale topographic complexity associated with the numerous
landslide features. The progressive decrease in variability is
to be expected with increasing smoothing scale, although the
well defined power law was not anticipated. The slope of this
relationship may prove useful in distinguishing landscapes
with different degree of dissection.

3.2. Hillslope to Valley Transition

[9] Figure 2a shows the quantile-quantile plot (variable
plotted against standard normal deviate of the same exceed-
ance probability) of curvature,, ga for the study site ana-
lyzed at the scale a = 26.7 m (well above the roughness
break shown in Figure 1). The deviation from a straight line
indicates a deviation of the pdf from Gaussian. The positive
ga’s (relevant to channels) deviation from a normal pdf
occurs at a standard normal quantile value z of approxi-
mately 1, and a curvature of about 0.02 m2/m. Analysis at
smoothing levels from a = 17.8 m to a = 71.1 m found the
value of z ’ 1 to be robust and scale-independent while, of
course, the specific values of ga at which the transition occurs
will depend on scale. This implies that the threshold value of
ga at which a change in the shape of the pdf occurs is

ga;th ¼ F�1a 0:84ð Þ ð9Þ

corresponding to Fa(ga,th) = F (z = 1) = 0.84, where F is the
cumulative distribution of a standard normal deviate z 

N(0, 1) and Fa is the cumulative distribution of ga.
[10] We suggest that the deviation from the normal

distribution records an approximate break in which higher
curvature values delineate well organized valley axes and
lower (but still positive) values record the disordered
occurrence of localized convergent topography. Figure 2c
shows the areas of high curvature for the threshold value of

the standard normal deviate (z) equal to 1. Lower values of
z (and thus lower curvature) greatly increased the number of
isolated patches. The network in this catchment is partly
disrupted by deep-seated landsliding, and this contributes to
the residual patchiness and discontinuous delineation of
valleys with this threshold. This multiscaling analysis
suggests that rather than expecting the hillslope-valley
transition to be defined by the change in sign in curvature
instead, some disorganized and perhaps nascent valleys not
integrated with the watershed valley network are scattered
across the hillslopes and a curvature threshold extracted from
an abrupt transition in the statistical distribution of curvature
better defines the valley system. Analysis at smoothing levels
from a = 17.8m to a = 71.1m finds this threshold to be
determined by a scale-independent parameter.

3.3. Valley to Channel Transition

[11] Figure 2b shows the quantile-quantile plot of the log
of the change in slope direction, for the study site analyzed
at the scale a = 25.1m (comparable to the 26.7 m smoothing
scale reported for curvatures in Figure 2a; see Table 1).
The deviation from normality occurs at the normal quantile
zlogdqa ’ 1.5. As in the curvature case (Figure 2a) we
propose that the break from normality (thicker than Gaussian
tail) is a topographic signature of process dominance change.
In this case, we suggest that this break defines the transition
from broadly curved, unincised valleys (often found to
contain thick colluvial deposits) and valleys with active
channel incision and sediment removal. This suggests that
a value

dqa;th ¼ expF
�1
a 0:93ð Þ ð10Þ

corresponding to Fa(logdqa,th) = F(z = 1.5) = 0.93 could be
indicative of valleys with active channels.
[12] Figure 2d shows the grid cells that lie above the

slope-direction change threshold. As can be seen, the grid
cells that satisfy this criterion define a more narrow skeleton
mostly within the valleys of Figure 2c although there are
also fewer continuous path lines compared to Figure 2c,
possibly separating channeled from unchanneled valleys.

Table 1. Smoothing Scales for Elevation, Gradients, and Curva-

tures Associated With the Gaussian Kernel of Standard Deviation

s From Which the Wavelets g1 and g2 Were Deriveda

Elevation,
g0,s,x,y
x or y

Gradients,
g1,s,x,y
x or y

Curvature,
g2,s,x,y
x or y

s a = 4s a = 2ps a =
ffiffiffi
2
p

ps
2 m 8 m 12.6 m 8.9 m
3 m 12 m 18.9 m 13.3 m
4 m 16 m 25.1 m 17.8 m
6 m 24 m 37.7 m 26.7 m
8m 32m 50.2m 35.5m
16m 64m 100.5m 71.1m

aSee equations (2) to (4).

Figure 1. Scaling of the standard deviation of ga. The
slope computed between the scales 13.3 m and 71.1 m is
�0.82.
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By considering grid cells that satisfy both criteria of
curvature and slope-direction-change threshold, a more
continuous skeleton is obtained (see Figure 2e) indicating
all cells most likely to be channelized.

3.4. Generating the Channel Network

[13] Starting from the likely channelized set of grids in
Figure 2e, a fully connected channel network is obtained by
an algorithm that connects the grid cells at which the

derivative of the slope qa(x, y) is locally maximal. The
procedure starts at the outlet and proceeds upstream linking
all the dqa maxima along the mainstem. The extraction
algorithm ends when either the derivative of the slope
direction dqa or the curvature ga exceeds the thresholds
dqa,th and ga,th chosen according the statistics of logdqa and
ga (equations 9 and 10). A few other constraints were found
necessary to avoid loops (which in some cases required
manual intervention). The procedure is repeated for each

Figure 2. (a) Quantile-Quantile plot of local curvature ga defining the threshold curvature ga,th ’ 0.025 for standard
normal quantile z = 1. (b) Quantile-Quantile plot of log(dqa), where dqa is the change in slope direction defining the
threshold dqa,th for standard normal quantile z = 1.5. (c) The set of pixels S1 for which ga � ga,th. (d) The set of pixels S2 for
which dqa � dqa,th. (e) The set of pixels that satisfy both constraints S1 \ S2. The scale of analysis for curvatures is a =
26.7 m and for gradients a = 25.1 m (see Table 1).
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tributary junction. Junctions themselves often failed to meet
one of the two criteria. However, we have resolved this
issue by choosing the first point resolvable by the two
thresholds and then by projecting towards the stream
following the steepest gradient.
[14] The extracted river network for the study watershed

is shown in Figure 3c. The insert box in Figure 3c (400 m
by 400 m) is shown in detail in Figure 3a. The shaded areas
in that Figure 3a are the grid cells that satisfy both threshold

criteria (curvature and slope-direction-change) and thus are
likely to be channelized. Note that the shaded area as it
extends up into steep slopes is estimated to be highly
discontinuous by this procedure. Many of the discontinuous
patches are associated with the deep-seated landslide-in-
duced steps in the topography. There is a complex interplay
between landsliding and channel incision [e.g., Kelsey,
1978] that leaves channel traces in the topography well
after movement has ceased. A smaller insert boxes (50 m by

Figure 3. (a) A 400 m by 400 m area (see insert in Figure 3c) which through shading shows the set of pixels for which
ga � ga,th and dqa � dqa,th, and thus likely to be channelized, embedded in 2 m elevation contours. (b) A 50 m by 50 m
box (see insert box in Figure 3a) showing in detail the extracted continuous channel network by tracing the centerline of
the likely channelized areas shown in Figure 3a. Notice the disruption of the channel by a landslide which would be hard
to identify with common methods of channel network extraction. The shading corresponds to curvature magnitude and
1m elevation contours are superimposed. (c) The continuous river network extracted for the whole river basin using the
proposed methodology.
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50 m) is marked at the bottom right corner of Figure 3a, and
is shown in detail in Figure 3b. In Figure 3b, the shading
corresponds to curvature magnitude (darker shading for
higher positive curvature) and the continuous river center-
line as extracted by the proposed procedure is also shown.
Figure 3b shows in detail the step-like topography associ-
ated with deep-seated landsliding and the disrupted channel
network it creates. The channel head occurs on the face of a
rotational block where the slope is only weakly convergent.
A network drawn using just an area threshold would not
have identified these discontinuities, and a method based on
area and slope would generally infer incision where slopes
are steep, but in the case shown in Figure 3b it would have
incorrectly extended an inferred channel across topography
that lacks the convergence and slope-change signature of
channel incision. Hence, we propose that our procedure
provides a more realistic, topographically-driven delineation
of the likely channeled portions of the landscape.

4. Conclusions

[15] We proposed a wavelet-based filtering procedure that
allows us to compute local curvature and slope-direction-
change across scales and exploit their statistical structure for
inferring physical transitions. Specifically, deviation of the
positive tails of the pdfs of curvature and slope-direction-
change from normality and log-normality, respectively,
revealed two threshold values corresponding to approxi-
mately scale-invariant quantiles (16% exceedance quantile
for curvatures and 7% for slope-direction-change). We
interpret these breaks in the pdfs as arising from topograph-
ic signatures of process change and use the emerging
threshold values to delineate valleys (from the curvature
threshold) and channelized parts within those valleys (from
the slope-direction-change threshold). We report a power
law relationship of curvature variance with scale with a
major break at a characteristic scale (of approximately 12 m)
and two distinct scaling regimes: one at small scales
reflecting roughness changes due to vegetation (and other)
effects, and one at larger scales due to a progressive
smoothing of the landscape variability by coarse graining.
These new multiscale statistical relationships and the iden-
tified thresholds have been used to propose a methodology
for objective extraction of channel networks in canyon
upland rivers from high resolution LIDAR topography.
They also offer new metrics which might be useful in
refining and testing landscape evolution theories and in
upscaling geomorphic transport laws.
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[1] This paper investigates the multiscale statistical structure of the area and width
functions of simulated and real river networks via state-of-the-art wavelet-based
multifractal (MF) formalisms. First, several intricacies in performing MF analysis of these
signals are discussed, and a robust framework for accurate estimation of the MF
spectrum is presented. Second, it considers the following three questions: (1) Does the
topology of river networks leave a unique signature on the MF spectrum of area and width
functions? (2) How different are the MF properties of commonly used simulated trees
and those of real river networks? and (3) Are there differences between the MF properties
of width and area functions, and what can these tell us about the topology of hillslope
versus channelized drainage patterns in a river basin? The results indicate discrepancies
between the statistical scaling of the area functions of real networks (found to be
multifractal with a considerable spread of local singularities and the most prevailing
singularity ranging from 0.4 to 0.8) and that of several commonly used stochastic self-
similar networks (found to be monofractal with a single singularity exponent H in the
range of 0.5–0.65). Moreover, differences are found between the MF properties of width
and area functions of the same basin. These differences may be the result of distinctly
different branching topologies in the hillslope versus channelized drainage paths and need
to be further investigated.

Citation: Lashermes, B., and E. Foufoula-Georgiou (2007), Area and width functions of river networks: New results on multifractal

properties, Water Resour. Res., 43, W09405, doi:10.1029/2006WR005329.

1. Introduction

[2] The width function of a river network is a one-
dimensional functionwhich summarizes the two-dimensional
branching structure of the river network. It represents the
distribution of travel distances through the network and,
under the assumption of constant flow velocity, the proba-
bility distribution of traveltimes. Thus its significance
for understanding the hydrologic response of basins and
the scaling characteristics of streamflow hydrographs is
important. The link of hydrologic response and channel
network topology via the width function has been recognized
early on. For example, see Kirkby [1976], Troutman
and Karlinger [1985], Gupta et al. [1986], and Gupta and
Mesa [1988], who proposed a width function formulation of
the geomorphologic unit hydrograph (GUH). These studies
focused on the low-frequency component of the width
function which exhibits a similarity to the shape of the
instantaneous unit hydrograph. More recently, interest has
been expressed in the high-frequency component of thewidth
function and especially its multiscaling properties. This paper
is a contribution in this direction.
[3] The width function W(x) is defined as the number of

channelized pixels at a flow distance 0 � x � L from the

basin outlet, where L is the length of the longest channelized
path in the network, i.e.,

W xð Þ ¼ # channelized M : x � l Mð Þ � xþ dxf g; ð1Þ

where l(M) is the flow distance of pixel M from the outlet
and dx is the scale of ‘‘coarsening.’’ Typically the distance x
is normalized by L (in which case the support of W(x) is
between 0 and 1) and W(x) is normalized by the total
number of pixels rendering it a density. For a given network
topology, W(x) can be viewed as a stochastic process
indexed by the distance x.
[4] Another function of interest is the so-called area

function A(x) defined as the number of pixels, not neces-
sarily channelized, at a flow distance x from the basin outlet:

A xð Þ ¼ # all M : x � l Mð Þ � xþ dxf g: ð2Þ

[5] It is noted that A(x) does not require the extraction of
the channel network from DEMs, a task that still faces the
challenge of specifying the channel initiation processes
[e.g., Montgomery and Dietrich, 1988; Montgomery and
Foufoula-Georgiou, 1993], and reflects both the channel-
ized and unchannelized (hillslope) parts of the basin.
[6] Several previous works have studied, analytically or

via numerical simulation, the statistical scaling properties of
W(x) or A(x) for tree topologies such as the Peano basin,
Shreve’s random topology model, and self-similar trees
(SSTs) as well as real river networks [e.g., Troutman and
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Karlinger, 1984, 1985; Marani et al., 1991, 1994; Rinaldo
et al., 1993; Veneziano et al., 1995; Gupta and Waymire,
1996; Agnese et al., 1998; Yang et al., 2001; Richards-
Pecou, 2002]. Following earlier work of Troutman and
Karlinger [1984], Gupta et al. [1986], and Gupta and Mesa
[1988], recent studies have provided a renewed interest in
using simulated river networks and corresponding width
functions in efforts to understand, via hydrologic simulation
or theoretical derivations, the physical origin of the scaling
of floods as arising from the known scaling structure of
rainfall and the known fractal properties of river networks
[e.g., Menabde et al., 2001; Troutman and Over, 2001].
[7] Given the increasing importance of W(x) and A(x) in

hydrogeomorphologic studies, the questions considered in
this work are the following: (1) Does the topology of river
networks leave a unique signature on the MF properties of
the area and width functions? (2) How different are the MF
properties of commonly used simulated trees and those of
real river networks? and (3) Are there differences between
the MF properties of width and area functions and what can
these differences tell us about the topology of hillslope
versus channelized drainage patterns in a river basin?
[8] The ability to answer the above questions heavily

relies on using the correct tools for MF analysis. Veneziano
et al. [1995] pointed out some deficiencies in using the
standard techniques of MF analysis for width functions,
mainly addressing the nonstationary nature of these signals.
In this paper, we present a robust framework for MF
analysis of width and area functions which (1) offers
accurate estimates of the MF spectrum without the need

to know apriori the intrinsic nature of the analyzed signal
(i.e., measure versus function) and the form of nonstatio-
narity (linear versus higher-order trends) and (2) offers a
concise parameterization of multifractality (two parameters
only) even for short signals for which high-order moments
are unreliable. We use this framework to point out important
differences between the MF properties of simulated and real
river networks. Specifically, we show that the width func-
tion of real networks has a richer MF structure than reported
before (i.e., high intermittency) which differs from the
mostly monofractal structure of several commonly used
simulated networks. We also point out that the MF proper-
ties of width and area functions are different, possibly
reflecting the difference between the hillslope and channel-
ized drainage patterns and begging further study.
[9] This paper is structured as follows. Section 2 presents

a review of theoretical branching trees commonly used in
hydrology and describes models for their corresponding
width and area functions. Section 3 presents a concise
overview of MF formalisms which includes the commonly
used box aggregation and structure function methods but
goes beyond with the use of wavelet-based methodologies.
It also presents the cumulant analysis method for accurate
estimation of the singularity spectrum parameters especially
for short signals as those available for geomorphologic
analysis. Section 4 presents a robust framework for MF
analysis of area and width functions and demonstrates that
care must be exercised in selecting the proper multiresolu-
tion coefficients. Section 5 derives numerically the MF
properties of the area function of stochastic self-similar

Figure 1. (top) Peano’s basin and (bottom) Shreve’s random network construction schemes.
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trees. Results from MF analysis are then presented and
discussed for area and width functions of real river networks
(section 6). Finally conclusions are given in section 7.

2. Models for Area and Width Functions of River
Networks

2.1. Horton-Strahler Stream Ordering and
Self-Similar Trees

[10] River network streams are usually classified accord-
ing to the Horton-Strahler ordering scheme [Horton, 1945;
Strahler, 1957]: the network is divided in links that connect
either two tributary junctions (internal links) or a tributary
junction and a channel source point (external links). (Note
that for simplicity the definitions here are given for binary
junctions but they can easily be extended to nonbinary
ones.) Every external link is given order w = 1. One then
applies a recursive algorithm to compute the order of every
link: at every junction, two links of the same order w give
birth downstream to a link of order w + 1 while two links of
order w and w0 with w 6¼ w0 give birth downstream to a link
of order max(w, w0).
[11] Self-similar trees (SSTs) are topological descriptions

of river networks first introduced by Tokunaga in 1966 and
further studied by Tokunaga [1978] and Peckham [1995],
among others. According to SSTs, every stream of order w
has two upstream tributaries of order w 
 1 and several side
tributaries of order w0 such that 1 � w0 < w. Let
Tw,w0 denote the average number of tributaries of order w0 that
branch into a stream of order w. The assumption of self-
similarity between streams (and associated drainage basins)
of different orders [see, e.g., Rodrı́guez-Iturbe and Rinaldo,
1997] results in the constraint Tw,w0 = Tw
w0 = Tk with 1 �
k = w 
 w0 � w 
 1. Tokunaga’s trees [Tokunaga, 1978] are

trees for which the additional constraint holds Tk+1/Tk =
const which leads to a simple expression for Tk:

Tk ¼ a:bk
1: ð3Þ

This class of trees has been used to describe real river
networks. For instance, Peckham [1995] successfully
characterized a real river network with values a = 1.2 and
b = 2.4.
[12] Under the assumption that links are of constant

length, it can be shown [Peckham, 1995] that the fractal
dimension of such trees is

D ¼
log2 2þ aþ b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ aþ bð Þ2
8b

q� �

 1

log2 b
: ð4Þ

[13] This result is important since it defines a constraint
on the choice of parameters a and b: one should choose
these parameters such that D < 2 (non-space-filling net-
work) or at most D = 2 (space-filling network). For instance
(a, b) = (1, 2), which corresponds to Shreve’s model to be
discussed later, results in D = 2, i.e., a space-filling network.

2.2. Peano’s Basin

[14] In a seminal work, Peano [1890] defined a fractal
structure which has been widely used as a model of
drainage networks, the so-called Peano’s basin. Peano’s
basin defines a space-filling drainage network for which,
as a result, the width and area functions coincide, i.e., A(x) =
W(x).
[15] Peano’s basin is a specific case of the class of

recursive replacement self-similar trees [see Peckham,
1995; Gupta and Waymire, 1996; Mandelbrot and Viscek,
1989] which is a subclass of the SSTs. The iterative building
scheme of Peano’s basin is illustrated in Figure 1. The tree
at first step w = 1 consists of only one link of length 1. The
tree at step w is built from the tree at the previous order
according to the following rule: each mother link of the
network at step w is replaced by four children links (whose
lengths are the same and equal to half of the mother link),
organized according to a cross pattern. The number of steps
used for construction coincides with the largest stream order
within the network and thus with the order of the network.
This construction rule (which is purely deterministic)
defines asymptotically a space-filling tree.
[16] The Peano’s basin area function A(x) can be easily

derived and is shown to converge (when the number of
iterations entering the Peano’s basin construction tends to
infinity) toward the Besicovitch’s measure [e.g., Marani et
al., 1991]. First, note that the distance x takes values in
[0, 1] for every order w. The area function at step w (A(w; x))
is related to that at the previous step w 
 1 through

A w; xð Þ ¼ 1

4
A w
 1; 2xð Þ if 0 � x <

1

2

3

4
A w
 1; 2x
 1ð Þ if

1

2
� x � 1

ð5Þ

and thus does coincide with the definition of Besicovitch’s
measure (or binomial measure) with parameter p = 1

4
. This

last is the archetype for a MF measure (equivalently called

Figure 2. (a) Peano’s basin, (b) Shreve’s random network,
and (c) stochastic self-similar model (with (a, b) = (1, 2))
area functions. The corresponding order is w = 18 for
Peano’s basin and w = 11 for the stochastic self-similar
model. The vertical dashed lines define the central half.
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distribution) and its singularity spectrum D(h) (see appendix
for definition) can be easily derived and expressed with the
parameterized formulas [see, e.g., Schroeder, 1991]

D ¼ 
t log2 t 
 1
 tð Þ log2 1
 tð Þ
h ¼ 
t log2 p
 1
 tð Þ log2 1
 pð Þ ð6Þ

with 0 < t < 1 and p = 1
4
for the specific case of Peano’s

basin.
[17] The Peano’s basin model then predicts for the area

function A(x) a MF measure for which the singularity
spectrum is known. The distribution A(18; x) is plotted in
Figure 2a and its MF analysis will be discussed in
section 4.1.

2.3. Shreve’s Random Topology Model

[18] Shreve [1966] introduced a stochastic model for river
networks which provides also models for area and width
functions. Shreve’s model has been widely used to describe
scaling properties of drainage networks and of their area and
width functions [see, e.g., Rodrı́guez-Iturbe and Rinaldo,
1997; Troutman and Karlinger, 1984; Agnese et al., 1998].
[19] Shreve’s model is a binary branching tree defined

through the very simple following construction rules. The
main ingredient is the assumption that every link has equal
probability to be either an exterior link (not connected to
any other link upstream) or an interior link (connected to 2
links upstream). Construction of a realization of such a tree
starts with one link. This link is then chosen with the same
probability 0.5 to be an exterior link, and then the construc-
tion process ends, or an interior link and then 2 new
children links are connected to it. The construction process
recursively applies to each of the children links and so on
until there are no more children links (i.e., all children links
at previous steps have been chosen to be exterior links). The
number of links of the Shreve’s model is a random variable
taking different values for every realization.
[20] The Tk coefficients can be computed for this model

and are shown [see Shreve, 1966; Tokunaga, 1978; Peckham,
1995] to coincide with those of Tokunaga’s SSTs:
Tk = a.bk
1 with specific values (a, b) = (1, 2).
[21] Shreve’s random topology model defines a space-

filling network [Peckham, 1995] and thus area and width
functions coincide as for the Peano’s model. A(x) =W(x) is a
stochastic process for which realizations can be generated
using the following algorithm. A(x) is indexed with an
integer argument and is initially set as A(1) = 1. Then
A(x + 1) is computed from A(x) as A(x + 1) = Sk=1

A(x) y(k)
where the y(k) are independent and identically distributed
random variables that take the values 0 or 2 with equal
probability (i.e., probability 1/2). The construction algo-
rithm ends when A(x) = 0. A realization with 109,270
samples is plotted in Figure 2b.
[22] The MF properties of the area function of Shreve’s

model can be roughly understood as follows. The incre-
ments of A(x) can be written as

A xþ 1ð Þ 
 A xð Þ ¼
XA xð Þ

k¼1
z kð Þ; ð7Þ

where z(k) = y(k) 
 1 are independent and identically
distributed random variables that take the values {
1; 1}

with equal probability. The central limit theorem [see, e.g.,
Feller, 1966] states that the normalized sum of i.i.d. random
variables with zero mean and unit standard deviation (that
are thus finite), i.e, 1ffiffiffi

N
p Sk=1

N z(k), does converge (in the limit

N ! + 1) toward a random variable distributed with a
normal law of zero mean and unit standard deviation. One
may hence approximate Sk=1

A(x) z(k) by a random variable
distributed with a normal law with zero mean and standard
deviation

ffiffiffiffiffiffiffiffiffi
AðxÞ

p
, if A(x) is ‘‘sufficiently’’ large. Then, the

previous equation becomes

A xþ 1ð Þ 
 A xð Þ ’
ffiffiffiffiffiffiffiffiffi
A xð Þ

p
n xð Þ; ð8Þ

where n(x) is a Gaussian random variable with zero mean
and unit variance. This last equation is a discrete version of
the stochastic differential equation:

dA xð Þ ¼
ffiffiffiffiffiffiffiffiffi
A xð Þ

p
dB xð Þ ð9Þ

where B(x) is the ordinary Brownian motion. The Feller
diffusion process is solution of this equation and A(x) may
thus be interpreted as a discrete version of the Feller
diffusion process [see, e.g., Etheridge, 2000]. This last is a
process whose realizations are functions (and not measures).
This property may be easily understood since A(x) is
defined from a (discrete) differential equation. Moreover,
the MF properties of the Feller diffusion are known: this
process is monofractal, with Hölder exponent: H = 0.5
(J. Beresticky, University of Provence, Marseille, private
communication, 2006).
[23] This last interpretation is clearly confirmed by nu-

merical analysis of realizations of the process A(x), as it will
be shown in section 4.1.

2.4. Stochastic Self-Similar Trees and Their Area
and Width Functions

[24] The following recursive algorithm is proposed to
generate the area and width functions of SSTs. Note that
every link is assumed to have the same length, which
defines the unit length (i.e., every link has length 1).
[25] 1. The coefficients Tk are chosen to correspond to

those of Tokunaga’s trees: Tk = a.bk
1.
[26] 2. Streams of order 1 possess only one link.
[27] 3. For every stream i of order w, the number Xk

w,i of
side tributaries of order w 
 k is chosen as the value taken
by a random variable which is an integer and is distributed
with a Poisson distribution with parameter l = Tk. (Note that
the mean of such a random variable is l and its variance is
also l.) All the values X k

w,i are statistically independent; the
choice of the X k

w,i then fixes the number of side tributaries
of the stream i to Sk=1

w
1 X k
w,i and hence its number of links to

Cw,i = 1 + Sk=1
w
1X k

w,i.
[28] 4. The locations of the junctions of every side

tributary to the stream i are randomly and independently
chosen, with a uniform distribution; that is, the probability
of a given side tributary to link the stream i at the end of one
of the Sk=1

w
1 X k
w,i links is the same for every link and

independent of the location of other side tributary junctions.
[29] 5. Two things are noted. First, a different choice for

Tk coefficients than stated above can be used for the
generation of area and width functions although this is not
explored in this paper. Second, a specific choice of Tk does
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not suffice in defining a unique model for width or area
functions as will be demonstrated in section 5. This can be
easily understood since the Tk are only the means of the
distributions of the side tributaries and thus do not fully
characterize them.
[30] 6. It is noted that the SSTs generated by the above

algorithm form a specific case of the more general stochastic
Tokunaga trees introduced by Cui et al. [1999]. The MF
properties of the stochastic SSTs are not analytically derivable
and will be studied via simulation in section 5.

3. Multifractal Analysis

3.1. Practical Multifractal Analysis

[31] MF formalisms aim to perform on actual data a MF
analysis, i.e., estimate the singularity spectrum D(h) (see
Appendix A) from the statistics of the local fluctuations of
the signal at different scales a and different locations x0. Let
us denote these fluctuations, also called multiresolution
coefficients, c(x0, a), and define the partition functions
S(q, a) as estimates (by space averaging) of their qth
statistical moments:

S q; að Þ ¼ 1

n að Þ
X
x0

c x0; að Þj jq; ð10Þ

where n(a) is the number of coefficients c(x0, a) available at
scale a. The scale invariance property of a signal results in
power law behavior for the partition functions:

S q; að Þ � at qð Þ; ð11Þ

defining the usual spectrum of scaling exponents t(q),
indexed by moment order q. The MF formalism eventually
states that the scaling exponents relate to the singularity
spectrum through a Legendre transform:

D hð Þ ¼ 1þminq qh
 t qð Þ½ � for functions

1þminq qh
 qþ t qð Þð Þ½ � for measures:
ð12Þ

It is noted that the difference in the definitions of Legendre
transform for functions and measures (see Appendix A for
definition of a measure) is due to the common choice for
normalization of the multiresolution coefficients (indeed, if
one uses a.c(x0, a) instead of c(x0, a), the scaling exponents
t(q) are shifted to q + t(q)).
[32] Note that if the signal under analysis is monofractal

then the scaling exponents vary linearly with respect to the
moment order q, i.e., t(q) = qH. In contrast, if the singu-
larity spectrum takes finite values on an interval [hmin, hmax]
with hmax > hmin, the scaling exponents t(q) no longer
define a linear but rather a nonlinear function.

3.2. Multiresolution Coefficients

[33] As discussed in the previous section one first needs
to compute the multiresolution coefficients c(x0, a) in order
to perform a MF analysis. There are several choices of
multiresolution coefficients, that can be valid or not depend-
ing on the nature of the data under analysis, e.g., function or
measure and the presence of nonstationarities. The correct
selection of multiresolution coefficients is thus of first
importance in order to perform a meaningful MF analysis.
3.2.1. Catalog of Multiresolution Coefficients
[34] The MF formalism was historically introduced with

partition functions computed with first-order increments for
functions (the so-called structure function method [Parisi
and Frisch, 1985])

c x0; að Þ ¼ d x0; að Þ ¼ s x0 þ að Þ 
 s x0ð Þ ð13Þ

and box aggregation coefficients for measures [Hasley et
al., 1986]

c x0; að Þ ¼ b x0; að Þ ¼ 1

a

Z x0þa=2

x0
a=2
s xð Þdx: ð14Þ

Wavelet coefficients [Mallat, 1998] provide a more versatile
and efficient choice for multiresolution coefficients and can
be used for MF analysis of both functions and measures and
for nonstationary signals [Arneodo et al., 1995; Jaffard,
1997] (see also discussion below). Wavelet coefficients
w(x0, a) are defined as the inner product between the data
s(x) and the wavelet yx0,a

(x), associated with location x0 and
scale a:

c x0; að Þ ¼ w x0; að Þ ¼
Z
R
yx0 ;a xð Þs xð Þdx; ð15Þ

where yx0,a
(x) is a scale-dilated and time-shifted template of

the mother wavelet y0(x):

yx0 ;a xð Þ ¼ 1

a
y0

x
 x0

a

� 	
: ð16Þ

[35] A commonly used wavelet family is the Gaussian
wavelets (which are continuous wavelets; that is, spatial
location x0 and scale a can take on any real value), defined
as the N-order derivative of a Gaussian function, modulus a
proper multiplicative factor to ensure correct normalization.
The derivative of order N is denoted as g0

N(x). Wavelets
g0
3(x) and g0

4(x) are plotted in Figure 3.

Figure 3. (left) Wavelets g0
3 and (right) g0

4 (arbitrary
units).
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[36] An important feature of the mother wavelet y0 for
practical purposes is its number of vanishing moments: N �
1 such that

R
xky0(x)dx = 0 if 0 � k � N 
 1 andR

xNy0(x)dx 6¼ 0. The use of a wavelet with a given N
allows the removal of an additive polynomial trend of
degree less than N (which can cause a failure of MF analysis
[see Arneodo et al., 1995]). From a practical point of view,
the number of vanishing moments has to be chosen suffi-
ciently high such that robustness of the results is achieved;
that is, there is no dependence on the chosen wavelet. The

Gaussian wavelet g0
N(x) can be easily shown to have N

vanishing moments.
3.2.2. Choice of Multiresolution Coefficients
[37] The previous section depicts several choices of

multiresolution coefficients: increments or wavelet coeffi-
cients for MF analysis of functions (including functions
with polynomial trends) and box aggregation coefficients or
wavelet coefficients for MF analysis of measures. The
ability of wavelet coefficients to be used for analysis of
both functions and measures can be understood qualitatively
since a wavelet gathers local average and differentiation
patterns (cf. Figure 3): the wavelet coefficients are thus a
common extension of both increments and box aggregation
coefficients. This assertion will be quantitatively illustrated
in section 4.1 via an example.
[38] It is important to point out that an erroneous choice,

such as the use of increments for a measure or the use of
box aggregation coefficients for a function, or use of incre-
ments of insufficient order for a nonstationary signal, leads
to artifacts and thus to misleading conclusions: a correct MF
analysis requires a correct choice of multiresolution coef-
ficients. Since often one does not know before hand the
exact nature of the analyzed signal, a robust MF analysis
framework is proposed in this paper (see section 4) which
can both identify the correct mathematical nature of a signal
(measure, function, degree of nonstationarity) and correctly
estimate its singularity spectrum.
3.2.3. Moments of Negative Order q
[39] From the Legendre transform relationship

(equation (12)), it is seen that

q ¼ dD hð Þ=dh; ð17Þ

and thus for estimating the decreasing (right) part of the
D(h) function, in order to gain access to the whole range of
singularities from hmin to hmax, one needs to consider
estimation of t(q) for negative moments q. The MF
formalism based on increments, or even on continuous
wavelet transform (CWT) coefficients c(x0, a), suffers from
the fact that it is not valid for estimation of t(q) for q < 0.
This is because the probability distribution of increments or
CWT coefficients is centered at zero and thus negative
moments diverge [see, e.g., Venugopal et al., 2006b]. This
drawback can be overcome by using the WTMM (Wavelet
Transform Modulus Maxima) methodology which operates
on the modula of the wavelet coefficients which are always
positive [Muzy et al., 1993, 1994; Arneodo et al., 1995].
This methodology defines the WTMM coefficients, denoted
as m(x0, a), which can be used to compute the partition
functions and thus the scaling exponents and the singularity
spectra of functions. The reader is referred to Muzy et al.
[1993, 1994], Arneodo et al. [1995], or Venugopal et al.

[2006a, 2006b] for detailed presentation and illustration of
this MF formalism. It is also noted that a new MF
formalism, relying on a well-defined mathematical basis
and based on the so-called wavelet leaders (defined from the
discrete wavelet transform [Mallat, 1998]) has been recently
introduced in order to overcome this difficulty [Jaffard et
al., 2005; Lashermes, 2005; B. Lashermes et al., Wavelet
leaders based multifractal formalism: A comprehensive
analysis of turbulent velocity, submitted to European
Physical Journal B, 2007].

3.3. Multifractal Parameter Estimation With
Cumulant Analysis

[40] The scaling exponent function t(q) reflects the MF
properties of the data under analysis since it is the Legendre
transform of the singularity spectrum D(h). As discussed
above, estimation of t(q) typically relies on computation of
the partition function S(q, a) for different order moments q
(equation (10)) and estimation of the slopes of the log-log
linear plots of S(q, a) versus scale a. In order to depict the
deviation of t(q) from linearity (the hallmark of multi-
fractality) one has to estimate moments of high-order (the
literature reports moments up to order q = 10). This presents
not only problems of statistical convergence for short
signals but also problems of interpretation of high moments
due to a degenerate linear behavior of t(q), theoretically
expected for q > qmax, where qmax depends on the inherent
MF nature of the analyzed signal. Basically, the maximum
interpretable q is determined by the largest Holder exponent
hmax present in the signal; for q > qmax a linear t(q) curve is
expected even for a true MF signal. The reader is referred to
Lashermes et al. [2004] and also Venugopal et al. [2006a]
for further details on these estimation problems.
[41] An alternative estimation methodology, called cumu-

lant analysis method, which avoids the need to compute
high-order moments and also leads to a concise MF param-
eterization, has recently been introduced in the literature
[e.g., Arneodo et al., 1998; Malécot et al., 2000; Delour et
al., 2001] and has been used in geophysics for the analysis
of high-resolution temporal rainfall [Venugopal et al.,
2006a, 2006b]. The reader is referred to these publications
for details on the methodology.
[42] The cumulant analysis method, provides an estima-

tion of the parameters cp of the Taylor series expansion of
t(q) for q ! 0:

t qð Þ ¼
X
p�1

1ð Þp
1 cp

p!
qp ð18Þ

by computing the statistical cumulants C(p, a) of order p of
the logarithm of the absolute value of the multiresolution
coefficients c(x0, a) at a given scale a. Similarly to the
partition functions (cf. equation (10)), the cumulants define a
function of p and awhich is furthermore linear with respect to
ln a for MF functions. For instance, for p = 1 and 2,

C 1; að Þ ¼ 1

n að Þ
X
x0

ln jc x0; að Þj ’ a1 þ c1 ln a ð19Þ

C 2; að Þ ¼ 1

n að Þ
X
x0

ln jc x0; að Þj 
 C 1; að Þ½ �2’ a2 
 c2 ln a: ð20Þ
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Linear regressions of C(p, a) versus ln a thus allow
estimation of the cp.
[43] If the process under analysis is monofractal then c1 =

H 6¼ 0 and cp = 0 for p > 1. A nonzero value for c2 explicitly
establishes the multifractal (versus monofractal) nature of
the data: c1 is the most prevailing Hölder exponent value
(D(h) is maximum at h = c1) and the parameter c2 (also
called the intermittency coefficient) relates to the spread of
D(h) around c1. The quadratic approximation of the scaling
exponent function

t qð Þ ’ c1q
 c2q
2=2; when q! 0; ð21Þ

which corresponds to a quadratic approximation of the
singularity spectrum,

D hð Þ ’ 1
 h
 c1ð Þ2

2c2
; when h! c1 ð22Þ

is a commonly used model of multifractality. This model
has been shown to be both meaningful and a good
approximation in turbulence (for which it corresponds to
the so-called lognormal model).
[44] These tools will be applied in the sequel to charac-

terize the MF properties of the width and area functions,
using the CWT and the WTMM multiresolution coeffi-
cients. Since the WTMM coefficients allow the scaling
exponent estimation both for q < 0 and q > 0, in contrast

to CWT coefficients which only allow estimation for q > 0,
they are known to provide better estimators (faster statistical
convergence for instance) at least for p � 2. The reader is
referred to Delour et al. [2001] and Venugopal et al. [2006b]
for further details of the methodology.

4. Potential Pitfalls and a Robust Methodology
for Multifractal Analysis of Width and Area
Functions

4.1. Discrimination Between Function and Measure:
Peano’s Versus Shreve’s Models

[45] As was shown in section 2, different network topol-
ogies result in area and width functions that are distinctly
different in terms of their mathematical nature. For example,
the Peano basin area function is a mathematical measure
(distribution) while that of Shreve’s model is a mathematical
function. Analyzing both signals with the same multireso-
lution coefficients for estimating their singularity spectra,
e.g., using for both the first-order structure function ap-
proach or the box-counting approach, can lead to mislead-
ing interpretations. The purpose of this section is (1) to
quantitatively demonstrate that erroneous results on MF
characterization can be obtained by an innapropriate choice
of the multiresolution coefficients and (2) to present a
framework for MF analysis which does not require a priori
knowledge of the mathematical nature of the signal, but

Figure 4. Measure or function? (top) Scaling exponents t(q) and (bottom) predicted singularity spectra
D(h) computed with box aggregation (circles), increments (pluses), and wavelet coefficients (crosses) for
(left) Peano’s basin and (right) Shreve’s model area function A(x) (wavelet g0

4). Scaling exponents are
computed for negative q values for box aggregation coefficients in order to provide the right lobes of the
singularity spectra; negative moments cannot be computed for increments or wavelet coefficients (see
text for discussion).
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rather the framework identifies the underlying structure and
selects the appropriate multiresolution coefficients.
[46] Let us denote the scaling exponent function t(q)

defined with box aggregation, first-order increments and
wavelet coefficients, respectively, as tb(q), td(q) and tw(q).
We will demonstrate below that when all of them are
computed from a sampled signal (data set), if tb(q) and
tw(q) coincide and depart from td(q), then the data under
analysis correspond to a measure, whereas if td(q) and
tw(q) coincide and depart from tb(q), then the data under
analysis correspond to a function

td qð Þ 6¼ tw qð Þ ¼ tb qð Þ
!measure

td qð Þ ¼ tw qð Þ 6¼ tb qð Þ
!function:
ð23Þ

[47] Moreover, if the interest is not really in inferring the
mathematical nature of the signal but in correctly estimating
its MF spectrum, the above framework depicts the appro-
priate multiresolution coefficients and leads to a correct
estimate of the MF spectrum.
[48] MF analysis of the Peano’s and Shreve’s models area

functions (cf. section 2) are performed using box aggrega-
tion, increment and wavelet coefficients (the wavelet used is
g0
4) and the results are shown in Figure 4. Scaling exponents

with negative q values are computed with box aggregated
coefficients only, thus yielding the right lobe of singularity
spectrum, since negative moments are statistically mean-
ingless for increment or wavelet coefficients. As theoreti-
cally expected, the Peano model results in a (multifractal)
measure for A(x) and one observes td(q) 6¼ tw(q) ’ tb(q),
whereas the Shreve model results in a (monofractal) func-
tion for A(x) and one observes td(q) ’ tw(q) 6¼ tb(q). These
results clearly show how to characterize the intrinsic math-
ematical nature of the digital (sampled) data under analysis
without apriori information about the signal.
[49] Figure 4 illustrates as well the fact that an erroneous

choice of multiresolution coefficients leads to an incorrect
estimate of the spectrum of singularities. For instance,
performing MF analysis of the function A(x) predicted by
the Shreve’s model using box aggregation coefficients (see
Figure 4, right plots) leads to the erroneous conclusion that
the singularity spectrum D(h) (in the measure regularity
sense) is reduced to one point with coordinates (h = 1, D = 1)
with a decreasing right lobe. However, using first-order
increment and wavelet coefficients gives results in perfect
agreement with the expectation discussed in section 2, i.e.,
td(q) ’ tw(q) ’ 0.5q which is indeed the Legendre
transform of the singularity spectrum of a monofractal
process with H = 0.5. As will be discussed below such
analyses, i.e., using box aggregation coefficients for real
network width functions, are commonplace in the literature
and have resulted in suggestions that real networks have
area functions with D(h) = 1 at h ’ 1.

4.2. Nonstationarity Property of Area and Width
Functions

[50] The area and width functions by definition start and
end at zero. Moreover, if the length of the longest flow path
is L, few pixels or links are located close to the basin outlet
(i.e., at flow distance x� L) or at distance close to L (i.e., at
flow distance x such that (L 
 x)� L). These functions then
exhibit a nonstationary behavior which one has to deal with
before performing practical MF analysis. As discussed
previously, the MF analysis indeed assumes a stationarity
property for the local distribution of Hölder exponents: this
last is expected to be everywhere the same, which allows to
replace statistical averages by spatial averages for the
estimation of moments defining the partition functions (cf.
equation (10)). It is noted that although the wavelet-based
MF formalism can automatically deal with nonstationary
signals in terms of removing polynomial trends (since by
using wavelets with N vanishing moments a polynomial of
degree N is filtered out from the signal), the form of
nonstationarity in the width and area functions is of a
particular type arising from the fact that close to the outlet
and the upper end of the river basin, the branching structure
is not well developed yet and this is reflected in the

Figure 5. Effect of nonstationarity: average over N = 100
realizations of Shreve’s model area function of (top) first
and (bottom) second cumulants of the whole realization
(dashed line) and the central half (solid line) computed with
CWT coefficients (wavelet g0

4).

Table 1. Different Parameter Sets Investigated for Stochastic Self-Similar Model

(a, b) (0.75, 1.894) (1, 2) (1.25, 2.095) (1.5, 2.183) (1.75, 2.266) (1.5, 2.5) (1, 3)

D 2 2 2 2 2 1.76 1.41
order 13 12 11 11 10 10 10
n 3894 4160 3618 5817 3950 6435 14827
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statistical nature of the width function fluctuations close to
x = 0 and x = L.
[51] To assess the effectiveness of practical MF analysis

to accurately estimate the MF spectra of the data under
consideration, the analysis is performed both on the whole
realization and on its central half only (i.e., if the realization
has n samples, its central half is defined as the part between
n/4 and 3n/4) of the Shreve’s model area function (cf.
section 2.3). The results obtained with cumulant analysis
are discussed below.
[52] Averages over 100 realizations (of length between

4096 and 8092 samples) of first and second-order cumulants
(computed with CWT coefficients and wavelet g0

4) for both
the whole realization and the central part are plotted in
Figure 5. All cumulants exhibit power law behavior and the
cumulant exponents can hence be estimated. Estimation of
the first-order cumulant exponent results in c1 ’ 0.53 ± 0.02
for the whole realization and c1 ’ 0.49 ± 0.03 for the central
half, both statistically consistent with the expected value
c1 = 0.5. However, it is obvious that for the case when the
whole realization is used, C(2, a) has a significantly
different than zero slope (c2 > 0) while when the central
half only is used, C(2, a) is constant (c2 ’ 0). Interpreting
these results through a MF lens would lead to conclude a
multifractality for the whole realization and monofractality
for its central half. MF analysis on the whole realization is
then misleading since the function A(x) is known to be
monofractal with H = 0.5.
[53] We then conclude that the data fluctuations within

the central part of the width and area functions may be
assumed to be stationary and that MF formalisms may be
meaningfully applied to the central half giving results that
correctly reflect the properties of the underlying branching
structure of the network [see also Veneziano et al., 1995].
MF analysis of area and width functions of all networks
(either synthetic or real) discussed in this paper is then
performed on the central half for the remaining of this paper.

4.3. Analysis of Real Width and Area Functions:
A Review of Other Efforts

[54] Several studies have considered MF analysis of
width and area functions of real and simulated river net-
works [e.g., Rinaldo et al., 1993; Marani et al., 1994;
Veneziano et al., 1995; Yang et al., 2001; Richards-Pecou,
2002] but some of the findings need to be reconsidered.
First, several studies have reported that the area function of
real river networks is a multifractal with D(h) = 1 at h ’ 1
and a slowly falling right limb for h > 1 [e.g., see
Rodrı́guez-Iturbe and Rinaldo, 1997, Figures 3.16, 3.17,
3.23; Yang et al., 2001]. The same results have been
reported for simulated optimal channel networks (OCNs)
[e.g., see Rodrı́guez-Iturbe and Rinaldo, 1997, Figures 4.26,
42.7].
[55] These studies have used the box-counting method,

which works fine for the Peano basin whose A(x) is a
measure, but is not appropriate for the Shreve model or for
real networks for which the A(x) is a function. It is worth
noting that an estimate of D(h) concentrated around h = 1
has prompted suggestions in the literature that the width
function of real networks is close to that of the Peano basin
for which the theoretical H is 1.207. This is an artifact of the
analysis methodologies.
[56] A second problem is that inferences about the

deviation from multifractality (nonlinear t(q)) have been
based on very high order moments (e.g., from 
10 up to 10)
computed from short series. This can lead to spurious lobes
of the singularity spectrum. Yet, since the left lobe is always
found to decrease very rapidly allowing thus no discrimi-
nation (e.g., see the previously mentioned figures in the
literature), the right lobe has been used for discriminating
among modeled and real networks and also for assessing the
effects of threshold area for channel initiation on the MF
properties of width functions [e.g., see Rodrı́guez-Iturbe
and Rinaldo, 1997, Figure 3.23; Yang et al., 2001]. This

Figure 6. Stochastic self-similar model ((a, b) = (1, 2))
partition functions of order q = 1, 2 computed with CWT
coefficients (wavelet g0

4).

Figure 7. Stochastic self-similar model ((a, b) = (1, 2))
cumulants of order (top) p = 1 and (bottom) p = 2 computed
with CWT coefficients (wavelet g0

4).
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right lobe however is all an artifact of the analysis method-
ology; it relies on negative statistical moments which,
although statistically feasible to compute from box aggre-
gation coefficients, have no meaning since the box aggre-
gation coefficients are not appropriate for analyzing a MF
function. The proposed framework (using WTMM coeffi-
cients and cumulant analysis) provides accurate estimates of
the whole singularity spectrum and also a concise parame-
terization which does not require the computation of high-
order moments.

5. Numerical Multifractal Characterization of
Stochastic Self-Similar Trees

[57] The stochastic SSTs presented in section 2.4 do not
receive analytical expressions for the MF properties of their
area and width functions. Thus these properties are investi-
gated through numerical analysis of a large number (100)
of realizations with the same values for order w and param-
eters a and b (cf. Table 1). Several values of the parameters
(a, b) are investigated with practical MF analysis,
corresponding both to space-filling or non-space-filling
networks. Note that the network orders have been chosen
so that the average number of samples, denoted as n, is
almost the same for every choice of parameters a and b.
[58] The first step is to check that both partition functions

and cumulants do behave like power laws with respect to
scale a. For (a, b) values corresponding to space-filling
networks this is indeed true (cf. Figures 6 and 7 for (a, b)
= (1, 2); similar power law behaviors are observed for other

parameter value choices) but no clear power law behavior is
observed when the network is not space filling. The origin of
the departing behavior from scaling is intriguing and requires
further study in the future. Here, only (a, b) values such that
D = 2 are considered, thus defining processes for which the
practical MF analysis is fully consistent and results in reliable
estimates of the scaling and cumulant exponents.
[59] MF analysis is performed on the central half of every

realization, using both the CWT and WTMM methodology
(the wavelet used is g0

4). Table 2 presents the results
obtained for the three first cumulant exponents. For every
set of parameters (a, b), the results obtained from the
numerical analysis, within confidence intervals (confidence
interval is the common 95% confidence interval for the
empirical average estimator on N samples of a Gaussian
random variable: ±2 sffiffiffi

N
p where s is the estimated standard

deviation), show a monofractal behavior, characterized by
the parameter c1 only. Moreover, the estimated value of c1
depends on the choice of (a, b) and ranges from 0.54 to
0.65, which are all larger than the one corresponding to
Shreve’s model area function (i.e., 0.5). Also, it is interest-
ing to note that for (a, b) corresponding to space-filling
SSTs, c1 clearly decreases when a increases. In other words,
when the ‘‘branching rate,’’ that is, the number of tributaries
of streams of a given order increases, the area function
exhibits wilder fluctuations and becomes more and more
irregular.
[60] Another interesting result concerns the values ob-

tained for (a, b) = (1, 2): though the Tk coefficients of the

Table 2. Mean of Cumulant Exponents for Area Functions of Stochastic Self-Similar Trees, Computed on the

Central Half Portion With CWT and WTMM Coefficients Averaged Over N = 100 Realizationsa

(a, b) (0.75, 1.894) (1, 2) (1.25, 2.095) (1.5, 2.183) (1.75, 2.266)

CWT c1 0.65 ± 0.01 0.62 ± 0.01 0.55 ± 0.01 0.55 ± 0.01 0.55 ± 0.01
c2 0.00 ± 0.01 0.01 ± 0.01 0.00 ± 0.01 0.01 ± 0.01 0.00 ± 0.01
c3 0.00 ± 0.04 0.01 ± 0.02 0.01 ± 0.02 0.00 ± 0.02 -0.01 ± 0.04

WTMM c1 0.64 ± 0.02 0.60 ± 0.01 0.56 ± 0.01 0.56 ± 0.01 0.54 ± 0.01
c2 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.01 ± 0.01
c3 0.02 ± 0.01 0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

aThe wavelet used is g0
4. The given confidence intervals are ±2s /

ffiffiffiffi
N
p

, where s is the estimated standard deviation. Note that
all considered combinations of (a, b) parameters result in space-filling trees (see equation (4)).

Figure 8. Stochastic self-similar model ((a, b) = (1, 2)) (left) scaling exponents t(q) and (right)
singularity spectrum D(h) of area function A(x) computed with CWT (circles) and WTMM (squares)
coefficients (wavelet g0

4).
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underlying trees do coincide with those of the Shreve’s
model (cf. section 2.3), the related area functions clearly
exhibit different regularity properties, i.e., with H = 0.50 for
Shreve’s model (see Figure 4, right) or H = 0.60 for SSTs
(see Figure 8). This result supports the fact that knowledge
of the coefficients Tk is not sufficient information to fully
characterize a river network, since the Tk are only the means
of the distributions of the number of side tributaries and do
not account for higher-order statistical moments. A system-
atic analysis of the MF properties of the more general
stochastic SSTs introduced by Cui et al. [1999], is an
interesting topic for further study which however falls
outside the scope of the present paper.

6. Multifractal Analysis of Real River Basin Area
and Width Functions

6.1. Data Used for Analysis

[61] Analysis of area and width functions extracted from
DEM of three real river basins (Figure 9) is performed in
this paper. Walawe River is a river located in Sri Lanka and
its drainage area is almost 2000 km2. The area (A(x)) and
width (W(x)) functions are extracted from DEM of spatial
resolution 90 m � 90 m. The area function of the upper part
of the South Fork Eel River basin, California, USA
(corresponding drainage area of 154 km2) is extracted from
high-resolution 1 m � 1 m DEM (LIDAR technology) and
10 m � 10 m DEM (see Gangodagamage et al. [2007] for
more details on this basin). Finally, the area and width
function of the Noyo River basin, California, USA are

extracted from DEM of spatial resolution 10 m � 10 m
(corresponding drainage area of 143 km2 [see Sklar et al.,
2006, and references therein] for more details on this basin).
All these basins are plotted in Figure 9.
[62] From a practical point of view, one important pa-

rameter when extracting the area and width functions from a
DEM is the bin size dx: {A(dx; x)} = # {all M: x � l(M) �
x + dx}, where l(M) denotes the flow distance of pixel M to
the outlet. One should carefully select the value for dx: if
dx is too close to the DEM spatial resolution, then the
computed A(x) or W(x) will take only small integer values
and thus will be polluted by high-digitization noise. This
effect can be specifically important for W(x) since the
percentage of channelized pixels is very small. On the other
hand, a large value for dx may mask, because of averaging,
the MF signatures of the underlying network structure. The
bin size dx is chosen sufficiently large so as not to affect the
results presented in this paper. The number of samples is
2,513 for the Walawe River area and width functions, 3,962
for the South Fork Eel River area function and 1,948 for the
Noyo River area and width functions. All area and width
functions are plotted in Figure 10.

6.2. Multifractal Characteristics of Several River Basin
Area Functions

[63] The singularity spectra of the area and width func-
tions of the Walawe river basin have been computed using
box aggregation, increment and wavelet coefficients (the
wavelet used in this section is g0

4).
[64] The results are plotted in Figure 11 in a similar way

as for the synthetic data (see Figure 4). Both for area and

Figure 9. Drainage basins and river networks for (top left) Walawe River (DEM resolution 90 m), Sri
Lanka; (top right) South Fork Eel River (DEM resolution 1 m), California, United States; and (bottom)
Noyo River (DEM resolution 10 m), California, United States.
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width functions an agreement between the scaling expo-
nents computed with increments and wavelet coefficients is
found: td(q) ’ tw(q), whereas the scaling exponents com-
puted with box-aggregated coefficients tb(q) clearly depart
from td(q) ’ tw(q). We then conclude that both the area and
width functions extracted from the Walawe River basin are
by nature functions and not measures. The same result is
obtained for the area function of the South Fork Eel River
and Noyo River basins. Furthermore, as it is seen in

Figure 11 using box aggregation coefficients results in the
wrong inference of MF properties close to those of Shreve’s
model as previously reported in the literature (cf. Figure 4),
i.e., one point with coordinates (h ’ 1, D = 1) with a
decreasing right lobe, while using the increments or wavelet
coefficients results in singularity spectrum centered at c1
approximately 0.4 for A(x) and 0.5 for W(x).
[65] Figures 12 shows the log-log plots of the partition

functions S(q, a) versus a for q = 1, 2 computed using CWT
and WTMM coefficients for the three different basins. The
range of scales over which linear fits of the log2(S(q, a))
versus log2(a) plots have been performed is shown in
Table 3. On the basis of these fits, the t(q) and (via the
Legendre transform) D(h) spectra were estimated and are
shown for all three basins in Figure 13.
[66] Cumulant analysis for estimation of the parameters

cp has also been performed for all these basins using the
CWT and WTMM coefficients. For illustration purposes,
Figure 14 shows the cumulants C(p, a) versus loga for p =
1, 2 for the Walawe basin; similar plots were found for the
other basins. Using the range of scales reported in Table 3,
the estimates of c1 and c2 were computed and are reported in
Table 4. It is observed that the singularity spectra of the area
functions of the three analyzed basins are clearly different as
are the estimates of their c1 and c2 coefficients. More
precisely, the singularity spectra of South Fork Eel River
and Noyo River basins have their peak at h = c1 ’ 0.8
which is significantly larger than the value around which the
peak of the singularity spectrum of the Walawe River basin
is found: h = c1 ’ 0.4. It is moreover worth noting that the
numerical analysis performed on both 1 m and 10 m
resolution data sets (South Fork Eel River) yield the same
results (cf. Table 4) supporting the fact that the observed
difference in the value of c1 is not an artifact due to the fine
1 m spatial resolution.
[67] The observed differences in the estimated values of

the parameter c1 means that the South Fork Eel River and
Noyo River basins area functions exhibit more regular (in
terms of singularity, i.e., larger c1) local behavior than the
Walawe River one. Eventually, all these area functions are
MF functions, characterized by values of the parameter c2
around 0.05 to 0.11. These values can be compared to the
well known value of c2 ’ 0.025 for Eulerian turbulent
velocity [e.g., Frisch, 1995] and values c2 ’ 0.30 for fine
resolution (seconds) temporal rainfall [e.g., Venugopal et
al., 2006a].
[68] The robustness of the estimation methods used in

this work enables us to confidently conclude that indeed
there are significant differences in the singularity spectra of
A(x) of different basins. This is an encouraging result and
points to the possibility that differences in the geomorpho-
logical processes controlling flow paths, both on the river
network itself and on the hillslopes, might be reflected in
the scaling properties of the area and width functions. A
comprehensive analysis of a large number of basins needs to
be undertaken to systematically study these connections.

6.3. Comparison Between Area and Width Functions

[69] In this section, the MF properties of the width and
area functions of the Walawe River and Noyo river basins
are compared. The scaling properties of the width function
of the South Fork Eel River basin could not be reliably

Figure 10. Area and width functions for Walawe River
basin (a) area and (b) width functions, South Fork Eel River
basin (c) area functions, and Noyo River basin (d) area and
(e) width functions. The vertical dashed lines define the
central half portion of the signal on which the MF analysis
was performed.
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analyzed because no sufficiently large scaling range was
available for estimation.
[70] The scaling exponents t(q) and the cumulant expo-

nents cp are computed from the CWT coefficients, using the
wavelet g0

4. The results are reported in Figure 15 and Table 5.
It is first important to note that the width function W(x)
cannot be analyzed using the WTMM coefficients as the
scale range within which a power law behavior is observed
for the partition functions defined from the CWT coeffi-
cients is quite small, and it is known that use of WTMM
coefficients results in an even smaller scaling range (a larger
value of amin), making it hard to estimate the scaling or
cumulant exponents.
[71] Figure 15 shows that the computed scaling expo-

nents t(q) and then the estimated singularity spectra D(h)
vary appreciably. This difference is quantified with the
cumulant exponent c1 since this is actually the abscissa of
the maximum value of D(h): c1 ’ 0.5 for W(x) and c1 ’ 0.4
for A(x) for the Walawe River basin, and c1 ’ 0.5 for W(x)
and c1 ’ 0.8 for A(x) for the Noyo River basin (see
summary in Table 5). It is worth noting that while the MF
properties forW(x) are similar for these two basins, A(x) was
found much ‘‘rougher’’ for the Noyo River basin and
‘‘smoother’’ for the Walawe River basin. The apparent
‘‘smoothness’’ of the hillslope dissection for the Walawe

River basin may simply be the result of the 90 m DEM
resolution which is not enough to resolve the drainage
patterns at the hillslope scale. This needs further study by
a systematic analysis of several basins at high resolution and
also by theoretical constructs in which distinctly different
branching structures are superimposed on the basic branch-
ing structure of the river network. However, it is worth
noting that both A(x) and W(x) are found MF (as opposed to
monofractal) functions as their singularity spectra are not
reduced to one point and c2 is significantly different than
zero.

7. Concluding Remarks

[72] The problem of extracting geomorphologic features
from landscapes which allow distinct characterization and
can be used for discrimination or classification purposes,
has been of continuous interest in hydrogeomorphologic
research. It is therefore of interest to examine whether the
width and area functions of real basins imbed in them
distinct signatures of landscape dissection which could be
used to differentiate between different network or drainage
path topologies. These distinct geomorphological features
would also be expected to result in distinct hydrological
behavior.

Figure 11. Walawe River (top) scaling exponents t(q) and (bottom) predicted singularity spectra D(h)
computed with box-aggregation (circles), increments (pluses), and wavelet coefficients (crosses) for (left)
area function A(x) and (right) width function W(x) (wavelet g0

4). Scaling exponents are computed for
negative q values for box aggregation coefficients in order to provide the right lobes of the singularity
spectra; negative moments cannot be computed for increments and wavelet coefficients (see text for
discussion).
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[73] In this paper we presented a robust framework for
multifractal (MF) analysis of width and area functions of
simulated and real river networks using wavelets. We
pointed out the subtleties and potential pitfalls of such
analyses, and introduced a new methodology, called cumu-
lant analysis, for accurate and concise parameterization of
multifractality using mainly two parameters, c1 and c2: c1 is
the most frequently occuring singularity, and c2, the so-
called intermittency coefficient, depicts the degree of devi-
ation from monofractality and characterizes the degree of
spatial heterogeneity of fluctuations. It is noted that for a
monofractal, c1 = H and that a higher (lower) value of c1
implies a ‘‘rougher’’ (‘‘smoother’’) signal.
[74] The results obtained in this work establish some

trends but also highlight the need for further research along
three main directions.

Figure 12. Partition functions of area functions A(x): partition functions of order q = 1, 2 computed
using (left) CWT and (right) WTMM coefficients for (top) the Walawe River basin, (middle) the South
Fork Eel River basin, and (bottom) the Noyo River basin (wavelet g0

4). Vertical lines denote the range of
scales over which estimation of t(q) is performed (see Table 3).

Table 3. Scale Ranges Used for Log-Log Linear Regressions of

the Partition Functionsa

Function Method amin, m amax, m

Walawe River A(x) CWT 425 2960
WTMM 911 2960

W(x) CWT 2400 5920
South Fork Eel R. A(x) CWT 49 552
(1 DEM) WTMM 79 552
South Fork Eel R. A(x) CWT 64 837
(10 DEM) WTMM 112 837
Noyo River A(x) CWT 66 429

WTMM 76 429
W(x) CWT 132 697

aSee Figure 12. Note that the same wavelet (g0
4) has been used for all the

analyses.
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7.1. Simulated Versus Real River Networks

[75] Our results established differences between the multi-
scale statistical structure of area functions A(x) of real
networks (found to be multifractal, as opposed to mono-
fractal, with c1 between 0.4 to 0.8 and a considerable
intermittency) and that of a large class of commonly used
space-filling SSTs (found to be monofractal with H between
0.5 to 0.65). We also pointed out that previous studies that
have inferred multifractality in real river networks with c1
close to 1.0 suffer from artifacts of the analysis methodology.
Given the increased use of simulated river networks in
understanding the interplay between space-time precipita-
tion variability and river network topology on the emergent
scaling of floods, the proposed robust MF analysis frame-

work offers opportunity to study several new and relevant
questions that have emerged from our analysis.
[76] 1. Do simulated self-similar trees (SSTs) which are

not space-filling exhibit scaling in their width functions?
Preliminary evidence in this paper suggests that scaling
might not be present in these trees (see section 5) but this
needs to be further investigated. This question is relevant as
real river networks are not always space filling.
[77] 2. What class of SSTs exhibits multifractality in their

width functions W(x) similar to that exhibited by real river
networks? One possible class is the extended class of
stochastic SSTs proposed by Cui et al. [1999], which
considers an additional source of spatial variability by
randomizing the mean l of the Poisson distribution of the
number of side tributaries (see section 2.4). The MF
properties of this extended class of models have not been
studied yet, to the best of our knowledge. It is conjectured
that this class might lead to width functions with multi-
fractal (as opposed to monofractal) singularity spectra as
those found in real networks and that this extra source of
‘‘randomness’’ might be a necessary condition for multi-
fractality. This problem requires further study.
[78] 3. Do the MF parameters of W(x) relate to any

specific topological properties of the branching trees? In
this study we found that for space-filling SSTs, a decreasing
c1 (rougher W(x)) corresponded to an increasing branching
rate (see section 5). This implies that a ‘‘smoother’’ W(x)
might be expected for a branching network that has a
smaller branching rate. Does this relation hold for other

Figure 13. Area functions: (left) scaling exponents t(q) and (right) singularity spectra D(h) of Walawe
River basin (diamonds), South Fork Eel River basin (squares), and the Noyo River basin (circles) area
functions A(x) (wavelet g0

4).

Figure 14. Walawe River cumulants of order p = 1, 2 of
the area function A(x) computed with WTMM coefficients
(wavelet g0

4).

Table 4. MF Characteristics of A(x) for Several Basinsa

Walawe River

South Fork Eel
River

Noyo River1 DEM 10 DEM

CWT c1 0.37 0.78 0.80 0.77
c2 0.06 0.05 0.05 0.11

WTMM c1 0.42 0.78 0.77 0.78
c2 0.03 0.06 0.04 0.10

aCumulant exponents are computed with CWT and WTMM coefficients
(wavelet g0

4).
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non-space-filling simulated trees and does it hold for real
river networks?

7.2. Area A(x) Versus Width W(x) Function

[79] Our analysis suggests that the area function A(x) of
different real networks possesses distinctly different MF
properties, whose meaning needs to be carefully interpreted.
For the three basins analyzed, the larger Walawe basin was
found to have A(x) with c1 ’ 0.4 and c2 ’ 0.03 which are
distinctly different from those of the much smaller, steeper
and still tectonically active California basins (c1 ’ 0.8 and
c2 ’ 0.05 to 0.10). To rule out the possibility that the
unusually large value of c1 = 0.8 is the result of the 1m
DEM resolution, the results were confirmed with area
functions extracted from DEMs of 1m and 10m DEMs.
Our analysis also indicates that the A(x) and W(x) functions
of the same basin posses distinctly different MF properties
depicting the different drainage topologies of the main river
network and the hillslope drainage paths. For example, for
the Noyo River basin, we found c1’ 0.8 for A(x) versus
c1 ’ 0.5 for W(x), while for the Walawe basin c1 ’ 0.4 for
A(x) versus c1 ’ 0.5 for W(x).
[80] However, several questions remain unanswered,

such as the following.
[81] 1. What is the effect of DEM resolution and the

channel initiation criterion for river network extraction
(critical threshold area versus a slope-area threshold) on

the MF properties of W(x)? Notice that these questions have
been studied before in the literature but with limited MF
analysis methodologies as discussed in 4.3 and have to be
repeated with the proposed more robust methodology.
[82] 2. When the DEM resolution is small enough (1m to

10 m DEMs) and is able to resolve hillslope flow paths,
does in general A(x) emerge as ‘‘less rough’’ than W(x) as
was suggested by the two very high resolution basins we
analyzed? Note that when the DEM resolution is low, we
found that the MF properties of A(x) and W(x) were
approximately the same (and in fact A(x) was slightly
‘‘rougher’’ than W(x)), but this might be due to the inability
of 90 m DEMs to resolve hillslope flow paths and thus to
‘‘see’’ the hillslope drainage patterns.
[83] 3. Can the MF properties of W(x) and A(x)

be classified according to basin size as suggested by

Figure 15. Area function versus width function: (left) scaling exponents t(q) and (right) singularity
spectra D(h) of area A(x) (circles) and width W(x) (squares) functions computed with CWT coefficients
(wavelet g0

4) for (top) Walawe River basin and (bottom) Noyo River basin.

Table 5. Comparison Between A(x) and W(x)a

Walawe River Noyo River

A(x) c1 0.37 0.77
c2 0.06 0.11

W(x) c1 0.51 0.46
c2 0.13 0.10

aCumulant exponents are computed with CWT coefficients (wavelet g0
4)

for the Walawe River basin and the Noyo River basin.
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Richards-Pecou [2002]? While our results do not contradict
this hypothesis, we believe that factors other than basin size
are at work. Although it is possible that large-scale forcing
due to boundary constraints spill over to all other smaller
scales of landscape dissection, basin slope, drainage density,
geology, etc. might play a role in the MF properties of river
networks. A comprehensive analysis using the proposed
methodology would provide insight into this problem.
[84] 4. How do two different branching topologies, say

one corresponding to the river network at larger scales and
another corresponding to the hillslope path topology at
smaller scales, mix to give rise to the MF properties of
A(x)? Can this problem be studied theoretically via con-
structed multiscale mixed-topology networks?
[85] 5. Do the MF properties of A(x), mostly dominated

by the hillslope flow paths, relate to the MF properties of
the River Corridor Widths (RCW) introduced by
Gangodagamage et al. [2007] to directly depict the hill-
slope topography roughness?

7.3. Hydrologic Implications

[86] Finally, one wonders whether the multiscaling prop-
erty of area and width functions, apart from a geometrical
interpretation related to flow path topology, can be given
any hydrological significance. Recently, Richards-Pecou
[2002] suggested that the multiscaling structure of the area
function (actually the author refers to the width function but
analyzes the area function) might associate to the scaling
structure of at-site flood peaks and can thus serve for
regionalization purposes. Specifically, the conjecture was
made that the one parameter of the universal multifractals
(the Levy-stable a parameter) might relate to the heaviness
of the tails of the distributions of floods (see also Dodov and
Foufoula-Georgiou [2005] for fitted Levy-stable pdfs to
maximum annual floods). This is a plausible hypothesis, but
one has to be careful with the chosen parameterization of
multifractality; in our study we chose a nonparametric class
of models as opposed to the universal multifractals used by
Richards-Pecou [2002] and thus no direct comparison can
be made.
[87] Some preliminary ideas on a different hydrologic

interpretation of the MF structure of W(x) are offered in this
paper. Recalling that W(x) denotes the number of channels
intersected by a contour of equal length x to the outlet,
jW(x + d x) 
 W(x)j can be interpreted as the net number of
channels within a strip of flow distance d x to the outlet.
First, the presence of multifractality (c2 different than zero)
implies a strong dependence of the statistics of jW(x + d x) 

W(x)j on the size of the strip (scale) d x and especially a
coefficient of variation of this pdf which increases as the
scale d x decreases. That is, there is a disproportionally
larger net change in the number of channels (or drainage
pathways) expected to appear or disappear in the network at
smaller distances apart than at larger distances apart (the
larger the value of c2 the larger this dependence on scale is).
On the basis of the above argument, it is clear that the
values of c1 and c2 are directly related to the scale-
dependent probability distribution of the number of in-phase
hillslope hydrographs joining the network within a strip of
size d x from the outlet, thus expected to affect the
properties of the overall hydrograph at the outlet. It is
suggested that this scale dependence of W(x) should be
further explored toward a scale-dependent convolution

framework for routing and toward alternative explanations
of geomorphologic dispersion using higher-order moments
of river network topology.

Appendix A: Singularity Spectrum

[88] A MF function f (x) is described as a collection of
local singularities, i.e., jx 
 x0jh(x 0) whose strength is
characterized by the Hölder exponent. The Hölder exponent
h(x0) is properly defined as follows (these definitions
actually hold for h < 1 but easily extent to h � 1):

h x0ð Þ ¼ Sup a : f 2 Ca x0ð Þf g; ðA1Þ

where

f 2 Ca x0ð Þ if j f xð Þ 
 f x0ð Þj � Ajx
 x0ja ðA2Þ

for jx 
 x0j � �. The Hölder exponent can be interpreted as
follows: the closer h(x0) is to 0, the more irregular the
function is at point x0. In contrast, larger values for h(x0) are
related to a smoother (more regular) behavior at x0. For a
MF function, the Hölder exponents are spatially distributed
on interwoven fractal subsets

S hð Þ ¼ x0 : h x0ð Þ ¼ hf g; ðA3Þ

where S(h) is the collection of points with Hölder exponent
h. An efficient framework to characterize MF functions with
a hierarchical classification of the subsets E(h) is by using
the Hausdorff dimension of these subsets [see, e.g.,
Schroeder, 1991]:

D hð Þ ¼ DimHS hð Þ: ðA4Þ

[89] The function D(h) is called the singularity spectrum
of the function f (x) and its estimation is the goal of MF
analysis.
[90] Monofractal functions are an important subclass of

MF functions for which the Hölder exponent takes every-
where the same value H and then the singularity spectrum
reduces to a single point: D(h) = 1 if h = H and D(h) = 
1
if h 6¼ H (by convention, D(f) = 
1 if f denotes the empty
set). A well known example of monofractal process is the
ordinary Brownian motion, for which H = 0.5. MF func-
tions have a D(h) curve which spans a range of Hölder
exponents from hmin to hmax. The MF formalism [Parisi and
Frisch, 1985] relates D(h) to the spectrum of scaling
exponents t(q) describing how the statistical moments of
fluctuations change with scale.
[91] A similar description can be made for positive

measures (or distributions) m(x) which are mathematical
objects defined through their integral over any interval of
R: x!

R
0
xm(u)du defines an increasing function which may

not posses any derivative. A measure is also described as a
collection of singularities:

R
x0
r/2
x0+r/2m(u)du � rh(x0) with

Hölder exponent h(x0) defined as

h x0ð Þ ¼ Sup a : m 2 Ca x0ð Þf g; ðA5Þ
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where

m 2 Ca x0ð Þ if
Z x0þr=2

x0
r=2
m uð Þdu � Ara ðA6Þ

for r � �. Except for the Hölder exponent definition and the
Legendre transform definition (see equation (12)), the MF
framework for measures is the same as the one for
functions.
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Abstract

Landscapes have been shown to exhibit numerous scaling laws from Horton's laws to more sophisticated scaling in topography
heights, river network topology and power laws in several geomorphic attributes. In this paper, we propose a different way of examining
landscape organization by introducing the “river corridor width” (lateral distance from the centerline of the river to the left and right
valley walls at a fixed height above the water surface) as one moves downstream. We establish that the river corridor width series,
extracted from 1 m LIDAR topography of a mountainous river, exhibit a rich multiscale statistical structure (anomalous scaling) which
varies distinctly across physical boundaries, e.g., bedrock versus alluvial valleys.We postulate that such an analysis, in conjunction with
field observations and physical modeling, has the potential to quantitatively relate mechanistic laws of valley formation to the statistical
signature that underlying processes leave on the landscape. Such relations can be useful in guiding field work (by identifying physically
distinct regimes from statistically distinct regimes) and advancing process understanding and hypothesis testing.
© 2007 Elsevier B.V. All rights reserved.
Keywords: River corridor widths; Valley morphology; Hillslope processes; Landscape organization; Multiscaling; Multifractals
1. Introduction

“Why are scaling laws of such distinguished impor-
tance? The answer is that scaling laws never appear by
accident. They always manifest a property of the
phenomenon of basic importance …This behavior
should be discovered, if it exists, and its absence
should also be recognized.” — Barenblatt (2003).

A piece of landscape can be analyzed in several ways.
One way is to analyze the statistical properties of the
⁎ Corresponding author. Tel.: +1 612 626 0369; fax: +1 612 624
4398.

E-mail address: efi@umn.edu (E. Foufoula-Georgiou).

0169-555X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomorph.2007.04.014
topography heights z(x,y) and related attributes, such as,
local gradients and curvatures. Another way is to extract
the channelized paths of the topography and study the
topological structure of the ordered river network. The
former method examines the vertical structure of the
topography, while the latter studies the planar dissection
of the topography. Here, we introduce a different
approach for examining landscapes focusing on the
“river corridor width” (RCW) as one moves along the
river. The river corridor width is extracted by “flooding”
the river at a certain heightD0 above the water surface and
recording the left and right distance to the valley walls
measured from the centerline of the river and orthogonal
to this centerline (see Fig. 1). We denote this function by
VL(x; D0) and VR(x; D0), where L and R stand for the left
and right side, respectively, looking downstream, x is the
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Fig. 1. River corridor width at depth D0 above the water surface to the left and right of the river centerline, VL(x; D0) and VR(x; D0), respectively,
where x is the distance measured along the river from the basin outlet x=0.

199C. Gangodagamage et al. / Geomorphology 91 (2007) 198–215
distance measured along the river from the basin outlet
x=0, and D0 is the depth above the water level.

This particular definition of “river corridor width” is
different from the definition of “valley width” used in
other studies. For example, Montgomery (2002) defined
valley width as the total ridgetop-to-ridgetop width of
valley-spanning cross-sections orthogonal to the valley
centerline. Montgomery's study aimed to understand how
valley morphometry scales with drainage area in glaciated
versus unglaciated valleys for the purpose of arriving at a
process-based classification of valley morphology. Thus,
valley widths were extracted in his study from several
cross-sections throughout the basin and were selected to
avoid the influence of tributary valleys. In our study, we
follow the valley as we move downstream the mainstream
and record the river corridor width to the left and right side
of the river centerline as we “flood” the valley to different
heightsD0 (see Fig. 1). The scope of our analysis is not to
extract regional scaling characteristics but instead to quan-
tify the detailed statistical structure of the valley morpho-
logy as one follows the river downstreamwith the eventual
goal of relating this statistical structure to the processes
responsible for valley formation. The river corridor width
series is extracted from high resolution airborne altimetry
(LIDAR) topography data at cross-sections 1 m apart as
we move downstream along the river and, thus, depicts
landscape organization down to the meter scale.

The small-scale fluctuations of the river corridor width
series are interpreted to have resulted from the complex,
and often interacting, processes forming valleys, including
hillslope transport, mass wasting, terraces, debris flows,
landsliding and the interactions with the streams. The
question we pose is whether the river corridor width series
exhibit any distinct statistical scaling properties, and in
particular any form or statistical organization across a range
of scales, i.e., scale invariance or self-similarity. The me-
thodology of analysis heavily borrows from current state-
of-the-art methodologies for analyzing turbulent velocity
fluctuations. We demonstrate how spectral analysis pro-
vides a limited, or partial, characterization of the multiscale
structure of the river corridor width series. The use of a
rigorous multifractal analysis unravels a rich scaling struc-
ture and, in particular, a deviation from scale invariance and
presence of strong intermittency, the so-called anomalous
scaling. These findings are revealing and call for further
analysis of the statistical signature that valley forming
processes leave on the landscapes in diverse geomorphic
environments and also along tributaries of nested sub-
basins. It is postulated that distinct statistical signatures
identified from high resolution topography can be further
explored towards (a) discriminating among different valley
morphologies, (b) suggesting the nature of the underlying
mechanisms responsible for valley formation, and (c) guide
field work and data collection efforts for the purpose of
advancing modeling and hypothesis testing.

2. Study area and extraction of river corridor width
series

The South Fork Eel River basin is located in northern
California and has a drainage area of 351 km2 (see Fig. 2).
Its relief is approximately 500 m. The mainstream of the



Fig. 3. Longitudinal profile along the main channel of the South Fork Eel River basin. The main channel is divided into eight segments (see discussion
in text and Table 1) whose respective along-channel slopes (in degrees) and distances from the outlet (in km) are shown above.

Fig. 2. Location of the South Fork Eel River basin (351 km2) in California. The panel on the right shows the stream network superimposed on Landsat
GeoCover (Bands 7, 4, 2) image of the basin.
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Table 1
Segments along the mainstream of the Eel River (x=0 denotes the outlet of the basin, see Fig. 1) and the scaling properties of their right and left river
corridor width (RCW) series

Distance from
outlet (km)

Along stream
slope (°)

Side of the corridor
(Left/Right)

Spectral
slope

Scaling
range (m)

Scaling range
(octaves)

Holder
exponent bHN

(hmin, hmax) c1 c2

0bxb6 0.40 Right 1.27 5.0–36.8 2.5–5.2 0.45 (−0.1,1.18) 0.45 0.07
Left 1.36 9.2–64 3.0–6.0 0.47 (0.02, 1.02) 0.50 ?

0.0
6bxb14 0.47 Right 1.63 9.2–56 3.2–5.8 0.51 (0, 1.30) 0.51 ?

0.0
Left 1.45 8.6–56 3.1–5.8 0.49 (0.1, 1.22) 0.48 0.02

14bxb20 0.31 Right 1.18 8.0–56.0 3.0–5.8 0.29 (−0.1,1.20) 0.32 0.13
Left 1.19 9.8–36.8 3.3–5.2 0.39 (0.0, 1.07) 0.41 0.25

20bxb28 0.24 Right 1.21 8.0–64 3.0–6.0 0.58 (0.1, 1.10) 0.59 0.05
Left 1.28 16.0–128 4.0–7.0 0.22 (−0.1,0.60) 0.23 0.17

28bxb35 0.21 Right 1.41 8.0–128 3.0–7.0 0.81 (0.0, 2.00) 1.00 0.38
Left 1.43 8.0–128 3.0–7.0 0.76 (0.0, 1.60) 0.77 0.10

The reported Hölder exponent 〈H〉 is estimated from the CWTmultifractal analysis, the (hmin, hmax) from theWTMMmultifractal analysis, and c1, c2
from the cumulant analysis. Notice the pronounced multifractality (c2≠0) of the RCW series for some segments (e.g. both left and right sides of 14–
20 km and left side only of the 20–28 km segment.) Also note the different values of 〈H 〉 (and c1) suggesting a smoother RCW series for the 0–14 km
steep-sloped, bedrock stretch and a much rougher RCW series for the milder-sloped, alluvial 14–28 km stretch.
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basin has a length of approximately 56 km and fairly steep
along-the-channel slopes (see Fig. 3 and Table 1). We
have subdivided this channel reach into eight smaller sub-
reaches according to slope and other morphologic charac-
teristics, such as the presence of tributaries. These eight
segments were then analyzed separately. The idea was to
avoid mixing different physical regimes at the expense of
classifying the reaches in more detail than necessary. The
presence of similar statistical properties could then be
used to group reaches into fewer categories (and this was
indeed the case from our analysis). Following Montgom-
ery (2002), valleys have been classified as bedrock,
alluvial and colluvial (see Fig. 3). For vegetation and other
Fig. 4. River corridor widths for the mainstream of the South Fork Eel River
side and bottom (−Y ) is at the left side of the river as we travel downstream.
mainstream at the right and left sides respectively. (See text for more details
geomorphological characteristics of this region, the reader
is referred to Power (1992) and Seidl and Dietrich (1992).

For this watershed, 1 m topography data from airborne
altimetry (LIDAR) is available from which we extracted
the cross-sections of the ridgetop-to-ridgetop valleys per-
pendicular to the river centerline every 1 m along the
mainstream. Then, at specified depthsD0 above the water
level, the distances from the centerline of the river to the
left and right valley walls were recorded. The analysis was
performed at depth D0=5 m and D0=10 m for the whole
river. In this paper we report the analysis of the D0=5 m
river corridor widths for the very steep 35 km stretch from
the outlet to the divide. The 20 km stretch close to the
(56 km in length) extracted at a depth D0=5 m: top (+Y ) is at the right
Dots (●) and crosses (×) indicate the location of tributaries joining the
.)
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divide did not show a clear scaling signature and requires
further analysis.

Fig. 4 displays the left and right river corridor width
(RCW) series for the whole 56 km mainstream and also
indicates the location of the tributary junctions. To provide
an indication of the “significance” of each tributary, we
have positioned the marks at a vertical distance propor-
tional to the drainage area of each tributary. Specifically,
the 89 tributaries have been grouped into 10 categories
based on the contributing drainage areas. These groups are
then scaled such that the smallest contributing area of
1 km2 corresponds to (is plotted at) a RCWof 5m, and the
Fig. 5. The 0–6 km bedrock stretch of the South Fork Eel River basin. Selected
topographic map.
largest area of 152 km2 corresponds to a RCW of 50 m
(See Fig. 4).

Fig. 5 shows a magnification of the river corridor
width series for the 0–6 km river stretch and the detailed
topography and location of this stretch within the whole
basin. It also associates selected values in the river
corridor width with the locations on the topographic
map. Finally, Fig. 6 shows the river corridor width series
for the 20–28 km alluvial stretch. As will be discussed
later, this stretch exhibits a rich multiscale structure in
its RCW series and a pronounced asymmetry between
the left and right sides. This asymmetry (not visually
values of river corridor width are associated with their locations on the



Fig. 6. The 20–28 km stretch of the South Fork Eel River basin main channel (top panel). The bottom panel shows the right (top series) and left
(bottom series) river corridor widths extracted from this 8 km stretch at depth D0=5 m. This stretch exhibits a high asymmetry in the statistical
scaling properties of its left and right valley geometries; although not apparent visually, the right side is much “smoother” than the left side (see
Table 1 and discussion in text). This suggests different valley forming processes in each side of the mainstream, with much more localized
processes in the left side.
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apparent from Fig. 6, but clearly depicted by the
multiscale analysis) can been seen as suggesting
different valley-forming processes for each side.

3. Fourier analysis of river corridor width series

A commonly used tool to explore the energy distri-
bution of a signal across frequencies (or scales) is the
power spectrum. The power spectra of the left and right
RCW series of the five segments analyzed are shown in
Fig. 7. First, we observe the presence of a log–log
linearity over a significant range of scales with an abrupt
break of scaling at a scale of approximately 10 m except
for the 0–6 km stretch which does not exhibit a
pronounced scaling break. For scales smaller than
approximately 10 m (wavenumber larger than 10−1

m−1) a significant increase of energy (variability) is
present. This is interpreted as the result of noise in the
LIDAR data that shows up as concentrated energy at
characteristic scales of the order of 5–10 m (the so-
called “acne” in the bare soil LIDAR extracted
topography.) This scale of 10 m, below which the
LIDAR data are not globally interpretable (although
locally they do depict smaller than 10 m variability),
represents the “effective resolution” of these topography
data and has also been documented from a break in the



Fig. 7. Power spectra of the river corridor widths (at 5 m above water level) for the five segments along the mainstream of the South Fork Eel River
basin. The dotted black lines give the power law fits, E(k)=k−β. The horizontal axis represents frequency k, in m−1.
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multiscale statistical properties of basin-wide curvature
pdfs at approximately the same scale (Lashermes and
Foufoula-Georgiou, 2007).
It is well known that the presence of large-scale
features with sharp edges in a process can be mis-
interpreted in the usual Fourier spectrum as energy
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coming from distinct small-scale features, because the
Fourier analysis cannot distinguish between the two.
Thus, we do not know from Fig. 7 whether the log–log
linearity in the spectrum within the scaling range is the
result of uniformly distributed high-energy fluctuations
over the whole support of the signal or a richer
preferential and localized energy distribution. The
former is the hallmark of scale-invariance, implying a
spatially homogeneous distribution of abruptly high
values within the support of the signal (arising from a
homogenous energy transferring mechanism), while the
latter is indicative of a break-down of scale invariance,
implying a localized intermittent distribution of abruptly
large values within the signal (probably arising from a
spatially inhomogeneous energy transferring mecha-
nism). In turbulence, the realization that the statistical
moments of turbulent velocity fluctuations grow faster
as the scale becomes smaller, prompted the replacement
of the global Fourier-based analysis of Kolmogorov
(K41 theory, Kolmogorov, 1941) with the local multi-
fractal formalism analysis of Parisi and Frisch (1985).

The multifractal formalism aims to characterize the
very abrupt local fluctuations in the signal using the so-
called multifractal (MF) spectrum. The MF spectrum, or
spectrum of singularities D(h), describes the “richness”
of the local irregularities of a function, i.e., abrupt local
fluctuations, in terms of local singularities characterized
via the so-called Hölder exponent h (see Parisi and
Frisch, 1985). If singularities are of the same strength
throughout the support of the signal (i.e., homogeneously
distributed), D(h) receives the value of 1 at a single value
of h=H which coincides with the well-known Hurst
exponent. If the singularities of various strengths are non-
homogeneously spread in the signal (in what turns out to
be interwoven fractal sets), however, D(h) is a density
function which quantifies the range of the strength of
these singularities (hmin to hmax) and the degree of their
presence in the signal. In other words, the set of points that
exhibit singularity of order h1 forms a fractal set of di-
mension D(h1) and is interwoven with the set of points
that exhibit singularity of order h2, which forms a fractal
set of dimension D(h2), etc. In the next section, an
overview of the multifractal analysis methodologies is
presented followed by the results of analysis of the river
corridor width series.

4. Multifractal analysis: methodology overview

4.1. Preliminaries

A typical goal of multiscale analysis of a signal f(x) is
to characterize how the statistical properties (or the whole
pdf) of the signal changes with the “scale” at which the
signal is examined. For that, the statistical moments of the
fluctuations of the signal δ(x,a)= f(x+a)-f(x), at scale
(separation distance) a are computed, and the change with
scale a is examined. log–log linearity between the statis-
tical moments of order q and scale implies the presence of
scaling and the slopes of these lines τ(q) for different order
moments q characterize the nature of scaling. A linear
τ(q) vs. q relationship, i.e., τ(q)=q·H, where H is the
Hurst or scaling exponent, implies simple scaling whereas
a nonlinear relationship implies a deviation from simple
scaling, or multiscaling. In the first case, the single expo-
nent H can be used to obtain the whole pdf at one scale
from the pdf at any other scale, while in the second case
more than one scaling exponents are needed to renorma-
lize the pdfs across scales (i.e., the tails of the pdfs scale
differently than the body). Often, only the second order
statistical moment (q=2) is checked (second-order
structure function or variogram) in which case the single
estimated exponentH can be used to renormalize the pdfs
only up to second order statistics.

It is instructive to place the above statistical
interpretation of mono-or multi-scaling (i.e., looking at
how the pdfs renormalize across scales) in the context of
an equivalent geometrical interpretation (i.e., what does
the scaling really mean about the nature and frequency of
very extreme fluctuations in the signal). The multifractal
formalism of Parisi and Frisch (1985) connects the
statistical and geometrical interpretations intuitively and
mathematically, as will be discussed in the next section.
Specifically, abrupt fluctuations in the signal (geomet-
rically characterized by the local regularity of the
function or the so-called Hölder exponent defined
later) occur uniformly or homogeneously throughout
the signal in the case of a mono-fractal, while they occur
heterogeneously or intermittently in the case of a
multifractal. The two imply different mechanisms for
how the energy is distributed across scales, i.e., a uni-
form cascading of energy across scales in the first case,
versus a spatially heterogeneous energy cascading in the
second case deriving from the presence of intermingled
very active and dormant regions of energy transfer.

The processes creating the valley geometry are
multiple in nature including hillslope sediment trans-
port, landsliding, mass wasting, tributary influences,
etc. and one expects that this can lead to a complex
statistical structure of the RCW series. Whether the
RCW series exhibit any statistical organization (mono-
or multi-scaling) and how this organization is to be
statistically and geometrically interpreted, is the scope
of this paper. Emphasis is placed on higher order
moments which can characterize the local behavior of
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abrupt fluctuations as this is considered significant for
interpreting the nature of the underlying valley for-
ming processes.

In the rest of this section the mathematical details of
the multiscale analysis methodologies we employ are
presented. The reader is referred to Venugopal et al.
(2006a,b) and the references therein for a more detailed
exposition.

4.2. Multifractal formalism

The local singularity of a function f (x) at a point x0 is
characterized by the so-called Hölder exponent h(x0),
defined as the largest exponent such that

j f xð Þ � f x0ð Þj eCjx� x0jh x0ð Þ ð1Þ

in the neighborhood of x0, i.e. for |x−x0|≤ɛ. A small
(large) value of h(x0) signifies a rough (smooth) behavior
of the function f(x) at x0. The above definition holds for
0≤ h≤1 but extension to singularities hN1 (i.e.,
singularities in the higher-order derivatives of the
function) can easily be achieved by filtering out a
polynomial of degree higher than one, which is equivalent
to working with higher-order increments of the signal. As
will be seen later, this filtering can be formally achieved
via a wavelet-based formalism (e.g. seeMuzy et al., 1991,
1993; or Venugopal et al., 2006a,b).

The singularity spectrum D(h) is defined as

D hð Þ ¼ dh x0 : h x0ð Þ ¼ hf g ð2Þ

that is, D(h) is the Hausdorff dimension dh of the set of
points x0 which have Hölder exponent h(x0) = h.
Estimating D(h) is the goal of multifractal analysis and
the so-called multifractal formalism (e.g. Parisi and
Frisch, 1985) allows estimation of D(h) from the
statistics of local fluctuations of the signal at different
scales a and different locations x0, denoted by δ(x0,a).
One way of determining these fluctuations is via stan-
dard first order differences, i.e.,

d x0; að Þuf x0 þ að Þ � f x0ð Þ: ð3Þ

Let us denote the structure functions S(q,a) of the
signal as the qth statistical moments of the fluctuations
of the signal:

S q; að Þ ¼ bjd x0; að ÞjqN ð4Þ

where b·N stands for expectation (via spatial averaging).
For a multifractal signal

S q; að Þ as qð Þ ð5Þ
e
which defines the τ(q) curve, or spectrum of scaling
exponents, indexed by moment order q. The multifractal
formalism states that τ(q) relates to D(h) through a
Legendre transform:

D hð Þ ¼ min
q

qh� s qð Þ þ 1½ �: ð6Þ

If the signal under analysis is monofractal, then τ(q) is
linear with respect to the moment order, i.e., τ(q)=q·H
andD(h) receives a single value equal to 1 at the specific
value of h=H. In contrast, if the singularity spectrum
takes on finite values in an interval [hmin, hmax], the
scaling exponents τ(q) define a nonlinear function of q
(multifractal signal). The nonlinearity of τ(q) implies a
scale dependence of the dimensionless moments. For
example, for a monofractal process it can easily be
shown from (5) that the coefficient of variation, CV=
(M2(a) /M1

2(a)−1)1/2, of the process is independent of
scale a, while this is not the case for a multifractal
process. The same applies to other dimensionless
structure functions such as the coefficients of skewness
and kurtosis, M3(a)/M1(a)

3/2 and M4(a)/M2(a)
2 respec-

tively, where Mq(a) is used to denote S(q,a) (see Mahrt,
1989).

It is understood that an increase of the dimensionless
structure functions with decreasing scale is an indication
of strong intermittency, i.e., occasional large gradients
which enhance the higher order moments at small scales
(break-down of scale invariance). This empirical
observation, documented from long series of wind-
tunnel turbulence data, is what lead to the development
of the multifractal formalism in turbulence (e.g. Parisi
and Frisch, 1985) and shed new light into how energy is
cascaded in a turbulent field, typically very intensely in
localized regions and less so in other (dormant) regions.
As it will be seen in the next section, the river corridor
widths are also found to exhibit such a multifractal
behavior (break of scale-invariance), suggesting a rich
local structure of energy dissipation in the valley-
forming processes.

4.3. Wavelet-based MF formalism

While one could confine themselves to using
structure functions in (4) as computed from the standard
first order differences of the signal as defined in (3), it is
often advantageous to use “generalized differences”
defined via wavelet filtering. One advantage is that
wavelets allow the analysis of non-stationary signals.
By choosing an appropriate wavelet (i.e., wavelets with
a high number of vanishing moments), polynomial
trends of increasing order can be filtered out from the
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signal and accurately characterize the local behavior of a
function without danger of having this behavior masked
by the large-scale trends (e.g. Jaffard, 1989; Mallat and
Hwang, 1992). Another advantage of wavelets is their
natural ability to depict sharp edges or discontinuities
from a signal (e.g. Muzy et al., 1994; Mallat, 1998) and,
thus, better characterize the statistical nature of
singularities. In addition, as we explain below, a
wavelet-based multifractal formalism allows one to
work with the maxima of the wavelet coefficients (the
so-called wavelet transform modula maxima; WTMM)
and, thus, extend the structure function analysis to
negative moments q (which are necessary for compu-
tation of the right limb of the D(h) spectrum.) Such an
extension also allows access to the whole spectrum of
singularities, including hN1 which is not possible by
using the standard definition of fluctuations (3).

A wavelet-based multifractal formalism uses as fluc-
tuations

d x0; að Þ ¼ c x0; að Þ ¼
Z
R

wxa;a xð Þf xð Þdx ð7Þ

where ψxa,a (x) is a scale-dilated and shifted version of
the mother wavelet ψ0(x), i.e.,

wxa;a xð Þ ¼ 1
jajw0

x� x0
a

� �
: ð8Þ

The so-defined S(q,a) in (4) is called the partition func-
tion or generalized structure function. The use of a wavelet
with N vanishing moments, i.e.,

R
xKwx xð Þdx ¼ 0, for

(0≤K≤N−1) and
R
xNw0 xð Þdx≠0, allows for the removal

of a degree–N polynomial trend (see Mallat, 1998). This is
important if first order differences do not completely
remove trends in the data, for then the standard multifractal
analysis will fail.

A standard wavelet, and the one used in this analysis,
is the first and second order derivative of a Gaussian
function, i.e.,

g Nð Þ xð Þ ¼ d Nð Þ

dx Nð Þ e
�x2
2

� �
ð9Þ

which has been extensively used as a smooth general-
ization of N-th order increments to study the behavior of
fractal functions (e.g. Muzy et al., 1994; Arneodo et al.,
1995).

From the Legendre transform (6), in the case of a
continuously differentiable τ(q), it follows that

q ¼ dD hð Þ
dh

: ð10Þ
Thus, the right limb of D(h), where (dD(h)/dhb0),
can only be estimated from the negative moments (qb0)
of the fluctuations. Computing negative moments of
pdfs that have mass concentrated at zero (such as the
pdfs of fluctuations), however, leads to divergence. To
be able to take negative moments and estimate the
complete singularity spectrum, Muzy et al. (1991, 1994)
proposed to use the wavelet transform modulus maxima
(WTMM) method, i.e., concentrate on the lines formed
by following the maxima of the wavelet coefficients
across scales and, thus, following the same singularity
from the lowest scale to higher and higher scales. For
details on this estimation, the reader is referred to the
original publications (Muzy et al., 1991, 1993; Arneodo
et al., 1998; and also Venugopal et al., 2006a,b).

4.4. Cumulant analysis

Cumulant analysis presents an efficient method of
estimating the multifractal nature of a process and
quantifying it in terms of a small number of parameters
(e.g. Arneodo et al., 1998; and Delour et al., 2001). This
method relies on a Taylor series expansion of τ(q), leading to

s qð Þ ¼
X
pz1

�1ð Þp�1cp
p!

qp; qY0: ð11Þ

From the above equation one observes that a non-
zero value of c2 (also called the intermittency coeffi-
cient) implies deviation from monofractality and
explicitly characterizes the richness of the spatial
inhomogeneity of very high fluctuations. In fact, the
value of c2 formally relates to the change of the variance
of the Hölder exponents (strength of singularities) with
scale, (e.g. see Venugopal et al., 2006a,b, Appendix B
and references therein) and, thus, characterizes the
second order statistics of the singularities. Indeed, a
quadratic approximation of τ(q)

s qð Þic1q� c2
q2

2
; qY0 ð12Þ

which corresponds to a quadratic approximation of D(h)

D hð Þi1� h� c1ð Þ2

2c2
; hYc1 ð13Þ

is a commonly used model of multifractality (the so-
called log–normal model in turbulence).

The coefficients cp can be estimated from the
statistical cumulants C( p,a) of order p of the logarithms
of the absolute value of the wavelet coefficients |c(x0,a)|
at a given scale, a, (Eq. (7)), or from the logs of the
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WTMM coefficients. For details see Delour et al. (2001)
and Venugopal et al. (2006a,b). For instance, for p=1,2

C 1; að Þ ¼ a
n að Þ

X
x0

lnjc x0; að Þjia1 þ c1ln að Þ ð14Þ

C 2; að Þ ¼ a
n að Þ

X
x0

lnjc x0; að Þj � C 1; að Þ½ �2ia2

� c2ln að Þ: ð15Þ

Thus, linear regression of C(p,a) versus In (a) allows
for an easy estimation of cp and only two linear
regressions (giving estimates of c1 and c2) characterize
the multifractality up to a quadratic approximation of the
τ(q) function.
Fig. 8. Coefficient of variation of the river corridor widths as a function of sca
of the South Fork Eel River. The dependence on scale implies deviation fro
In the next section, the continuous wavelet-based
multifractal analysis, the WTMM analysis, and the
cumulant analysis are applied to the RCW series for a
detailed characterization of the series' multifractal
structure. It is emphasized that one of the goals of this
study is to be able to depict the signature that mecha-
nistic processes leave on the valleys, and thus accuracy
and high discriminatory power of the multifractal
characterization methodologies is a necessity.

5. Multifractal analysis: results

The river corridor widths of the five different segments
from 0 to 35 km (see Fig. 3) have been analyzed using the
multifractal formalism. It was found that the coefficient of
variation (which characterizes the first twomoments only)
for these series shows a dependence on scale (see Fig. 8)
le for the two segments (0–6 km and 20–28 km) along the mainstream
m monoscaling. Similar plots were found for all other segments.
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and, as expected, an increase as the scale decreases. This is
an indication of deviation from monofractality and
prompts analysis of higher order moments via the
proposed wavelet-based multifractal formalism.

The top panels of Fig. 9 show the partition functions
for q=0 to 3 (computed in intervals of q=0.1, but
displayed in intervals of 0.5) for the right and left side
river corridor widths of the first (x=0–6 km) segment of
the South Fork Eel River. The analysis was performed
Fig. 9. River reach of 0–6 km, partition functions of order q=0.0 to 3.0 u
spectrum (bottom) for the left and right river corridor width series at depth D0

right corridor (2.5 to 5.2 octaves) is indicated by the dashed vertical lines (s
using the continuous wavelet transform (CWT) with
wavelet g(2) and g(3) i.e., the second and third order
derivative of the Gaussian, (Eq. (9)). As can be seen,
log–log linearity can be assumed between a range of
scales as marked in Fig. 9. This range of scales
corresponds to approximately 5 m to 40 m for the
right side valley and 9 m to 64 m for the left side valley
(see Table 1). Fitting straight lines to all moments and
computing the slopes results in the τ(q) curves (middle
sing CWT (top), scaling exponent spectrum (middle) and singularity
=5 m. The scaling range of the left corridor (3.2 to 6.0 octaves) and the
ee Table 1 for the scaling range in meters).
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panels of Fig. 9), and via the Legendre transform results
in the D(h) curves (bottom panels of Fig. 9). The
nonlinearity of the τ(q) curves is noted, as was expected
from the coefficient of variation dependence on scale,
signifying again a deviation from monofractality and,
thus, the presence of singularities of various strengths,
as quantified in the D(h) spectra. Similar analysis has
been performed for all other series. For example, see
Fig. 10 for the segment of 20–28 km. A summary of the
Fig. 10. Same as Fig. 9 but for the 20–28 km r
scaling ranges for each river reach and the estimates of
the most prevailing Hölder exponent bHN (the value of
h corresponding to the max value of D(h)) is given in
Table 1.

As was discussed in the previous section, using
continuous wavelet transforms does not allow charac-
terization of the right part of the spectrum of singular-
ities. To estimate the full D(h) curve, the WTMM-based
multifractal analysis was also applied to these series
iver reach. See Table 1 for scaling range.
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which allows estimation of the statistical moments for
negative order q. Fig. 11 shows the analysis for the 0–
6 km river stretch. The top panels display the partition
function for q=−3 to +3 (in increments of 0.5) and the
fitted log–log linear lines within the scaling range
previously reported. The middle panel shows the τ(q)
curves and the bottom panels the complete D(h) curve.
On the same figures, we have superimposed the esti-
mated τ(q) and D(h) curves from the CWT analysis.
Fig. 11. River reach of 0–6 km, partition functions of order q=−3.0 to 3.
singularity spectrum D(h) (bottom) for the left and right river corridor width
Some small differences in the estimation of the left part
ofD(h) curve between the CWTandWTMMmethods is
noted, but also the ability of WTMM to provide an
estimate of the right part of D(h) is appreciated. The
WTMM analysis was repeated for all series and the
values of hmin and hmax (depicting the width of the
spectrum of singularities) are summarized in Table 1. It is
noted that for several sites, hmax was found to be greater
than one. This emphasizes the need to adopt a wavelet-
0 using WTMM (top), scaling exponent spectrum τ(q) (middle) and
series at depth D0=5 m using CWT (+) and WTMM (○).
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based multifractal analysis, as the standard structure
function analysis based on first order increments cannot
resolve singularities of order greater than one.

Having established the presence of multifractality,
the next step in the analysis is to explicitly estimate the
c1 and c2 coefficients using the cumulant analysis
method. It is expected that c1 will be very close to the
value of 〈H〉 estimated from the CWT partition function
method, but the particular interest is to estimate c2
which concisely characterizes the intermittency of each
series.

Fig. 12 shows the first two cumulants for the right
and left river corridor width series of segment 0–6 km.
As expected, a log–log linear relationship in C(1,a) vs.
In (a) yields an estimate of c1 very close to the estimate
of 〈H〉 obtained from the partition function approach
(see Table 1). The C(2,a) vs. In (a) plots show a non-
zero slope for the right valley (consistent with the wide
spectrum of singularities displayed in the bottom right
panels of Figs. 9 and 11) and an almost zero slope for the
left valley (consistent with the more narrow spectrum of
singularities for this series) as seen in Figs. 9 and 11
Fig. 12. Cumulant analysis of the left and right river corridor width se
bottom left panels. Similar analysis was performed for
all other series and the estimates of c1 and c2 are
summarized in Table 1.

It is instructive to display in Fig. 13 the cumulant
analysis of the right and left river corridor width series
of the segment 20–28 km for which a significant left-to-
right asymmetry was noted from the Hölder exponent
〈H〉 (see Table 1). Specifically, the left side valley was
found to have much “rougher” fluctuations (smaller
〈H〉) that the right side valley (larger 〈H〉). It is pleasing
to see that the cumulant analysis is able to further
quantify this asymmetry (see values of c1 in Table 1)
and also depict an asymmetry in intermittency. Specif-
ically, the left side RCW series shows a much more
intermittent structure (larger c2 value) and indicates the
presence of more complex or interacting mechanisms
forming this side of the valley. From the 20–28 km river
segment, shown in Fig. 6, it is noted that from the RCW
series themselves, one cannot visually depict the
significant statistical differences we were able to
establish using the proposed methodologies, although
by close inspection of the high resolution topography,
ries of reach 0–6 m, to estimate parameters c1 and c2 in Table 1.



Fig. 13. Same as Fig. 12 for the river reach of 20–28 km.
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one can notice a higher degree of dissection in the left-
side valley. Also, it is noted that spectral analysis of the
left and right corridor widths for this segment (Fig. 7)
was not able to depict the subtle differences depicted by
MF analysis.

6. Discussion and conclusions

The goal of this work was to examine the multiscale
statistical properties of the river corridor width (RCW)
series along the mainstream of a 35 km mountainous
channel reach with the goal of assessing whether the
valley forming processes imprint on this series any
particular statistical organization.

Some clear results have emerged from this analysis.
First, river corridor width fluctuations exhibit a rich
multiscale statistical structure and a deviation from
scale-invariance or monoscaling. Second, as one goes
further away from the outlet of the basin to less steep,
alluvial valleys, the statistical “roughness” of the RCW
series increases (smaller c1 or 〈H〉 values) and also the
degree of multifractality, or intermittency, increases
(larger c2 values) (see Table 1). Third, for the particular
basin analyzed, a significant left-right asymmetry exists
in the statistical structure of valley geometry: the left
side is consistently rougher and more intermittent
implying that different physical mechanisms shaped
the valley at the left and right sides of the mainstream.
This difference does not seem to be directly related to
the number of tributaries joining the main river, as an
equal number of tributaries is present on both sides of
the river stretch (see Fig. 4). Rather, other mechanisms
of sediment transport, landsliding, etc., seem to be the
underlying cause. As we go further up to even steeper
along-river slopes, no scaling is present at all, at least not
in a significant range of scales, and further careful
analysis needs to be undertaken.

Our analysis objectively depicted two statistically
distinct regimes with transitions at around 14 km and also
28 to 35 km (see Fig. 14). An interesting question is
whether these statistically distinct regimes are the result of
physically distinct valley-forming processes. Another
interesting question is whether the documented statistical
structure of river corridor widths, which is seen as an
emergent property of the physical system, can be
faithfully reproduced by numerical models of landscape



Fig. 14. Hurst exponents for the right side (top) and left side (middle)RCW
series (at D0=5 m). Larger values of 〈H〉 indicate “smoother” signals.
Pointswith circles around them indicate reacheswith a significant deviation
from monoscaling (large c2 values (see Table 1). The bottom panel shows
the mean of the RCW series ±1 standard deviation for each of the five
segments. Note that the dramatic increase of the variance for the 28–35 km
segment comes from large-scale features (see Fig. 4) and not from very
abrupt high frequency (small scale) fluctuations, as this segment exhibits a
very smooth fractal structure (see the large 〈H〉 in top two panels).
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evolution at the hillslope scale (e.g., see Roering et al.,
1999). Both of these questions are the subject of future
investigations.
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[1] Landscapes share important similarities with turbulence: both systems exhibit scale
invariance (self-similarity) over a wide range of scales, and their behavior can be described
using comparable dynamic equations. In particular, modified versions of the Kardar-
Parisi-Zhang (KPZ) equation (a low-dimensional analog to the Navier-Stokes equations)
have been shown to capture important features of landscape evolution. This suggests that
modeling techniques developed for turbulence may also be adapted to landscape
simulations. Using a ‘‘toy’’ landscape evolution model based on a modified 2-D KPZ
equation, we find that the simulated landscape evolution shows a clear dependence on
grid resolution. In particular, mean longitudinal profiles of elevation at steady state and
bulk erosion rates both have an undesirable dependence on grid resolution because the
erosion rate increases with resolution as increasingly small channels are resolved. We
propose a new subgrid-scale parameterization to account for the scale dependence of the
sediment fluxes. Our approach is inspired by the dynamic procedure used in large-eddy
simulation of turbulent flows. The erosion coefficient, assumed exactly known at the finest
resolution, is multiplied by a scale dependence coefficient, which is computed
dynamically at different time steps on the basis of the dynamics of the resolved scales.
This is achieved by taking advantage of the self-similarity that characterizes landscapes
over a wide range of scales. The simulated landscapes obtained with the new model show
very little dependence on grid resolution.

Citation: Passalacqua, P., F. Porté-Agel, E. Foufoula-Georgiou, and C. Paola (2006), Application of dynamic subgrid-scale concepts

from large-eddy simulation to modeling landscape evolution, Water Resour. Res., 42, W06D11, doi:10.1029/2006WR004879.

1. Introduction

[2] The fascinating self organized spatial patterns of
natural landscapes have long attracted the attention of
researchers. The most obvious and widespread of these
patterns are the tributary channel networks generally char-
acteristic of erosional landscapes. Building on earlier land-
scape models such as those of Culling [1960, 1963], which
used a diffusion model of slope erosion, the 1990s saw a
renaissance of landscape modeling [e.g., Willgoose et al.,
1991a, 1991b; Chase, 1992; Rinaldo et al., 1992; Howard,
1994; Rodriguez-Iturbe et al., 1994; Rodriguez-Iturbe and
Rinaldo, 1997; Smith et al., 1997a, 1997b; Tucker et al.,
2001]. In general, these models have focused on reproduc-
ing ‘‘whole-system’’ properties of the landscape such as
fractal dimensions, network topology, and spatial statistics
(e.g., slope distributions, slope-area relations). Landscape
evolution models have also been coupled to tectonic models

to simulate the evolution of mountain belts on long time-
scales [Kooi and Beaumont, 1994; Tucker and Slingerland,
1994; Koons, 1995]. Comprehensive reviews on landscape
evolution modeling approaches are given on Dietrich et al.
[2003], Peckham [2003], and Willgoose [2005].
[3] A fundamental problem arises in numerical modeling

of systems whose dynamics spans a wide range of scales:
selection of a computational grid (usually dictated by the
size of the domain over which a solution is sought and the
smallest grid that can be afforded computationally) leaves
out scales whose dynamics are not explicitly resolved. Yet,
it is known that even if the interest is not in resolving the
smallest scales, their effect on the dynamics of the larger
scales (due to nonlinearities) is considerable. Thus ignoring
the subgrid scales compromises the accuracy of the solution
at the resolved scales and also makes the numerical simu-
lation resolution-dependent. This problem presents itself in
numerical modeling of many natural processes which ex-
hibit multiscale variability, including flow and transport in
porous media, atmospheric modeling from cloud resolving
models to mesoscale to global circulation models, land-
atmosphere interactions, atmospheric turbulence and, fore-
most, modeling of turbulent flows. Several methodologies
have been proposed to address this problem and these
include derivation of ‘‘effective’’ parameters in coarse
grained equations [e.g., Bear, 1988; Bou-Zeid et al.,
2004], statistical downscaling [e.g., Harris and Foufoula-
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Georgiou, 2001], and analytical derivation of closure terms
[e.g., Meneveau and Katz, 2000; Sagaut, 2002], among
others.
[4] The field in which subgrid-scale parameterizations

have been the most advanced is that of turbulence, where
direct numerical simulation (DNS), i.e., numerical solution
of the Navier-Stokes equations using a resolution as small
as the dissipation (Kolmogorov) scale, is only feasible for
relatively low Reynolds number flows. A technique that has
become popular to simulate higher Reynolds number tur-
bulent flows is large-eddy simulation (LES), which consists
of solving the spatially filtered Navier-Stokes equations,
using a spatial filter of size equal to or slightly larger than
the grid size. This filtering operation applied to the nonlin-
ear advection terms leads to the so-called subgrid-scale
fluxes, which represent the effect of the subgrid scales on
the evolution of the resolved scales and need to be param-
eterized. As a result, LES explicitly resolves all scales of
motion (eddies) larger than the grid scale, while the subgrid-
scale fluxes are parameterized using a subgrid-scale model.
Comprehensive reviews on LES and subgrid-scale model-
ing are given by Meneveau and Katz [2000], Pope [2000,
2004], and Geurts [2004]. A particularly interesting devel-
opment in subgrid-scale modeling of turbulent flows is the
so-called dynamic modeling approach [Germano et al.,
1991; Moin et al., 1991; Porté-Agel et al., 2000; Porté-
Agel, 2004]. It takes advantage of the scale similarity of
turbulence to optimize the value of the subgrid model
coefficient(s) based on the dynamics of the resolved scales,
thus not requiring any parameter tuning.
[5] In the case of landscape evolution, it is well known

that landscapes present multiscale self-similar properties
through a wide range of scales, from the system scale
(typically 102–104 km) down to the spacing of the smallest
channels, which is typically on the order of 10–100 m and
below which diffusion processes dominate. As in high
Reynolds number turbulence, numerical solution of the
entire range of scales is usually impractical. Instead, land-
scape models are run at relatively coarse resolution, i.e., one
solves the so-called coarse-grained transport equations
(Figure 1). However, the accuracy of this methodology is
unknown since channels smaller than the grid size are not
taken into account. This suggests the possibility that the
calculated erosion rates and landscape evolution are likely
affected by the grid resolution. This was pointed out by
Stark and Stark [2001] who developed a subgrid-scale
parameterization based on a parameterization measure
called channelization. Rodriguez-Iturbe and Rinaldo
[1997] have shown the effect of ‘‘coarse graining’’ a
specific landscape on the scaling relationships of elevation.
[6] Landscapes share important similarities with turbu-

lence: both systems exhibit scale invariance (self-similarity)
over a wide range of scales and their behavior can be
described using comparable dynamic equations. This sim-
ilarity can be seen, for example, in the behavior of power
spectra: Turbulence velocity spectra exhibit a well-known
�5/3 slope in the inertial subrange [Kolmogorov, 1961],
representing the energy cascade from large scales to small
scales. In the case of landscapes, power spectra of linear
transects in topography also exhibit a log-log scaling range
with slope of �2. Another parallel between the two systems
is the existence of a lower limit on the size of the turbulent

structures (eddies): the Kolmogorov scale, the scale at
which viscous effects dominate and the effective Reynolds
number approaches unity. In landscapes, the analogous fine
scale would be the spacing of the smallest channels,
determined by the scale at which (diffusive) hillslope
processes dominate [e.g., Dietrich et al., 2003]. This anal-
ogy between the viscous length scale of turbulence and the
hillslope scale in landscapes has also been discussed by
others [e.g., Peckham, 1995]. Moreover, turbulence has
been used as a metaphor for other complex systems such
as earthquakes [Kagan, 1992] and stream braiding [Paola,
1996; Paola et al., 1999].
[7] The purpose of this paper is to explore concepts of

LES in the context of landscape evolution modeling. Using
a minimum complexity model, used previously by several
authors for landscape simulation [e.g., Sornette and Zhang,
1993; Somfai and Sander, 1997; Banavar et al., 2001], we
demonstrate its scale dependence and propose a dynamic
subgrid-scale model to take into account the effect of
subgrid-scale processes in a landscape evolution model.
[8] It is important to point out that the goal of this study is

not to strictly apply the LES technique, as developed for
turbulent flows, to landscape evolution simulations. There
are some limitations to the direct extension of the LES
technique to landscapes. Typical governing equations for
landscape evolution, even though often similar in form to
the Navier-Stokes equations (including nonlinear terms that
generate fluctuations as well as diffusion terms), are not as
well established for the description of the system at all
scales. For example, the nonlinear erosion flux term is
already a parameterization containing tuning coefficient(s).
This makes it challenging to formally define the subgrid-
scale erosion fluxes and to develop subgrid-scale models for
them. Instead, our approach here consists of developing a
tuning-free dynamic procedure, inspired from the dynamic
modeling approach used in LES, to ‘‘optimize’’ the value of
the erosion coefficient (in the nonlinear erosion flux term)
using the scale dependence of the coefficient quantified
from the smallest resolved scales in the simulations.

2. Landscape Evolution Modeling and Effect of
Grid Resolution

2.1. KPZ Model

[9] As discussed above, a number of different models
have been proposed for landscape evolution. Here we use a
modified version of the Kardar-Parisi-Zhang (KPZ) equa-
tion, originally used in the context of growth of atomic
interfaces by ion deposition [Kardar et al., 1986]. The KPZ
equation as applied to modeling the evolution of land
surface elevation h reads [Sornette and Zhang, 1993; Somfai
and Sander, 1997; Banavar et al., 2001]:

@h ~x; tð Þ
@t

¼ Dr2hþ C rhj j2 þ h ~x; tð Þ ð1Þ

The right hand side of equation (1) includes, from left to
right, a diffusion term, where D is the diffusion coefficient,
a nonlinear term, where C is a constant and rh is the slope,
and a white noise term.
[10] It is important to note that, with a simple transfor-

mation of variables, the KPZ equation without noise
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becomes the Burgers equation, a low-dimensional analog to
the Navier-Stokes equations governing fluid flow and
turbulence.
[11] The initial application of the KPZ equation to

landscape evolution [Sornette and Zhang, 1993] shows
the importance of the nonlinear terms in the evolution
of surface topography and the associated drainage net-
work. At a coarse grained scale, the effect of diffusion
is often neglected [Somfai and Sander, 1997; Banavar
et al., 2001] since this mechanism is effective mainly at
the small (subgrid) scales. Neglecting also the noise
term, (1) has only the non linear term on the right hand
side. Furthermore, taking into account that the evolution
of the landscape is coupled with the water flux q acting
on the surface, the constant C in front of the nonlinear
term in (1) can be written as an erosion coefficient a
times the water flux q [Somfai and Sander, 1997;
Banavar et al., 2001]. The governing equation then
becomes:

@h

@t
¼ �a � q � rhj j2: ð2Þ

Under the assumption of uniform rainfall acting on the
surface, the water flux at a given point is proportional to the
area draining at that location. We have chosen a fairly
simple landscape evolution model, best suited for bedrock
landscape evolution modeling, which does not allow both
erosion and deposition to occur. This choice has been
motivated by the fact that a simple type of equation would
maximize clarity in deriving the subgrid model. This work
will be extended in the future to more comprehensive
landscape evolution models.
[12] Notice that (2) is a special case of the general

governing equation, widely used in landscape modeling
[e.g., Rodriguez-Iturbe and Rinaldo, 1997]:

@h

@t
¼ �a � Am � rhj jn; ð3Þ

with m
n
	 0:5.

[13] The nature of the steady state reached by the system
depends on the external conditions applied in the problem.
If the boundary condition at the output is a fixed elevation,
with constant rock uplift, the steady state is reached when
the erosion rate balances the rock uplift rate over the whole
system [Hack, 1960; Adams, 1980; Howard, 1994; Somfai
and Sander, 1997; Willett and Brandon, 2002]. If the uplift

Figure 1. Schematic of the separation between resolved
and subgrid scales in turbulence (Figure 1a) and landscapes
(Figures 1b and 1c). (a) Gray scale rendering of the vertical
velocity component measured in a turbulent boundary layer
at the St. Anthony Falls Laboratory wind tunnel. (b) Bare-
earth LIDAR shaded-relief image (1-m resolution) of a
portion of the Angelo Coast Range Reserve, northern
California, grid spacing of 500 m. (c) Fourier spectrum of the
topography shown in Figure 1b, showing a �2 power law
dependence of spectral power on wave number. Separation
between resolved and unresolved scales is 100 m. In both
turbulence and landscapes, only structures with length scales
larger than the grid size are explicitly resolved.
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rate is zero, the system reaches a steady state when there is
no remaining material to erode [Inaoka and Takayasu,
1993].
[14] The river networks obtained with the modified KPZ

equation have been shown to satisfy scaling laws charac-
teristic of natural landscapes: the slope-area law, the power
law of distribution of drainage area, and Horton’s laws for
branching ratio and length ratio [Somfai and Sander, 1997].
In addition to these laws, the simulations also yield realistic
profiles for the average elevation along the mainstream
direction [Banavar et al., 2001].

2.2. Numerical Implementation

[15] The initial field is a sloping surface with a small
noise, obtained using the following expression [Somfai and
Sander, 1997]:

h x; y; t ¼ 0ð Þ ¼ s0 � yþ dy � rand x; yð Þð Þ; ð4Þ

where h is the elevation, s0 represents the initial slope, y is
the north-south coordinate, dy is the grid constant and rand
is a uniform random number in the range [0,1]. This initial
configuration prevents the formation of lakes.
[16] We study the evolution of the system at three

different resolutions: the same field is divided into 256 

256 grid cells, 128 
 128 grid cells and 64 
 64 grid cells.
We focus initially on the simplest case (uniform rainfall, no
groundwater, uniform and structureless substrate, no rede-
position), applying the simplified erosion model discussed
earlier (equation (2)) with the addition of a constant uplift u:

@h

@t
¼ u� a � q � rhj j2; ð5Þ

Equation (5) represents an erosional model for an incisional
process where the erosion rate depends linearly on water
flux and nonlinearly on slope.
[17] Water is routed using the steepest descent rule. In

every site the elevation is compared with the one of the
eight surrounding neighbors and the water is assumed to
follow the steepest path. Recently, Pelletier [2004] has
shown that computing the slope using a multiple-
direction algorithm eliminates an undesirable consequence
of the steepest descent rule: evolution to a frozen steady
state of the river network in which erosion exactly
balances uplift at each point [Hasbargen and Paola,
2000, 2003]. Once the flow direction is computed in
every site, the slope and the water flux can be computed
and used to update the elevation via (5). Because of the
assumption of a uniform rainfall and no loss of water,
the water flux is given by the drainage area times the
unit rainfall.
[18] The boundary conditions are: an infinite wall at the

upstream end of the field (north boundary); an output
boundary at fixed height equal zero located at the down-
stream end of the field (south boundary); on the lateral sides
(east and west boundaries) the flow is forced to drain into
the system. This condition could be easily changed to
periodic boundary conditions [Somfai and Sander, 1997;
Banavar et al., 2001]. A sketch of the computational
domain with the applied boundary conditions is shown in
Figure 2.
[19] The simulations with the three resolutions are run

independently until the systems reach steady state. The
steady state is reached when the erosion rate is in equilib-
rium with the uplift. The simulated evolution of the land-
scape shows two different timescales: a freezing time, at
which the river network reaches its final configuration but
the elevation continues adjusting, and a relaxation time at
which the system reaches its equilibrium profile and the
surface stops evolving [Sinclair and Ball, 1996; Banavar
et al., 2001]. The time needed to freeze the system is
usually smaller than the time needed to reach the final
profile. It should be noted that a freezing time, and a
corresponding frozen configuration of the system, can be
defined as we have done only because the model allows
for an (unrealistic) static steady state. Revised definitions
would be needed for the more realistic dynamic-steady-
state condition.
[20] The freezing time of the system is obtained by

computing at every time step the number of unstable sites.
An unstable site is defined as a point in the system where
the flow direction changes in one time step [Inaoka and
Takayasu, 1993]. When the number of unstable sites
remains equal to zero for a sufficiently large number of
time steps, the river network is considered at its final
configuration. Before reaching the equilibrium profile, the
number of unstable sites remains zero, while the topography
continues adjusting. The relaxation time instead is given by
the time at which the topography also reaches a static steady
state.

2.3. Effect of Grid Resolution

[21] We analyze the results of the numerical simulations
using 256 
 256, 128 
 128 and 64 
 64 grid cells in terms
of several statistics. The systems obtained at steady state
with resolutions 256 
 256, 128 
 128 and 64 
 64 are

Figure 2. Boundary conditions and allowed flow direc-
tions. The output of the system is located at the downstream
end of the field where the elevation is kept fixed at zero. At
the upstream end the boundary condition is an infinite wall,
so that no flow exits upstream of the field. At the east and
west boundaries, the flow directions are likewise restricted
to those inside the field. Thus the only allowed output is at
the downstream end of the field.
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shown in Figure 3. The corresponding river networks were
extracted with River Tools (http://www.rivix.com/) and are
shown in Figure 4 (channels of Strahler order greater than 2
only). The modified KPZ model produces channel networks
with the expected loss of detail as the resolution is
decreased.
[22] The power spectral density (spectrum) provides an

estimate of the distribution of elevation variance across
scales. Figure 5 shows a comparison of spectra from trans-

ects across the upstream part of the domain for the three
resolutions. Except at the largest scales, there is a wide
range of scales for which the spectra obtained at all
resolutions show a slope of approximately �2, which is
in good agreement with observations from linear transects
in topography [Vening Meinesz, 1951; Mandelbrot, 1975;
Sayles and Thomas, 1978; Newman and Turcotte, 1990].
However, the total variance in elevation observed at the
three resolutions does depend on scale.
[23] Mean longitudinal profiles obtained at steady state

with the three resolutions are shown in Figure 6a. The
results indicate that the basin topography required to pro-
duce a balance between erosion and rock uplift in the
simulation is strongly scale dependent. In particular, both
slope and curvature increase with decreasing resolution,
which is not realistic. This behavior can be attributed to
the fact that erosion due to subgrid-scale channel networks
(occurring at scales smaller than the grid scale) is not
accounted for in the simulations. Since the subgrid-scale
erosion flux is expected to be relatively larger in the case of
coarser resolutions, landscapes simulated at those resolu-
tions experience less efficient erosion than the ones obtained
at higher resolutions.
[24] Strong scale dependence is also shown by the

volume of material eroded per time step. As Figure 6b
shows, the higher the resolution, the higher the volume of
eroded material per time step. This is consistent with the
observed behavior of the mean longitudinal profiles. The
area under the curves, which gives the total amount of
material eroded until steady state is reached, increases with
resolution. The rate of erosion gives also an idea of the
timescale dependence of the erosion process at the three
resolutions: the higher the resolution, the higher the rate of
erosion and the faster the process. The lowest resolution
needs more time to reach the steady state.

3. A Dynamic Subgrid-Scale Model

3.1. Derivation of the Dynamic Subgrid-Scale Model

[25] The resolution dependence of the results obtained in
the previous section using (5) highlights the need to account
for the fact that erosion rates depend on the grid size used in
the simulations. In this section, we develop a procedure to
account for the scale dependence of the erosion coefficient
a in (5). The methodology is based in part on the so-called
dynamic modeling approach used in LES of turbulent flows
[Germano et al., 1991; Moin et al., 1991; Meneveau et al.,
1996]. In the context of landscapes, we parameterize the
effect of the subgrid-scale erosion rates by calculating a
modified erosion coefficient a using information contained
in the resolved elevation field and assuming scaling in the
elevation statistics.
[26] For the purpose of developing the technique, one

needs to know the exact value of the erosion coefficient at
some reference scale. For simplicity, without loss of gener-
ality, here we consider the highest resolution simulated
(256 
 256) as the exact solution, and the value of the
erosion coefficient at this scale is assumed to be exactly
known. However, the same approach can be extended to
other reference scales for which erosion coefficients could
be determined. The grid size corresponding to resolution
256 
 256 is taken as D/2.

Figure 3. Elevation fields obtained for three grid resolu-
tions at steady state using equation (5): (a) 256 
 256,
(b) 128 
 128, and (c) 64 
 64.
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[27] At coarser resolutions the model is now written in a
filtered form, as it is done in LES. At resolution 128x128
(resolution D), (5) becomes

@~h

@t
¼ u� aD � ~q � r~h

�� ��2; ð6Þ

where the tilde indicates quantities spatially filtered (with
an implicit filter imposed by the grid size) at scale D.
At resolution 64 
 64 (resolution 2D) equation (5)
becomes

@~h

@t
¼ u� a2D � ~q � r~h

��� ���2; ð7Þ

where the overbar denotes spatial filtering at scale 2D.
[28] Modeling erosion without explicitly accounting for

scale effects on the erosion coefficient, as we did in the
previous section, implicitly amounts to assuming that

a2D ¼ aD ¼ aD=2 ¼ a0; ð8Þ

where a0 is the erosion coefficient, which we assume is
known and independent on resolution. The simulation
results from section 2 indicate instead that a depends on the
scale D. Our goal, then, is to account for this, dynamically
computing a at each time step as the simulation progresses.
To do that, one has to make some assumptions about the
dependence of a on D. As a first approximation, we assume
that the ratio between the erosion coefficients at scales D
and D/2 is the same as the ratio between scales 2D and D,
i.e., we assume a constant value for the scale dependence
ratio b, defined as

b ¼ aD

aD=2
	 a2D

aD

	 a4D

a2D

: ð9Þ

Note that this is a much weaker assumption than the
original one that the erosion coefficient a does not depend
on scale. The erosion coefficients at scales D (resolution

Figure 4. River network extracted from elevation fields
for three grid resolutions at steady state. Only channels of
Strahler order greater than 2 are shown: (a) 256 
 256,
(b) 128 
 128, and (c) 64 
 64.

Figure 5. Elevation power spectra at the three resolutions
averaged during the simulations. The spectral slope is not
affected by the grid resolution and is near �2, consistent
with observed spectra from natural topography.
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128 
 128) and 2D (resolution 64 
 64) can be expressed
as a function of the erosion coefficient at the finest scale
(D/2) as follows:

aD ¼ b � aD=2

a2D ¼ b � aD ¼ b2 � aD=2
ð10Þ

Note that we assume the coefficient at the smallest scale
equal to the known value, i.e., aD/2 = a0.
[29] On the basis of the expression for the scale depen-

dence coefficient given by (9), b must be computed at
scale D based only on information at the available scale D
and larger, since during the simulation the behavior at finer
scales is not known. Thus in our case, to compute b
dynamically, we use information at scales D and 2D,
together with the assumption that b is constant.
The variables corresponding to scale 2D can easily be
computed by spatially filtering the simulated field
(implicitly filtered at scale D) using a two-dimensional
filter of size 2D. As mentioned above, that operation is
denoted by an overbar.

[30] On the basis of these ideas, we derive the new model
with subgrid-scale parameterization in detail for simulations
at resolution D. Applying the model at scales D and 2D
leads to (6) and (7), given above. Spatially filtering (6)
using a filter of size 2D (operation denoted by an overbar)
and then averaging equations (6) and (7) over the entire
field (operation denoted byh i) yields

@~h

@t

* +
¼ u� aD � ~q � r~h

�� ��2� �
ð11Þ

@~h

@t

* +
¼ u� a2D � ~q � r~h

��� ���2� �
ð12Þ

[31] Combining (11) and (12) leads to an expression for
the ratio between the effective erosion coefficients at
scales 2D and D:

a2D

aD

¼
~q � r~h
�� ��2D E

~q � r~h
��� ���2� � ð13Þ

The right hand side of (13) can be explicitly calculated
using information contained in the simulated elevation field.
[32] Taking advantage of the scale similarity assumption

in (9), (13) can be used to define the scale dependence
coefficient b:

b ¼ aD

aD=2
	 a2D

aD

¼
~q � r~h
�� ��2D E

~q � r~h
��� ���2� � ð14Þ

Following the above procedure and using (14), we compute
b dynamically at every time step, thus not requiring any a
priori calibration or tuning. It is important to point out that
the averaging operation (h i) is needed to avoid unrealistic
local fluctuations of b that would be obtained without
averaging.
[33] The same approach can be followed to compute the

coefficient b to be used in the simulations at other
resolutions. For example, in the case of a grid of size
2D, the information at scale 4D would be used, and the
expression for the scale dependence coefficient b would
become

b ¼ a2D

aD

	 a4D

a2D

¼
d�q � r�h
�� ��2D E

�̂q � r�̂h
��� ���2� � ; ð15Þ

where the hat denotes a filtering operation using a two-
dimensional filter of size 4D over the simulated
variables, obtained at a grid resolution of 2D. Just as
for scale D, b is computed dynamically at every time step
following (15), and again does not require calibration or
tuning.
[34] The new value of b is used to define the erosion

coefficient aD at the corresponding grid scale D in terms of

Figure 6. Dependence on grid resolution of model results
using equation (5). (a) Mean longitudinal profiles obtained
at steady state. (b) Volumes of eroded material per time step
during the simulations. Both steady state profile and eroded
volumes show strong scale dependence.
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the erosion coefficient at scale D/2, which we assume is
exactly known, according to (10). Thus the model at scale D
is now given by

@~h

@t
¼ u� b � aD=2 � ~q � r~h

�� ��2 ð16Þ

Furthermore, the model at scale 2D can be written as

@~h

@t
¼ u� b2 � aD=2 � �~q � r~h

��� ���2 ð17Þ

[35] To test the efficacy of the proposed dynamic subgrid-
scale scheme, we redo the simulations at the three resolu-
tions, using (5) at resolution 256 
 256, (16) at resolution
128 
 128 and (17) at resolution 64 
 64. Initial and
boundary conditions are the same as used in the previous
section. At every time step, the slope and the water flux are

computed at each location from the simulated field. Then
the field is filtered at a resolution double the grid size and
slope and water flux are computed from the filtered field at
each location. With these quantities the scale dependence
coefficient b is computed from equation (14) (or (15) at
64 
 64) and the field is then updated using equation (16)
(or (17) at 64 
 64).

3.2. Results and Discussion

[36] The elevation fields and the extracted river net-
works are qualitatively similar to the ones obtained in the
previous section using equation (5) at all resolutions.
However, the erosion rate is clearly affected by the new
formulation of the model at the lower resolutions. The
mean longitudinal profiles obtained at steady state for the
simulations with dynamic subgrid-scale modeling are
shown in Figure 7a. The profiles at resolution 128 

128 and 64 
 64 obtained with the new model are close to
the profile at 256 
 256, indicating that the dynamic
subgrid-scale method accounts for most of the scale
dependence. The same behavior is found in the volume
of eroded material per time step, shown in Figure 7b: the
new model with dynamic subgrid-scale parameterization
yields much more consistent erosion rates across the
different grid resolutions than the simulations using a
constant erosion coefficient.
[37] We stress that in this first stage of our investigation,

we have used the simplest plausible scheme for dynamic
subgrid-scale modeling. Despite this, the method seems
able to eliminate much of the dependence of erosional
landscape dynamics on grid resolution. The dynamic
procedure is now modified to allow for scale dependence
of the coefficient b. A similar dynamic, tuning-free ap-
proach has recently been developed in the context of
subgrid-scale models for LES of turbulent flows [Porté-
Agel et al., 2000; Porté-Agel, 2004; Stoll and Porté-Agel,
2006.].

4. A Scale-Dependent Dynamic Subgrid-Scale
Model

4.1. Derivation of the Scale-Dependent Dynamic
Subgrid-Scale Model

[38] The dynamic procedure is now modified to allow for
scale dependence of the coefficient b. This requires the use
of an additional test filtering operation (e.g., at scale four
times the grid scale), from which the scale dependence of b
can be determined dynamically. The scale dependence
coefficient b is now allowed to change with scale, and
therefore

bD 6¼ b2D 6¼ b4D: ð18Þ

[39] At this point, an assumption has to be made about the
functional form of the scale dependence of b. Assuming a
simple power law dependence of b with scale [Porté-Agel et
al., 2000], we can write

bD
b2D
	 b2D

b4D
	 b4D

b8D
: ð19Þ

Note that this is a much weaker assumption than the previous
one of b constant across scales. Using equation (19), the

Figure 7. Comparison of results from the original model
(equation (5)) and the dynamic subgrid model (equations (16)
and (17)). (a) Mean longitudinal profiles obtained at
steady state. The results obtained with the subgrid-scale
parameterization show a relatively weak dependence on
grid resolution. (b) Volumes of eroded material per time step
obtained at steady state. The results obtained with the
subgrid-scale parameterization again show a relatively weak
dependence on grid resolution.
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scale dependence coefficient at scale D, bD, can be expressed
as

bD 	 b2D �
b2D
b4D
¼ b22D

b4D
; ð20Þ

where b2D and b4D, recalling (14) and (15), can be computed
dynamically from the resolved elevation field as

b2D ¼
a2D

aD

¼
~q � r~h
�� ��2� �

�~q � r�~h
��� ���2� �

b4D ¼
a4D

a2D

¼
d�q � r�h
�� ��2D E

�̂q � r�̂h
��� ���2� � ;

ð21Þ

The same procedure can be applied at scale 2D to express the
unknown parameters bD and b2D as a function of b4D and b8D
as

b2D 	 b4D �
b4D
b8D

;

bD 	 b2D �
b2D
b4D
¼ b4D �

b4D
b8D

	 
2

� 1
b4D
¼ b34D

b28D
; and

b2D � bD 	
b54D
b38D

ð22Þ

Note that b4D can be obtained from the resolved elevation
field using equation (21), and b8D can also be computed
dynamically using the identity

b8D ¼
a8D

a4D

¼
q̂ � rĥ
�� ��2_

* +

q̂
_

� r ĥ

_
����

����
2

* + ; ð23Þ

where the curved overbar denotes a filtering operation using
a two-dimensional filter of size 8D over the simulated
variables, obtained at a grid resolution of 2D.
[40] With the new definitions of bD and b2D, aD and a2D

become

aD ¼ bD � aD=2 ¼
b22D
b4D
� aD=2

a2D ¼ b2D � bD � aD=2 ¼
b54D
b38D
� aD=2

ð24Þ

and equations (16) and (17) become

@~h

@t
¼ u� b22D

b4D
� aD=2 � ~q � r~h

�� ��2 ð25Þ

@�~h

@t
¼ u� b54D

b38D
� aD=2 � �~q � r�~h

��� ���2 ð26Þ

To test the proposed scale-dependent dynamic subgrid-scale
scheme, we perform the same simulations using equation (5)
at resolution 256 
 256, and equations (25) and (26) at
resolutions 128 
 128 and 64 
 64, respectively.
[41] Initial and boundary conditions are the same used in

the previous sections. At every time step, the slope and the
water flux are computed at each location from the simulated
field. Then the field is filtered at a resolution two and four
times the grid size and slope and water flux are computed
from the filtered field at each location. The scale depen-
dence coefficients b corresponding to scales twice and four
times the grid scale are computed dynamically using equa-
tions (21) for the 128 
 128 resolution, or equations (21)
and (23) for the 64 
 64 resolution. These values are then
used in equations (25) and (26) to obtain the time evolution
of the simulated elevation field. The simulations are run
until steady state is reached.

4.2. Results and Discussion

[42] Similar to the case of the dynamic model presented
in Section 3, the elevation fields and river networks
obtained with the scale-dependent dynamic model are

Figure 8. Comparison of the results from the original
model (equation (5)) and the new scale-dependent dynamic
subgrid model (equations (25) and (26)). (a) Mean
longitudinal profiles obtained at steady state. The profiles
obtained with the subgrid-scale parameterization are almost
indistinguishable. (b) Volumes of eroded material per time
step obtained at steady state. The results obtained with the
subgrid-scale parameterization again show very little
dependence on grid resolution and time.
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quantitatively similar to the ones obtained without subgrid-
scale model. However, the mean longitudinal profile
obtained at steady state and the volume of eroded material
per time step show an additional improvement compared to
the scale-invariant dynamic model. As shown in Figures 8a
and 8b, the simulation results obtained with the three
resolutions are very similar, which highlights the ability of
the new model to systematically (and without parameter
tuning) account for the scale dependence of the erosion
coefficient. Moreover, the previously observed time depen-
dence of the results is substantially reduced (Figure 8b),
indicating that the new model is also able to minimize the
effects of resolution on the time evolution of the simulated
landscapes.
[43] Note that there are a number of ways in which the

scale-dependent dynamic approach could be improved. For
example, the coefficient b could be computed locally using
alternative averaging methods, such as the Lagrangian
dynamic procedure introduced by Meneveau et al. [1996].
High-resolution digital elevation data could also be used to
test some of the assumptions made in the dynamic models
(e.g., power law scaling of the coefficients) and provide
guidance for further improvements, as done in a priori
experimental studies of turbulent flows [e.g., Meneveau
and Katz, 2000].

5. Conclusions

[44] 1. Landscapes simulated using a modified 2-D KPZ
equation show a systematic dependence on grid resolution:
increasing resolution allows for increased channel density,
and thus erosion rates and mean longitudinal profiles of
elevation at steady state have an undesirable dependence on
grid resolution.
[45] 2. A new subgrid-scale parameterization, inspired by

the scale-dependent dynamic modeling approach used in
turbulence simulations, is able to correct most of this scale
dependence. The erosion coefficient, assumed exactly
known at the finest resolution, is multiplied by a scale
dependence coefficient, which is computed dynamically as
a function of time based on the landscape dynamics at the
resolved scales. The scheme takes advantage of the self-
similarity that characterizes landscapes over a wide range of
scales and produces landscapes that show very little depen-
dence on grid resolution.
[46] There is no reason the proposed approach could not

be applied to other landscape evolution models. The appli-
cability of the LES-inspired approach to modeling erosional
landscapes suggests that the technique may be generalizable
to other systems as well. The basic requirement is that the
system be self-similar over a sufficiently wide range of
length scales to justify the estimation of the effect of subgrid
processes by comparison of the model behavior over scales
coarser than the resolved scale. Possible candidates in
morphodynamics include braided rivers [Sapozhnikov and
Foufoula-Georgiou, 1996, 1997], distributary channel net-
works, and bed forms.
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St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN
55414, USA. (cpaola@umn.edu)

W06D11 PASSALACQUA ET AL.: APPLICATION OF DYNAMIC SUBGRID-SCALE CONCEPTS

11 of 11

W06D11



Do gravel bed river size distributions record channel
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[1] Bed load sediment particles supplied to channels by hillslopes are reduced in size by
abrasion during downstream transport. The branching structure of the channel network
creates a distribution of downstream travel distances to a given reach of river and
thus may strongly influence the grain size distribution of the long-term bed load flux
through that reach. Here we investigate this hypothesis, using mass conservation and the
Sternberg exponential decay equation for particle abrasion, to predict bed material
variability at multiple scales for both natural and artificial drainage networks. We assume
that over a sufficiently long timescale, no net deposition occurs and that grains less than
2 mm are swept away in suspension. We find that abrasion during fluvial transport
has a surprisingly small effect on the bed load sediment grain size distribution, for the
simple case of spatially uniform supply of poorly sorted hillslope sediments. This occurs
because at any point in the channel network, local resupply offsets the size reduction
of material transported from upstream. Thus river bed material may essentially mirror the
coarse component of the size distribution of hillslope sediment supply. Furthermore,
there is a predictable distance downstream at which the bed load grain size distribution
reaches a steady state. In the absence of net deposition due to selective transport, large-
scale variability in bed material, such as downstream fining, must then be due primarily
to spatial gradients in hillslope sediment production and transport characteristics. A
second key finding is that average bed load flux will tend to stabilize at a constant value,
independent of upstream drainage area, once the rate of silt production by bed load
abrasion per unit travel distance is equal to the rate of coarse sediment supply per unit
channel length (q). Bed load flux equilibrates over a distance that scales with the
inverse of the fining coefficient in the abrasion rate law (a) and can be approximated
simply as q/3a. Thus the efficiency of particle abrasion sets a fundamental length
scale, shorter for weaker rocks and longer for harder rocks, which controls the expression
in the river bed of variability in sediment supply. We explore the role of the abrasion
length scale in modulating the influence of sediment supply variability in a number of
channel network contexts, including individual tributary junctions, a sequence of
tributary inputs along a main stem channel, and variable basin shapes and network
architecture as expressed by the width function. These findings highlight the need
for both data and theory that can be used to predict the grain size distributions supplied to
channels by hillslopes.

Citation: Sklar, L. S., W. E. Dietrich, E. Foufoula-Georgiou, B. Lashermes, and D. Bellugi (2006), Do gravel bed river size

distributions record channel network structure?, Water Resour. Res., 42, W06D18, doi:10.1029/2006WR005035.

1. Introduction

[2] The self-organized pattern of a river network creates a
hierarchical structure of channel pathways down which

runoff and the sediment waste from hillslopes travels. Much
has been written about the fractal characteristics of river
networks [e.g., Rodriguez-Iturbe and Rinaldo, 1997], of the
incoming precipitation that drives landscape erosion and
channel incision [e.g., Venugopal et al., 2006], and of the
resulting runoff characteristics that record the integral
of precipitation and runoff paths [e.g., Gupta et al., 1996;
Menabde and Sivapalan, 2001; Dodov and Foufoula-
Georgiou, 2005; Troutman and Over, 2001]. There are
other possible scaling relationships associated with the
introduction and passage of sediment down through the
networks. Sediment entering rivers is typically very poorly
sorted and arrives episodically both spatially and through
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time along channels. These sediment pulses are swept by
runoff events, sorted hydraulically, and their particles are
broken and abraded during transport. Along any channel
path, tributaries introduce local infusions of sediment that
mix with channels from other sources [e.g., Rice and
Church, 1998; Jacobson and Gran, 1999]. Might the
channel network structure and the dynamic, unsorted addi-
tions of sediment lead to scale-invariant patterns of bed load
sediment grain size and flux along the channel?
[3] If we look at this from the perspective of examining

gravel at a specific location on the riverbed, other questions
emerge. Each particle on a gravel bed of a river has a
distinct travel history from its source. Some originate at the
farthest portions of the contributing watershed, and others
only a short distance from a point of observation. Most of
the grains are not the size they were when they entered the
stream. Commonly, particles entering a stream are derived
from the chemical, biotic and mechanical breakdown of
bedrock, and this derivation not only imparts a size distri-
bution to the incoming sediment, it also weakens the
particles such that subsequent bed load transport down-
stream causes wear and fragmentation, sometimes quite
rapidly. Even relatively unweathered bedrock fragments
will be pounded and reduced in size. These downstream

fining particles follow the channel network and merge with
particles arriving through different channel branches and
other parts of the landscape. These branches may access
steeper slopes shedding coarser sediment of the same
bedrock, or cut into harder bedrock with more durable
particles [e.g., Pizzuto, 1995]. Does this mingling of sedi-
ment with different transport paths and different bedrock
sources create a distinct size distribution of bed sediment? Is
there a signature of the channel network structure and
its bedrock heterogeneity in the size distribution of the
sediment?
[4] This seems a reasonable hypothesis in that the chan-

nel network structure imposes a travel distribution function
to any point along the channel. For example, in Figure 1
the channel network of a catchment is shown, and the
corresponding width function is plotted in Figure 2a. The
width function gives the number of channel segments along
the channel network at a specified distance from the mouth
[e.g., Rodriguez-Iturbe and Rinaldo, 1997]. Along each
interval of distance from the mouth, there is a contributing
drainage area, which sets the scale for the amount of
sediment entering the channel. For example, in Figures 2b
and 2c, the cumulative drainage area and incremental area
per unit length entering each channel segment are plotted as

Figure 1. Map of the Upper Noyo River Basin, Mendocino County, northern California. Outlet located
at 39�260N, 123�450W.
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a function of distance from the mouth. The sum over all
upstream distances of the product of the local erosion rate
times the local contributing area and the total number of
points at that distance from the mouth (i.e., the width
function, Figure 2a), gives the total influx of sediment to
the channel at the specified distance. If particle breakdown
depends on travel distance, then one would expect bigger
particles to be derived locally, and finer particles from
farther away, and depending on how tributaries come in,
the grain size distribution may be tipped toward the coarse
or fine fraction.
[5] Watersheds rarely drain homogeneous bedrock, and

probably rarely receive grain size distributions that are
identical throughout the basin even if the bedrock is
relatively uniform. At present, there are essentially no data
or theory to tell us what the distribution function of grain

sizes entering a channel network is or how that should vary
throughout a watershed. Some have argued that fragmenta-
tion of bedrock should produce fractal scaling of particle
numbers with grain size [e.g., Turcotte, 1997; Perfect, 1997]
and there have been studies of the finer fraction of some
soils that suggest multifractal scaling of grain sizes [e.g.,
Bittelli et al., 1999]. Whether fractal or not, certainly soils,
screes and glacial deposits have a wide range of particle
sizes [e.g., Matsuoka and Sakai, 1999; Posadas et al., 2001;
Hooke and Iverson, 1995].
[6] A common observation is that the gravel clasts

making up the beds of rivers are typically derived from
the harder bedrock lithologies underlying the watershed,
even when the harder rock types compose a relatively small
proportion of the landscape [e.g., Hack, 1957; Brush, 1961;
Dietrich and Dunne, 1978; Parker, 1991b; Pizzuto, 1995].
The network travel distribution function (the width func-
tion) operates, then, on materials with differing resistance to
breakdown and differing starting grain size distributions
which may occur systematically in parts of the basin, or
scattered throughout. The network structure leads to injec-
tions of sediment into main stem reaches from tributaries of
widely differing sizes (Figure 2c) that may deliver sediment
of greatly differing durability. Under what conditions do
these injections perturb the sediment mass and size distri-
bution of the bed of the main stem [e.g., Rice and Church,
1998; Rice, 1998] and propagate downstream?
[7] Studies of changes in gravel bed size distributions

along channels have focused on the tendency for down-
stream fining [e.g., Knighton, 1980, Rice and Church, 1998;
Heller et al., 2001; Gomez et al., 2001; Surian, 2002;
Moussavi-Harami et al., 2004, Malarz, 2005]. Field mea-
surements of median grain sizes of the bed surface are
typically plotted as a function of distance along a longitu-
dinal profile, and downstream decreases are attributed to
either selective sorting or particle size reduction due to
abrasion or some combination of these processes. In cases
of net deposition along the channel, selective sorting has
been shown to be an effective agent of downstream fining
[e.g., Paola et al., 1992; Ferguson et al., 1996; Gomez et
al., 2001]. Where no net deposition occurs (in rivers
actively cutting through bedrock for example) abrasion is
held responsible for downstream fining [e.g., Kodama,
1994a]. Abrasion of particles appears to follow Sternberg’s
law

D ¼ D0e
�ax ð1Þ

where the initial grain size D0 wears down to D at distance x
from the origin at a rate given by a (1/m) (see reviews by
Parker [1991a], Kodama [1994a, 1994b], Gomez et al.
[2001], Lewin and Brewer [2002], and Malarz [2005]).
Particles are presumed to wear by shedding silt and clay size
mass, rather than by splitting, although splitting could be
important in some rock types [Kodama, 1994b]. Tumbling
experiments support the form of equation (1) and a has
been experimentally estimated [e.g., Kuenen, 1956; Adams,
1978; Kodama, 1994b; Lewin and Brewer, 2002]. Transla-
tion of tumbling experiments to the field setting can be
controversial because of the large differences in particle
collision dynamics and the absence of weathering in
tumbling mills. Alternatively, plots of median or maximum

Figure 2. Noyo River channel network characteristics:
(a) Width function (distribution of channel segments at
specified distance from downstream outlet), (b) cumulative
area function, and (c) incremental drainage area per channel
segment length.
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grain size against distance downstream have been used to
parameterize a and D0 [e.g., Moussavi-Harami et al.,
2004; Malarz, 2005], but interpretation of such plots
requires demonstrating that net storage of sediment is not
occurring.
[8] It is reasonable to propose that over a sufficiently

long timescale, in upland catchments with active channel
incision into bedrock, there is no net storage of sediment
in the channel. All sediment entering the channel is either
flushed through the system as wash and suspended bed
material load, or travels as bed load and abrades to finer
particles. The long-term average bed load size distribution
at any point on the reach will represent some balance of
sediment introduction and abrasion, and it is the size
distribution of this load we wish to relate to the channel
network and travel paths. For any reach of river the best
short-term estimate of that size distribution is probably the
spatially averaged subsurface grain size [e.g., Parker and
Klingeman, 1982; Parker, 1990], rather than the size
found just at the surface, which is influenced by vertical
sorting.
[9] To address the questions posed here, we theoretically

derive the effects of grain size input functions and abrasion
rates on downstream changes in grain size for simple single-
channel basins and for basins with branching networks. As
described above, the grain size distribution modeled is the
long-term bed load size that passes through a particular
reach, not necessarily the surface grain size found on bars.
We discover that the abrasion coefficient a sets fundamental
length scales in the system beyond which, surprisingly,
grain size distributions and total bed load flux become
independent of travel distance. Bed load flux becomes
independent of drainage basin size, and proportional to
the ratio of hillslope erosion rate per unit channel length
divided by the abrasion coefficient, a. Furthermore, the
theory predicts that if the size distribution of input sediment
is relatively broad, abrasion has very little effect on the size
distribution of resulting bed load flux. The only way
significant downstream fining occurs in this case is if the
size distribution of the sediment supplied by the hillslopes
decreases downstream. The channel network structure intro-
duces perturbations in bed load flux along the main stem of
a watershed, but only influences the size distribution if the
tributaries introduce coarser sediment (derived from coarser
sediment inputs). Depending on the durability of this
coarser sediment, the effect may quickly damp out down-
stream. Hence, in a watershed with uniform bedrock and
small spatial variation in grain size sediment input, abrasion
causes little change in bed load grain sizes and instead the
size closely reflects the input size distribution. Our findings
highlight the need for theory and observations on the grain
size distribution of sediment shed to channels.

2. Theoretical Framework

2.1. Assumptions

[10] We make several key assumptions in developing the
theory presented below. First, we assume that all sediment
delivered by hillslopes to the channel network is either
actively transported downstream and out of the watershed as
bed load or as suspended load, or, in the case of very large,
essentially immobile boulders, are abraded and weathered in

place. Hence there is no net deposition of sediment. This is
consistent with a tectonically active landscape, where chan-
nels and valley floors have only a thin veneer of sediment
over bedrock, and is consistent with a relatively long
timescale of analysis that averages over shorter-term fluc-
tuations in sediment supply and sediment transport capacity
which produce episodes of sediment accumulation in stor-
age reservoirs such as fans and floodplains. As discussed in
more detail below, the assumption of no net deposition
implies no net selective transport of finer grain sizes
because coarse grains would otherwise continuously accu-
mulate over time. Another corollary of the assumption of no
net deposition is the assumption that all segments of the
channel network receive lateral inputs of sediment from
adjacent hillslopes, without interception by intervening
storage elements such as floodplains, and that bed
load sediment transport is continuous across all tributary
junctions.
[11] A second key set of assumptions concerns the simple

Sternberg exponential model for particle size reduction with
downstream transport (equation (1)). We assume that the
Sternberg relation is valid not just for the bulk bed load
mass but for individual sediment particles as well, and that
the abrasion efficiency parameter a depends only on lithol-
ogy and is independent of local transport conditions and
constant for all grain sizes. There are potentially important
physical mechanisms that are thus either lumped into the
single model parameter a or are neglected entirely, includ-
ing abrasion in place of bed surface grains [e.g., Schumm
and Stevens, 1973], weathering rind formation during
floodplain storage [e.g., Heller et al., 2001], rapid initial
wear of freshly input hillslope sediments [e.g., Adams,
1979] and particle splitting, which may be important in
particular lithologies [e.g., Kodama, 1994a, 1994b].
[12] Another important assumption is that there is a

minimum grain size Dmin below which particles travel in
suspension and do not contribute to the bed load mass flux
or bed load grain size distribution. In all calculations
reported here we set Dmin = 2 mm. We treat the transition
from bed load to suspended transport as abrupt, and assume
that once in suspension, fine-grained sediments are rapidly
transported downstream and out of the watershed. We thus
ignore abrasion during suspended transport and the potential
contribution of sand to the bed load grain size and mass flux
[e.g., Wilcock et al., 2001]. Finally, we assume that sedi-
ment production by channel incision into bedrock can be
ignored because it makes a negligible contribution to the
total bed load supply.

2.2. Analytical Development

[13] In this section, we derive the probability distribution
(pdf) of bed load grain diameter D, in terms of both size and
mass, given the probability distribution of the entering
sediment diameter De and the spatially variable load of
sediment q(L) to the river. We start with the simplest case of
constant (uniform) size of entering sediment and a spatially
uniform lateral load and progress to the most complex case
of spatially variable probability distribution of entering
sediment and spatially variable lateral load.
2.2.1. Uniform Load q(L) = q, Constant De

[14] The lateral uniform load (mass per unit stream length
per unit time) is q = NekDe

3 where Ne is the number of grains

4 of 22

W06D18 SKLAR ET AL.: CHANNEL NETWORKS AND GRAVEL SIZE DISTRIBUTIONS W06D18



entering the stream, De is the constant size of the grains and
k = rsp/6 where rs is the density of the sediment. Following
Sternberg’s law D(L) = De � e�aL, a grain of initial diameter
De will reach a diameter Dmin and go to suspension after a
distance L*D given by

LD* ¼
1

a
� ln De

Dmin

� �
ð2Þ

For any distance L � L*D along the river, the bed load grain
size distribution will be at steady state and will be
independent of L, while for all distances L < L*D a
dependence on distance L is expected. It can be shown
(see Appendix A) that for a uniform unit load of q, the pdfs
of the bed load sediment diameter by grain f b

g(D) and by
mass f b

m(D) take the following forms. For L � L*D and
Dmin � D � De

f
g
b Dð Þ ¼ 1

aLD*D
¼ 1

D
� 1

ln De

Dmin

� � ð3Þ

f mb Dð Þ ¼ 3

D3
e � D3

min

� D2 ð4Þ

and for L < L*D and Dee
�aL � D � De

f
g
b Dð Þ ¼ 1

aLD
ð5Þ

f mb Dð Þ ¼ 3

D3
e 1� e�3aLð Þ � D

2 ð6Þ

For values of D outside the specified intervals, the pdfs
are zero. The mass flux of bed load sedimentM at distance L
downstream can be shown to be (see Appendix B), for L < LD*

M Lð Þ ¼ q

3a
1� e�3aL
� �

ð7Þ

and L � LD*

M Lð Þ ¼ Mss ¼
q

3a
1� Dmin

De

� �3
" #

ð8Þ

where Mss stands for the steady state mass flux, and L*D is
given by equation (2).
[15] Importantly, this means that beyond the distance L*D

the bed load flux is constant and no longer increases with
drainage area, as discussed at length in section 3 below.
Note that 95% of the mass flux is achieved at the distance
L*M,0.95 at which

1� exp �3aLM ;0:95*
	 


¼ 0:95 ð9Þ

which results in

LM ;0:95* ffi 1=a ð10Þ

An example illustrating these theoretical results is presented
below in section 2.3.
2.2.2. Uniform Load q(L) = q, pdf of Entering
Sediment f e

g(De)
[16] Let the entering sediment have a probability distribu-

tion by grain, and correspondingly by mass, denoted by
fe
g(De), and fe

m(De) respectively. First, we note that fe
g(De)

and fe
m(De) relate to each other. One might specify fe

g(De) as

lognormal, and derive the pdf of fe
m(De) by acknowledging

that mass = k � De
3, where k = p � rs

6
. We can write that

f me Deð Þ ¼
D3

e � f ge Deð ÞZ1
Dmin

D3
e � f ge Deð ÞdDe

ð11Þ

i.e., the pdf by number of grains is multiplied by the mass of
the grain and normalized by the total mass to render it a pdf
by mass.
[17] Having an unbounded probability distribution of

grain sizes implies that very large particles (theoretically
of infinite size) are possible albeit with a very small
probability. Thus defining a length L*D at which a steady
state by grain size is reached is not as straightforward as
when the entering sediment is of constant size. In this case,
an upper maximum size Dmax must be externally imposed
based on either deterministic or probabilistic reasoning. In
the deterministic case, the value of Dmax may be
prespecified based on physical considerations, e.g., rare
particles larger than Dmax are too large to be transported
with the flow and do not contribute to the bed load. This
Dmax value implies a probability of nonexceedance p =
F e

m(Dmax), where F e
m(De) is the cumulative probability by

mass, at which the pdf of the entering sediment will have to
be truncated. In the probabilistic case, a probability of
nonexceedance p may be prespecified (say, 95%) and the
corresponding value of Dmax,p (quantile) can be computed
as Dmax,p � F e

m�1(p). In both cases, the truncated pdf (below
by Dmin and above by Dmax,p) of the entering sediment has
to be used in the calculations. On the basis of this size
Dmax,p an equivalent distance L*D,p to steady state bed load
pdf by mass can be defined as

LD;p* ¼
1

a
� ln Dmax;p

Dmin

� �
ð12Þ

It can be shown that the bed load sediment pdfs are given as
for L � L*D,p and Dmin � D � Dmax,p

f
g
b Dð Þ ¼ 1

D
�

Z Dmax;p

D

f ge Deð ÞdDeZ Dmax;p

Dmin

f
g
e Deð Þ ln De

Dmin

� �
dDe

ð13Þ

and for L < L*D,p and Dmin � D � Dmax,p

f
g
b Dð Þ ¼ 1

D
�
Z max Dmax Lð Þ;eaLDð Þ

min D;Dmax Lð Þð Þ
f ge Deð ÞdDe=K ð14Þ
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where

K ¼
Z Dmax Lð Þ

Dmin

f ge Deð Þ ln
De

Dmin

� �
dDe þ aL

Z Dmax;p

Dmax Lð Þ
f ge Deð ÞdDe

Dmax Lð Þ � Dmin � eaL

[18] From the pdf of the bed load sediment by grain,
one can derive the pdf of the bed load sediment by mass
using equation (11) so these equations are not displayed
here. Finally, the mass flux of bed load sediment as a
function of distance downstream can now be derived. This
involves a trivial extension of equations (7) and (8), i.e., for
L < LD,p*

M Lð Þ ¼ q

3a
1� e�3aL
� �

ð15Þ

where now

q ¼ Nek

ZDmax;p

Dmin

D3
e f

g
e Deð ÞdDe

and for L � LD,p* the steady state mass flux becomes

Mss ¼
q

3a
� 1� D3

min

�Z Dmax;p

Dmin

D3
e f

g
e Deð ÞdDe


 �
ð16Þ

Because the second term in brackets will generally be very
small, the steady state mass fluxMss can be approximated as
q/3a, providing a simple estimate for long-term bed load
downstream of LD,p* . Assuming a lognormal pdf of the
entering sediment by number of grains (which we will use
in the example applications below), it can be shown that the
steady state mass becomes

Mss ¼
Nek

3a
� exp 3mlnDe

þ 9

2
s2lnDe


 �
ð17Þ

where mlnDe
and slnDe

are the mean and standard deviation
of the lognormal distribution. We note that, as before, 95%
of the steady state mass is reached at distance L*M = 1/a
which does not depend on the pdf of the entering sediment
but only on the abrasion coefficient. An example
illustrating these theoretical results is presented in
section 2.3.
2.2.3. Nonuniform Load q(L), De = Constant
[19] In the previous two cases, we treated the lateral load

of entering sediment per unit stream length per unit time as
uniform. Now, we consider the case of a spatially variable
load, i.e., load that depends on the distance L downstream.
Such a case is motivated by the need to consider spatial
variations in hillslope sediment supply due to differing
erosion rates, or variations in the fraction of the sediment
supply in the bed load size range due to differences in
hillslope soil or bedrock properties.
[20] Let q(L) denote the load rate per unit stream length

and unit time as a function of distance L. It can be shown

that the bed load sediment pdf by grain is given, for L � L*D
and Dmin � D � De, by

f
g
b Dð Þ ¼ 1

aD
�
q L� 1

a � ln
De

D

� �� �
ZL

L�LD*

q xð Þdx

ð18Þ

and for L < L*D and Dee
�aL � D � De

f
g
b Dð Þ ¼ 1

aD
�
q L� 1

a � ln
De

D

� �� �
ZL
0

q xð Þdx

ð19Þ

The pdfs by mass can be easily derived from the above pdfs
and equation (11). An example illustrating the above result
is presented in section 3.3 where the load function q(L) is
patterned after the width function of a river network.
2.2.4. Nonuniform Load q(L), pdf of Entering
Sediment f e

g(De)
[21] In a similar manner as before, we can derive

the following expression for the bed load pdf by grain size
for L � L*D,p and Dmin � D � Dmax,p

f
g
b Dð Þ ¼ 1

aD
�
Z Dmax;p

D

q L� 1

a
: ln

De

D

� �� �
f ge Deð ÞdDe=K ð20Þ

where

K ¼
Z Dmax;p

Dmin

f ge Deð Þ
ZL

L�1
a ln

De
Dð Þ

q xð Þdx

0
BB@

1
CCAdDe

For L < L*D,p the equation becomes too complex to display
here.
2.2.5. Nonuniform Load q(L), pdf of De

Varying Downstream
[22] This is the most general case and allows for the

parameters of the pdf of the entering sediment to depend on
the distance downstream. This might occur when hillslope
sediment supply changes systematically downstream or
tributaries enter the main stem and contribute sediment with
distinct grain size distributions reflecting differing upstream
lithologies, hillslope processes or erosion rates. The equa-
tions become cumbersome to write but not conceptually
difficult to extend from those of the previous cases.

2.3. Application to a River Reach

[23] We illustrate the above theoretical results with an
example application that considers a river reach having a
uniform lateral load rate of entering sediment. We set Dmin =
2 mm, and the abrasion coefficient a = 0.0002 m�1. In the
first case we consider a constant entering size De = 500 mm.
Note that for this case, the distance L*D required to wear the
sediment down to the suspension size and the distance at
which steady state mass flux (at the 95% level) is achieved are
L*D = 27.6 km and L*M ’ 5 km (computed by equations (2)
and (10), respectively).
[24] Figure 3a shows the pdf of bed load sediment by

grain fb
g(ln D) for various distances L downstream with a
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constant size of entering sediments De = 500 mm (from L =
0 km to L = 30 > 27.6 km at which the steady state pdf is

achieved). Note that since the pdf ofD is
1

aLD*D
(equation 5),

the pdf of ln D which is given by

f lnDð Þ ¼ D � f Dð Þ ð21Þ

becomes a uniform pdf equal to 1/aL. The area under each pdf
in Figure 3a is equal to 1 as the range ofD over which each pdf
is defined isaL. For example, for L= 10 km, aL= 2.0, and the
corresponding value on the probability axis is 0.5, such that the
area under the pdf is 1.0.

[25] Figure 3b shows the pdf by mass of the entering and
bed load sediment. Note that in Figure 3b we again plot the
pdf of ln D (i.e., f b

m (ln D) versus ln D) because a lognormal
pdf in De (which will be considered in the next section)
would plot as Gaussian or normal curve. Using the
transformation of equation 11, the pdf by mass, which goes
as 1/D2, becomes a pdf that decays as 1/D, as displayed in
Figure 3b.
[26] Figure 3c shows the mass flux as a function of

distance L downstream M(L), normalized by the steady
state mass flux Mss, and illustrates how M(L) reaches
approximate steady state at L = 1/a. Figure 3d shows the
normalized mass flux as a function of downstream distance
together with the cumulative sediment flux input and
output, focusing in the upstream 5 km of the river reach. As
the bed load flux M(L) approaches steady state, the rate of
suspended load (silt and sand) production begins to match
the rate of sediment input; the difference between the
cumulative input and output curves is a constant equal to the
bed load flux. Figure 4 shows the mass flux as a function of
distance downstream for different values of the abrasion
coefficient a and illustrates how rock durability, as
parameterized by a, controls the magnitude of steady state
bed load flux and the distance required to reach steady state
(equations (7) and (10)). For Figure 4 we used an erosion
rate E of 0.1 mm/year, a contributing area per unit length a
of 0.5 km2/km and a density of the entering sediment of rs =
2500 kg/m3 and computed the load rate q = E a rs.
[27] We now consider a second example application to

contrast the cases of constant grain size of entering sediment
as analyzed above with the case of a probability distribution
of entering sediment which can be narrow (sorted sediment)
or wide (unsorted sediment). The practical use of this
example will be to quantitatively assess the effect of the
pdf of the sediment entering from the hillslopes to the bed
load grain size distribution found downstream. We assume a

Figure 4. Mass flux M(L) as a function of distance
downstream L for different values of the abrasion
coefficient a. See text for explanation of the other
parameters used for this computation.

Figure 3. Entering sediment of constant grain size (De =
500 mm) and constant lateral load rate: (a) evolution of the
pdf of bed load grain diameter, with frequency in terms of
number of grains, for 5 km increments of downstream
distance L. Note the steady state pdf (for L = 30 km) with an
equal number of grains in each size (above Dmin = 2 mm).
(b) Steady state pdf of bed load grain diameter,
with frequency in terms of mass, achieved at distance
LD* ’ 27.6 km. (c) Bed load mass flux as a function of
distance downstream, normalized by the steady state mass
fluxMss. (d) Normalized bed load sediment flux, cumulative
input flux to the bed load from entering sediment, and
cumulative output flux from bed load to suspended load, as
a function of downstream distance (note that only the first
5 km are displayed before steady state is reached).
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lognormal distribution for the entering sediment by grain.
We remind the reader that a lognormal pdf is specified by its
two parameters mln De

and sln De
,

f ge Deð Þ ¼
1ffiffiffiffiffiffi

2p
p

slnDe
� De

� exp �
lnDe � mlnDe

� �2
2s2lnDe

" #
ð22Þ

and that the statistics of De are given as

mDe
¼ emlnDe þ

s2lnDe

2

sDe
¼ mDe

� es
2
lnDe � 1

� �1
2

ð23Þ

where emlnDe is the geometric mean and also the median of
De. It can be shown that if f e

g(De) is lognormal then f e
m(De)

is also lognormal with parameters

mmlnDe
¼ mlnDe

þ 3s2lnDe

smlnDe
¼ slnDe

:

It follows that the D50 by mass parameter typically reported
relates to the parameters of the grain size distribution of the
entering sediment by

D50 ¼ exp mlnDe
þ 3s2lnDe

� �
:

[28] There are several ways by which one can specify the
lognormal distribution parameters such that the results can
be contrasted with those obtained for the constant size De of
entering sediment presented in the previous section. A
simple way to specify the lognormal pdf of the entering
sediment would be to set mln De

= ln 500 which would imply
a geometric mean of grain size equal to 500 mm, which was
the constant De = Dmax value used in the previous example.
The variance sln De

could be changed to mimic a narrow or
wide pdf of grain size. Such a specification would result in
95% quantiles which would vary widely and would be hard
to compare the results to those obtained using the maximum
size Dmax = 500 mm of the previous case. Since the
maximum size of De sets the ‘‘length scale’’ of the system,

in terms of the distance downstream at which steady state
pdf of bed load sediment is achieved, we propose that a
more meaningful comparison would result if the lognormal
pdfs were specified such that the corresponding systems
have comparable length scales to each other and to the
system of constant grain size. Thus we consider lognormal
pdfs such that their upper 5% quantile is reached at Dmax =
500 mm and by specifying sln De

m = 0.1, 0.5, and 1.0 we
derive the corresponding values of mln De

. The parameters of
the lognormal pdfs are given in Table 1 and the pdfs are
displayed in Figure 5.
[29] For the three different lognormal pdfs of entering

sediment by mass, we compute the steady state bed load
pdfs by mass and these are shown in Figure 6. As the
distribution of the entering sediment widens (less sorted
sediment entering from the hillslopes), the steady state pdf
of the bed load approaches a shape that is close to the shape
of the pdf of the entering sediment and is not very sensitive
to further changes in the variance of the entering sediment
pdf. To quantify this further, we have computed (via
numerical evaluation) the moments of the derived pdfs
(i.e., mean mb

m � mb,ln D
m , standard deviation sb

m � sb,lnD
m ,

coefficient of skewness Sb
m � Sb,lnD

m and coefficient of
kurtosis Kb

m � Kb,lnD
m ). These are shown in Table 1 together

with the same parameters of the entering sediment pdfs by
mass. Note that the reported me

m and se
m are not exactly the

specified parameters of the entering sediment LN pdf but
rather the numerically computed moments of the resulting
truncated pdfs. For example, for LN1 the specified
parameter slnDe

m was 0.1 but the computed standard
deviation se

m = sln De

m shown in Table 1 was 0.09.
Figure 7 shows the ratio of the means of the entering to bed
load sediment, the ratio of the standard deviations and
coefficients of skewness and kurtosis of the bed load
sediment pdf by mass, all for ln D. We observe that as the
variance of the entering sediment pdf increases the
coefficient of skewness of the bed load sediment approaches
zero and the coefficient of kurtosis approaches 3, implying
an approach to a normal distribution for ln D, or lognormal

Table 1. Comparison of the Statistical Moments of the Entering

and Bed Load Grain Size Distributions for Constant Size and Three

Lognormal pdfs of Entering Sediment by Massa

pdf Constant Size LN1 LN2 LN3

me
m = mln D

m 6.21 5.34 4.46 3.20
mb
m = mln D

m 5.88 5.01 4.14 3.00
D50,e 500 mm 211 mm 89 mm 23 mm
D50, b 150 mm 65 mm 18 mm
se
m = sln De

m 0 0.45 0.90 1.39
sb
m = sln D

m 3.333 0.56 0.95 1.34
Se
m = Sln De

m 0 �0.34 �0.33 +0.17
Sb
m = Sln D

m �2.0 �0.59 �0.33 +0.24
Ke
m = Kln De

m 0 2.8 2.8 2.1
Kb
m = Kln D

m 9.0 3.6 2.8 2.1

aSubscript e indicates entering, and subscript b indicates bed load. Note
that for all pdfs the value of Dmax = 500 mm (ln 500 = 6.21), which
corresponds to the 5% exceedance quantile.

Figure 5. Specification of three lognormal pdfs of
entering sediment by mass such that for all pdfs the
probability of exceeding De = 500 mm is 5%. The
parameters of the lognormal pdfs are shown in Table 1
(see text for explanation).
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distribution for the bed load sediment. We conclude that the
wider the pdf of the entering sediment, the closer the bed
load sediment pdf by mass is to that of the entering
sediment. Although little is known about the pdfs of
sediments delivered to channels by hillslopes, it is reason-
able to assume that the most common case is a very wide
(unsorted) distribution.

3. Application to Channel Networks

[30] Several important and previously unrecognized
insights emerge from the theoretical results of the preceding
section. First, for the case of input sediment grain size
distributions that are spatially uniform and poorly sorted,
the effect of abrasion during downstream transport on the
bed material grain size distribution may be so small as to be
undetectable in the field. Because of continuous down-
stream resupply of the input size distribution, the bed
material should essentially mirror what the channel is
receiving from adjacent hillslopes. This implies that, in
the absence of net deposition due to selective transport,
measurable spatial variations in bed material size distribu-
tions result primarily from spatial variations in the size of
sediments entering the channel network.
[31] A second key result that emerges from the theory is

that the downstream trend in the long-term average bed load
flux does not scale in a simple way with the upstream
contributing drainage area. Rather, the bed load mass grows
only until the rate of silt production by abrasion matches the
rate of coarse sediment input, at which point the bed load
flux becomes constant and independent of drainage area.
Importantly, for a given abrasion rate coefficient (a), the

steady state bed load mass is achieved relatively rapidly
(equation (10)), compared to the distance required for the
bed material grain size distribution to reach steady state
(equation (2)). As illustrated in detail below, this implies
that spatial variations in bed load flux created by the
branching structure of drainage networks will not depend
simply on the pattern of accumulation of drainage area at
tributary junctions, but will depend instead on the upstream
travel distances of discrete sediment travel pathways, rela-
tive to the distances at which mass L*M and sediment grain
size L*D reach steady state.
[32] In this section we use the theory to investigate the

potential sources of variation in bed material grain size
distributions through channel networks. To simulate spatial
variation in input sediment sizes and rates of abrasion, we
focus on the effect of lithologic heterogeneity, assuming that
rock properties will strongly influence the size distribution
of hillslope sediments and the rate of particle breakdown in
the channel. Although the size of input sediments should
also depend on the rates and styles of hillslope sediment
production and transport, for simplicity we assume a spa-
tially uniform landscape erosion rate in all of the following
calculations. Thus the sediment loading rate q(L) can be
written as

q Lð Þ ¼ rsE a Lð Þ ð24Þ

where rs is the density of both bedrock and bed load
sediment (kg/m3), E is erosion rate (m/yr), and a(L) is the
incremental addition of drainage area per unit channel
length (m). Note that a(L) can be spatially variable,
reflecting in part the channel network structure.

Figure 6. Comparison of pdfs of entering sediment by mass fe
m(ln De) (dashed lines) to those of the

steady state pdfs by mass of the bed load fb
m (ln D) (solid lines) for (a) the constant size De and (b–d) the

three pdfs of Table 1 (narrow to very wide).
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[33] A simple example application of the theory relates to
the common observation that river bed sediments are often
enriched in the more durable lithologies that outcrop within
the upstream drainage area. For an illustrative case where a
single geologic unit is composed of two rock types of
differing durability (e.g., interbedded sandstones and mud-
stones), we can predict the mass fraction in the bed material
of the more durable rock type as a function of its mass
fraction in the input sediment and the ratio of the abrasion
coefficients of the two rock types, as shown in Figure 8. For
this calculation we assume that the downstream travel
distance L exceeds the length L*M required to reach the
steady state mass Mss, which is set by the inverse of the
abrasion coefficient for the more durable rock (i.e., 1/ah).

Note that equations (7) or (15) could be used for the slightly
more complex case where L < 1/ah.
[34] Figure 8 shows that as the durability of the two rock

types diverges, the relative enhancement in the hard rock
fraction on the bed is approximately proportional to the ratio
of abrasion coefficients (aw/ah). As the hard rock becomes
the dominant component of the bed material, with larger
values of aw/ah, the sensitivity of the bed composition to
the durability contrast declines. For very large differences in
abradability, the hard fraction dominates irrespective of its
mass fraction in the hillslope source material. Implicit in
this calculation is the assumption that abrasion coefficients
for the two rocks are independent. We expect, however, that
the abradability of weak rocks should be enhanced by the
presence of more durable rocks in the bed load sediment
mixture; at present no experimental data are available to
constrain this relationship.
[35] In the remainder of this section, we further explore

the influence of particle abrasion and travel distance on bed
material grain size distributions by considering downstream
fining, variations in bed load mass and particle size across
tributary junctions, and the effect of differing drainage basin
shapes as represented by the width function.

3.1. Downstream Fining

[36] For more than a century, a downstream reduction in
bed material grain size has been reported in studies of river
networks in a diverse set of landscapes [e.g., Gilbert, 1877;
Hack, 1957; Brush, 1961; Kodama, 1994a; Gomez et al.,
2001]. Recently, debate has centered on the question of
whether selective transport or particle abrasion is the
dominant control in rates of downstream fining [e.g.,
Parker, 1991a, 1991b; Kodama, 1994a, 1994b]. In deposi-
tional environments selective transport has been shown to
be responsible for very rapid fining over short distances
[e.g., Paola et al., 1992; Ferguson et al., 1996]. Many
workers have assumed that where selective transport cannotFigure 7. Moments of the bed load pdf as a function of the

variance of the entering sediment pdf: (a) difference in mean
size of entering me

m and bed load mb
m sediment, (b) ratio of

geometric mean diameter of bed load to entering sediment,
(c) ratio of standard deviations of bed load and entering
sediment sb

m/se
m, (d) coefficient of skewness of bed load

sediment, and (e) coefficient of kurtosis of bed load
sediment. Circles indicate values for the three lognormal
distributions, LN1, LN2, and LN3, of Figures 5 and 6 and
Table 1.

Figure 8. Variation in percentage by mass of hard rock, in
a bed load sediment mixture of both weak and hard bedrock
source material, as a function of the ratio of abrasion
coefficients for the weak and hard rock types (aw/ah), for
L > 1/ah. Curves shown are for various mass percentages of
the hard rock in the coarse sediment entering the channel
network.
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fully explain observed fining rates, then abrasion must be
responsible for the balance of the size reduction [e.g., Rice,
1998; Gomez et al., 2001; Moussavi-Harami et al., 2004].
As shown by the theoretical results presented above in
section 2, however, abrasion can only be effective in
reducing bed material size when there is a downstream
change in the grain size distribution supplied by hillslopes
to the channel network.
[37] We can consider two kinds of downstream changes

in input grain size distribution, gradual and abrupt. Gradual
fining of the coarse sediment supply is probably common in
actively incising landscapes for a number of reasons. The
highest ridges that make up the watershed divide furthest
from the drainage basin outlet are likely to have the steepest
average hillslope gradients. To the extent that geologic
materials and structure influence channel network architec-
ture, the more distal portions of the watershed are also more
likely to be underlain by more durable bedrock. In transient
landscapes, where erosion rates are not spatially uniform, it
may often be the case that higher erosion rates occur on the
steeper slopes in low-order subbasins. In large watersheds,

gradients in temperature and precipitation may result in a
greater role at higher elevations for mechanical (versus
chemical) weathering processes in producing transportable
regolith. Each of the these factors may correlate with a
coarser hillslope sediment size distribution. Moreover, hill-
slope sediment production and transport processes likely to
supply coarse material to the drainage network, such as
debris flow generating landslides, are also more likely to
deliver sediment to the steeper channels further from the
outlet. Abrupt changes in input grain sizes can occur where
channels cross lithologic contacts, and at tributary junctions
where channels draining different lithologic units, or land-
scapes of differing erosional characteristics, combine to
form a new bed load mixture.
[38] Here we explore two downstream fining scenarios,

each of which is driven by an abrupt change in the grain size
distribution of the supplied sediments. We focus on abrupt
supply transitions because for the case of a gradual down-
stream reduction in the input grain size, the change in bed
material size distribution should closely track the changing
input; bed load fining rate is specified precisely by the input
fining rate as long as the characteristic scale over which De

varies is greater than L*D. The close coupling of the bed
load and input distributions will also occur when the fining
of the supply coincides with a gradual change in mass input
rate q(L).
3.1.1. Fining in a Simple Channel
[39] In the first example, we consider a simple main stem

channel without major tributary inputs, where the channel
receives a spatially uniform rate of sediment mass input
(i.e., q(L) is constant). This is perhaps equivalent to a
narrow bedrock canyon where sediment is supplied
predominantly from the canyon side slopes. As depicted
in Figure 9a, we simulate the crossing of a lithologic contact
at the midpoint of a 40 km long channel by imposing an
abrupt reduction in the input size of a uniform grain size
(De), from 100 mm to 50 mm. The coarser sediment
supplied upstream is also assumed to be more durable than
the finer downstream supply, hence it has a lower value of
the abrasion coefficient a.
[40] Figure 9b shows the downstream change in the

geometric mean of the bed load size distribution, for both
the upstream- and downstream-supplied sediments, and for
the total bed load mixture below the contact. Upstream
of the contact the mean grain size declines initially and then
stabilizes, due to the evolution of the bed load pdf away
from the entering sediment pdf of a single grain size spike
(as in Figure 3b and Table 1). Results for two values of
upstream sediment a are shown; the evolution of the bed
load distribution is more rapid for the less durable case (a =
0.002/m) than for the case of more durable rock (a =
0.001/m). For both values of upstream a, the bed load pdf
reaches steady state before the lithologic contact at L =
20 km. Immediately downstream of the contact the supply
shifts to the less durable (a = 0.004/m), finer-grained
sediment, and the mean grain size of the bed load mixture
(labeled ‘‘total’’) declines rapidly until it stabilizes at a value
equal to the mean of the steady state bed load pdf
determined by the input size distribution.
[41] The fining downstream of the contact occurs for

three reasons. First, abrasion of the coarse material supplied
from upstream is no longer balanced by resupply of coarse

Figure 9. Downstream fining example. Variation with
downstream distance L of (a) entering sediment uniform
grain size, (b) geometric mean diameter of the bed load, and
(c) the bed load mass flux. Results are shown for two
different abrasion coefficients (a = 0.0001/m and a =
0.0002/m) for the upstream coarse sediment (De = 100 mm);
for downstream source sediment (De = 50mm),a = 0.0004/m.
Also shown are the grain size and mass flux for the bed
load mixture downstream of the lithologic contact at L =
20 km.
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material, and the particles of the upstream lithology that
cross the contact are progressively reduced in size until all
have been converted to silt and sand and swept away in
suspension (Figure 9c). Second, the mean size of the newly
introduced finer material also declines as its pdf evolves
from the initial spike input to the steady state bed load pdf
(Figure 3b). Third, the mean of the resulting bed load
mixture is an average of the upstream- and downstream-
derived materials (both of which are declining), weighted by
the relative mass of each component of the mixture. As
shown in Figure 9c, the mass of the upstream component of
the mixture drops off rapidly below the contact, while the
mass of the downstream component climbs to its steady
state value. The rate of mass loss of the coarse fraction, and
thus the rate of fining of the bed load sediment mixture, is
more rapid when the upstream sediment is less durable, as
expected.
[42] This example illustrates how the efficiency of abra-

sion, as parameterized by a, controls the rate of fining
downstream of an abrupt change in the input size distribu-
tion. The abrasion coefficient controls both the steady state
mass of the coarse material as it arrives at the lithologic
contact, and the rate of size reduction with distance. Also,
because we assumed that the finer sediments are less
durable, the downstream sediment mass equilibrates to a
lower mass, thus reducing the mass component of the finer
sediments in the bed load mixture and lengthening the
distance over which the fining occurs.
3.1.2. Fining Along a Channel Network Mainstem
[43] We next consider downstream fining due to an

abrupt reduction in the mean of the size distribution of
entering sediment, in the setting of a real channel network,

the upper Noyo River in Mendocino County, California
(Figures 1, 2a, 2b, and 2c). In contrast to the previous
example, we specify two very poorly sorted entering
sediment size distributions (Figure 10a), both derived from
log normal distributions but with the coarse tail of the
coarser upstream distribution severely truncated (resulting
in negative skew) and the fine tail of the finer downstream
distribution severely truncated (resulting in positive skew).
We assign a = 0.0001/m to the finer distribution and a =
0.00005/m to the coarser distribution. The lithologic
contact is assumed to cross the watershed such that the
more durable coarse sediment is supplied to all channel
segments that are greater than 19 km upstream of the
downstreammost point in the network (the ‘‘outlet’’). Note
that the modeled input grain size distributions are not
based on field measurements, but rather are selected to
illustrate how downstream fining might occur in a channel
network.
[44] The upper Noyo River channel network and

watershed topography are derived from overlaying the
USGS blue line DLG onto a 10m DEM and extending
the channel network by using a 40,000 m2 channel initiation
threshold. The tips of the channel network used here
have been pruned to exclude channels steeper than 10%,
because of the presumed dominance of debris flow sediment
transport and valley incision in the steeper headwater
channels [e.g., Stock and Dietrich, 2003; Dietrich et al.,
2003].
[45] For the outlet and for each of nine points midway

between major tributary junctions along the main stem, we
use a numerical routine to calculate the resulting grain size
distribution and mass of the bed load. For each point of

Figure 10. Simulated downstream fining in the Noyo river basin. (a) Entering size distributions for the
more durable (a = 0.00005/m) upstream (x > 19 km) sediment and less durable (a = 0.0001/m)
downstream sediment. (b) Bed load sediment size distributions for nine nested subbasins and the outlet
(locations shown in Figure 1). (c) Variation in median grain size and drainage area with distance upstream
of the outlet along the main stem. (d) Predicted annual bed load mass flux with distance upstream of the
outlet along the main stem.
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analysis we calculate the width function and the coinciding
incremental area function (Figures 2a and 2c show these
functions for the outlet). The sediment loading for each
upstream distance is obtained by summing the mass input of
each incremental area (equation (24)), assuming a uniform
erosion rate E of 0.1 mm/yr, and a rock density rs of
2500 kg/m3. From the mass loading and the appropriate
grain size pdf by mass, we calculate the number of input
particles in each size class. Finally, for each travel distance,
the grain size reduction due to abrasion is calculated and the
grain size distribution is obtained by summing over all
upstream distances.
[46] Figure 10b shows the bed material grain size dis-

tributions for each of the nine nested subbasins and for the
outlet. The downstream evolution of the median grain sizes
is shown in Figure 10c, along with the downstream accu-
mulation of drainage along the main stem. Where the
channel is upstream of the shift in supply (x > 19 km,
subbasins 7, 8 and 9), the bed load pdf is indistinguishable
from the entering sediment. Downstream of the shift to
the finer supply, the median grain size declines rapidly
(Figure 10c), reflecting the gradual shift in the grain size
distribution of the bed load mixture from the coarse to the
finer supply. The bed load pdf at the outlet is not identical to
the steady state bed load pdf that corresponds to the finer
entering sediment distribution, however, for two reasons.
First, L*D � 52 km for that distribution, so the fine supply
component of the bed load is still evolving. Second, there is
also a significant fraction of the bed load particles at the
outlet which are derived from the coarse supply delivered in
the distal portions of the watershed because L*D � 125 km
for the coarser upstream distribution of entering sediment.
All the coarse supply particles initially larger than about
5 mm are thus still part of the bed load mixture at the outlet,
but their size has been greatly reduced by abrasion. As a
result, the mean of the outlet distribution is somewhat
smaller than the mean of the fine-grained supply, but the
outlet distribution also has a slightly thicker tail in the
coarse size classes.
[47] The downstream evolution of the bed load flux M(x)

is shown in Figure 10d. Mass increases rapidly and
continuously in the upstream portion of the main stem
profile (15 km < x < 20 km), with no apparent effect from
crossing the supply discontinuity at 19 km. Below x =
15 km, however, the bed load flux drops to about half the
peak value, reflecting the increased efficiency of abrasion
(greater a) of the less durable downstream supply and the
reduced rate of area accumulation downstream of the peak
in the width function (Figures 2a and 2b).

3.2. Tributary Junctions

[48] The branching structure of channel networks should
most strongly influence bed material grain size distributions
at tributary junctions, where abrupt changes in the charac-
teristics of sediment supply to the main stem channel are
possible. Tributary junctions are commonly observed to be
sites of infusions of coarse material, particularly where
debris flows arriving from steep tributary channels are
halted by high angle junctions with the main stem [e.g.,
Howard and Dolan, 1981;Montgomery et al., 2003]. Where
lateral sediment supply from adjacent hillslopes is inter-
cepted by wide valley bottoms, pronounced downstream

fining between tributary junctions has been observed [Rice
and Church, 1998; Rice, 1998, 1999], although selective
transport may be the dominant influence if there is net
deposition [e.g., Ferguson et al., 1996; Hoey and Bluck,
1999]. Here we consider how particle abrasion and spatial
variability in sediment supply can affect the magnitude of
perturbation of the main stem bed material at tributary
junctions, for the case of no net deposition over geomorphic
timescales.
3.2.1. Individual Tributary Junctions
[49] If the two streams are transporting the same bed load

size distribution, composed of rocks of equal durability (i.e.,
same a), there will be no change in the main stem grain size
distribution downstream, only a change in bed load mass
flux. Where the size distributions of the bed load in each
stream are not the same, the resulting change in main
stem grain size (DD) will scale with the magnitude of the
change in bed load mass flux in the main stem (DM) after
the addition of the tributary input. Figures 11a and 11b
show schematic diagrams of changes in bed load mass
flux and median grain size across a tributary junction.
For this simple example, the main stem contribution of bed
load flux (Mm) is assumed to come from the upstream
supply of sediment from the valley side slopes, and is
shown as constant in Figure 11 although we might expect
it to change over the scale of the diagram due to variations
in the local side slope supply rate. We first consider changes
in only the bed load mass flux, and then changes in grain
size.
[50] Because particle abrasion converts a significant frac-

tion of the bed load material supplied upstream to silt, the
fractional change in bed load mass immediately down-
stream of the junction (DM/Mm) will not scale simply with
relative drainage area, but rather should depend on the
upstream lengths of the two channels (Ltrib and Lms). For the
case of spatially uniform erosion rate in both the tributary
and upstream main stem watersheds (i.e., uniform side slope
supply for all channels), we can identify three classes of
tributary junctions, scaled by the ratio of the upstream
lengths of the two channels (Ltrib and Lms) to the mass
equilibration length 1/a. The simplest case is where both
channels have reached steady state bed load mass flux (i.e.,
Ltrib > 1/a; Lms > 1/a) and the flux doubles immediately
downstream of the junction (DM/Mm � 1). Where only the
main stem mass has equilibrated (Ltrib < 1/a; Lms > 1/a), the
fractional change in mass DM/Mm � 1 � e�aLtrib and where
both stream lengths are less than 1/a, the fractional mass
change DM/Mm � (1 � e�aLtrib)/(1 � e�aLms). As shown in
Figure 11a, the mass perturbation will decay exponentially
downstream, because the sediment resupply from side slope
erosion is only sufficient to sustain the original main stem
bed load fluxMm. The length scale for the decay of the mass
is simply 1/a, the distance over which 95% of the tributary
mass will have been abraded to silt.
[51] Where tributaries transport a coarser size distribu-

tion than the main stem, the mean size distribution of the
sediment mixture immediately downstream will be approx-
imately equal to the average of the two distributions,
weighted by their relative mass contribution. For lognor-
mal pdfs of bed load sediments we can use a simple
mixing relation to calculate the change in mean grain size
(DD = Dmix � Dm) as a function of the mean grain sizes of
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the main stem (Dm) and tributary (Dt) and the bed load mass
of the two streams, Mm and Mt respectively, as

DD

Dm

¼ Mt

Mt þMm

� �
Dt

Dm

� 1

� �
ð25Þ

Note the constraint that 0 � [Mt/(Mt + Mm)] � 1.
[52] Figure 11c shows solutions of equation (25) as

contours of constant (DD/Dm), for the relative grain size
range of 1 < Dt/Dm < 5, and for all possible mass ratios.
Small perturbations in grain size (e.g., DD/Dm = 0.5) occur

when the tributary mass contribution is small but the grain
size difference is large, or when the grain size difference is
small but the tributary mass is large. For large grain size
changes (e.g., DD/Dm = 4) both the mass contribution and
the grain size difference must be large. The distance over
which the grain size perturbation decays L*DD will scale with
the travel distance required to abrade the coarser tributary
sediments down to the size of the main stem inputs from
upstream

LDD* ¼
1

a
ln

Dt

Dm

� �
ð26Þ

These results are consistent with the field observations and
qualitative arguments of Knighton [1980].
3.2.2. Multiple Tributary Junctions
[53] If the spacing between tributary junctions is small

relative to the tributary mass decay length scale 1/a then the
effects on the main stem of an individual tributary sediment
injection will be superposed on the partially decayed legacy
of upstream tributary junctions. Conversely, if 1/a is much
smaller than the distance between tributary junctions, then
the bed load sediments of large segments of the main stem
channel will reflect only the local valley side slope supply,
with no hint of disruptions due to upstream tributary
junctions. Here we explore the range of potential bed load
mass flux variability along the main stem of the Noyo River,
by varying the rock durability parameter a over three orders
of magnitude.
[54] For this calculation we selected the 26 tributaries

entering the Noyo River main stem along its �20 km course
that have a contributing area greater than 0.38 km2. Every
junction is associated with a main stem channel length
segment. (Each channel segment arc has a unique length,
the average is �100 m.) For the remaining nontributary
channel segments we then used the length-weighted average
incremental drainage area addition (a = 0.68 km2/km), and
equation (24), to calculate an average valley side slope
loading rate (qvss) of 0.17 tons/yr km, and assumed that this
value applies to the main stem and each tributary above its
confluence with the main stem. For each tributary we
measured the upstream maximum travel distance within the
subnetwork to obtain Ltrib and calculated the bed load mass
flux of the tributary Mt and the main stem Mm just upstream
of the confluence using a simplified form of equation (15)

M Lð Þ ¼ qvss

3a
1� e�3aL
� �

ð27Þ

For L = 1/a the bed load flux approaches the steady state
value Mss � qvss/3a.
[55] Figure 12 shows a dramatic difference in the pre-

dicted pattern of bed load flux variation along the main
stem, due to the combination of tributary and main stem
valley side slope inputs, as we vary a from 0.01/m (very
weak rocks) to 0.00001/m (very hard rocks). When the bed
load sediments break down very rapidly (a = 0.01/m;
Figure 12a), the bed load flux of both the tributary and
the main stem is at the steady state side slope supply value
Mss, and the main stem flux doubles at each tributary
junction. The doubling is short-lived, however, as the
perturbation to the main stem bed load flux decays very
rapidly. For this end-member case of very weak rocks, the
bed load flux at any point along the main stem channel is

Figure 11. Perturbations to main stem bed load flux and
mean grain size at individual tributary junctions.
(a) Variation in bed load mass flux with downstream
distance of the main stem sediments supplied from upstream
and the valley side slopesMm, the sediments supplied by the
tributary Mt, and the resulting sediment mixture Mmix.
(b) Variation in mean grain size with downstream distance
of the tributary Dt and mainstream Dm sediments and the
resulting sediment mixture Dmix. (c) Contours of constant
relative grain size perturbation DD/Dm as a function of the
mass fraction of tributary sediments Mt/(Mt + Mm) and ratio
(Dt/Dm) � 1 at the tributary junction.
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essentially independent of both the drainage area of any
individual tributary basin and the spacing between tributary
junctions.
[56] Differences among tributary junctions begin to

emerge when we consider moderately weak rocks (a =
0.001/m; Figure 12b). The perturbation decay length scale
1/a is an order of magnitude longer than in the previous
case, longer than the spacing between most adjacent con-
fluences. Only two gaps between junctions (at Lm � 7 and
17 km) are large enough for the mass flux to drop back to
the steady state value Mss. Some of the smaller tributary
basins have Ltrib < 1/a and thus contribute less than Mss to
the bed load mixture, however, even the smallest subbasins
have reached �70% of the steady state flux. As a result,
there is some minor variability in the size of the main stem
flux perturbation, mostly due to the occurrence of some
closely spaced confluences, where the tributary mass
superposition is significant.
[57] Increasing rock durability by another order of mag-

nitude (a = 0.0001/m; Figure 12c) fundamentally alters the
pattern. For these moderately hard sediments, the tributary
decay distance 1/a is greater than all interjunction distances,
and much greater than most, so that tributary superposition
elevates the average main stem flux to roughly double Mss.
Pronounced differences emerge in the magnitude of mass
perturbations caused by tributaries of differing sizes. Large
tributaries, particularly those entering downstream of a long
unbranched length (e.g., Lm � 18 km), cause the largest
change in bed load flux, while small tributaries (e.g., Lm �
8 km) result in very small changes in flux, but do have the
effect of resetting the decay and prolonging the spatial
duration of elevated bed load mass.

[58] For the end-member case of very hard rock (a =
0.00001/m; Figure 12d), the decay distance 1/a is much
longer than the entire modeled profile length so that bed
load mass flux, due to both tributary and valley side slope
supply, increases steadily, roughly in proportion to the
increase in upstream drainage area. Individual confluences
result in step function increases in bed load, with no portions
of the profile showing downstream decline in flux. At the
downstream end of the 20km profile, bed load mass due to
valley side slope supply has grown to about half of the steady
state side slope fluxMss of 6000 ton/yr. Because of abrasion,
however, the total mass flux is only 20% of the total
upstream coarse sediment supply for this 160 km2 basin.

3.3. Width Function

[59] We now consider how the branching structure of
channel networks, as represented by the width function,
might influence bed material grain size distributions and
bed load mass flux at any single point within the network.
The width function (Figure 2a) is the distribution of travel
distances to a downstream point, and its low-frequency
component broadly reflects the shape of the drainage basin
[e.g., Rinaldo et al., 1995], and at finer scales reflects the
internal branching structure of the network [e.g., Troutman
and Karlinger, 1984; Rinaldo et al., 1993]. Because size
reduction by abrasion is a simple function of travel distance,
it is reasonable to expect that basins with differing width
functions will have different bed material characteristics.
Moreover, because the width function is a function of
length, its characteristic scales of variability in the low-
frequency component (depicting the shape of the basin) and
its high-frequency components (depicting the fractality of

Figure 12. Variation in bed load mass flux along the Noyo River main stem due to tributary sediment
inputs for various values of the abrasion coefficient a. Mass flux M(L) is normalized by the steady state
mass flux Mss for uniform side slope input q(L) = 170 ton yr�1 km�1. Thickest line shows total mass flux
Mmix, which is a sum of the tributary bed load Mt (thinnest lines, lower portion of each panel) and the
main stem bed load due to valley side slope supply Mm (medium thick line, which asymptotes to Mss).
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the branching structure), relative to the fundamental
abrasion length scale 1/a, will influence both the grain size
pdf and mass of bed load sediment at the outlet of the basin.
Note that if the erosion rate E and the incremental drainage
area per unit channel length a are uniform across the basin,
the width function would be equivalent to the incremental
sediment loading function q(L).
[60] Here we report the results of three numerical experi-

ments in which we compare three different loading func-
tions (equivalent to width function shapes), shown in
Figure 13b. Note that the basin outlet is located at L =
30 km, so that the upstream is on the left of Figure 13 and
the downstream on the right, the reverse of the conventional
representation of the width function. The basin that corre-
sponds to width function ‘‘A’’ would have a large fraction of
the drainage area located close to the outlet. The most
common basin shape, which narrows toward the outlet
and only has a small area fraction close to the outlet, would
correspond to ‘‘B.’’ Width function ‘‘C’’ is equivalent to a
long, narrow basin without significant branching structure.
3.3.1. Effect of Variance of the Entering Sediment pdf
[61] In the first experiment we varied the spread of the

distribution of entering sediment to see how the basin shape
would affect the resulting pdf of bed load sediment at the
outlet. We used the same four pdfs of entering sediment, one
of constant size and the other three lognormal, as in Figure 6
and Table 1. Figure 14 shows the steady state bed load
sediment pdfs of the four entering sediment pdfs, for each of
the three width functions. Two clear patterns are apparent.
[62] First, there is a systematic difference in the extent to

which the bed load pdfs are different from the entering pdfs,

Figure 13. Variable entering sediment size and load rates
for numerical experiments with the width function.
(a) Entering grain size used only in experiment of Figure
16 showing abrupt downstream fining of supply at L =
10 km. (b) Three different load rate functions (A, B, and C),
where functions A and B mimic the lateral load that would
enter the main stem in two different basins of width
functions having shapes similar to A and B and C is
equivalent to a constant width basin. The outlet of the basin
is at distance L = 30 km.

Figure 14. Comparison of the pdfs of entering and steady state bed load diameter by mass for the three
different load functions A, B, and C given in Figure 13 for four input pdfs of varying width (Table 1): (a) a
constant size of entering sediment De = 500 mm, (b) LN1, (c) LN2, and (d) LN3.
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which is most apparent for the case of a single uniform
entering grain size (Figure 14a). Width function C is the least
modified, B is the most modified, and A is intermediate. This
pattern can be explained by considering the area under the
loading curves in Figure 13 and recognizing that for this
example the travel distance required to convert the coarsest
entering grains to sand (L* = 27.6 km) is the same order of
magnitude as the length of the simulated basins. The
loading nearest the outlet (L � 30 km) will have the greatest
influence on the bed load pdf, particularly for the pdf by
mass because of the cubic dependence of mass on grain
diameter. Width function ‘C’ has the largest near-outlet
loading and thus produces a bed load pdf that most closely
resembles the entering sediment pdf, while B has very little
loading over the nearest 5 km to the outlet so much more of
its sediments have been reduced in size by abrasion.
[63] Second, as the variance of the entering sediment pdf

increases, the effect of the differing width functions
decreases. For the distribution with the largest variance,
LN3 (Figure 14d), there is almost no difference between the
width functions A, B and C, implying a very weak depen-
dence of the bed load sediment pdf on the basin shape and
the branching structure of the river network. Width function
C is equivalent to the analytical result discussed above for a
constant load q (Figure 6). The effect of the asymmetrical
loading is to allow abrasion to modify the entering pdf
slightly more extensively, by suppressing the resupply of
the fresh entering pdf near the outlet. This near-outlet
resupply reduction is greater for the case of B than A, thus
the B bed load pdfs are somewhat finer than the others, even
for the largest variance (Figure 14d). Overall, however, it
can be said that for highly unsorted sediment entering from
the hillslopes, the structure of the river network does not
leave its imprint on the bed load sediment size downstream.
3.3.2. High-Frequency Variability in Sediment Supply
and Travel Distances
[64] For the problem under consideration, i.e., bed mate-

rial grain size distribution and bed load mass flux, the
fractality of the river network enters into the picture in
two distinct but related ways. First, the sediment supply to
the main stem can be considered proportional to the
incremental drainage area per unit channel length, which
is known to exhibit high-frequency variability (e.g.,

Figure 2c). Second, the travel distances to the outlet, which
control the size reduction by abrasion, are also known to
exhibit high-frequency variability and are imprinted in the
high-frequency fluctuations of the width function, which
have been extensively studied in the literature [e.g., Rinaldo
et al., 1993].
[65] These two sources of high-frequency variability are

bound to influence the bed load size distribution but it is not
obvious how. Here we have performed a numerical exper-
iment in which a channel reach of 30 km receives a lateral
load with high-frequency fluctuations mimicking those of
the incremental area per unit channel length of Figure 2c.
This load function q(L) is created by superimposing
Gaussian white noise on a constant load q, and the standard
deviation of the noise is set as 10% of the constant load.
[66] Figure 15 shows the steady state bed load pdfs by

mass for the case of constant entering sediment load (solid
lines) and load with high-frequency fluctuations superim-
posed (dashed lines) and for two pdfs of entering sediment
(constant size and narrow-width lognormal). We observe
that only in the case of a single input sediment size do the
high-frequency fluctuations in the load get propagated to the
pdf of the bed load sediment. In all other cases, the high-
frequency variability of the input sediment is effectively
eliminated even by the most modest variance of input
sediment (LN1 in Figure 15b). Fluctuations of long memory
or long-range dependence and power law distributions can
be easily tested and will be the subject of subsequent
research.
3.3.3. Effect of the Abrasion Length Scale 1/A
[67] As previous examples have illustrated clearly, the

rock durability parameter a sets the length scale for the
downstream propagation of signals created by spatial var-
iability in the rate and grain size of sediments supplied to
the channel network. Here we investigate how this funda-
mental length scale modulates the influence of the upstream
basin shape on the bed load sediments passing the outlet.
For this experiment we use the simple pdf of a single
entering grain size, and impose an abrupt shift 20 km
upstream of the outlet (Figure 13a), from De = 100 mm
upstream to De = 50 mm downstream; rock durability is
assumed equal for both entering sizes. To simulate the range
of possible outcomes for rocks ranging in strength from

Figure 15. Comparison of pdfs of entering sediment diameter by mass fe
m(ln De) (dashed lines) to those

of the steady state pdfs by mass of the bed load fb
m(ln D) (solid lines) for (a) the constant size and (b) the

narrow width pdf LN1 for a constant load function with 10% Gaussian noise. Note how the fluctuations
in the load are dissipated when there is even modest width to the pdf of the entering sediment.
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very hard to very weak we vary a through almost three
orders of magnitude.
[68] Figure 16a shows the variation in bed load mass flux

for the three basin shapes (A, B, and C, Figure 13) over the
range of rock durability. For the hardest rocks (a �
0.00001/m), there is no significant difference between the
three width functions, abrasion is so inefficient that the mass
flux scales simply with the area under the width function
curves (Figure 13), which is the same for each basin shape.
As rock durability declines (greater values of a) the bed load
mass flux out of each basin is reduced, due to the increased
mass transfer from bed load to suspended load by abrasion
upstream of the outlet. The reduction in bed load flux with
increasing a is most pronounced for basin B, and least for
basin C because of the increased importance of the sediment
input rate from the portion of the basin located close to the
outlet. For the weakest rocks simulated (a = 0.001/m), the
length scale for mass equilibration with the local supply rate
is approximately 1% of the basin length; virtually all gravel
and coarser material supplied to the channel network by
hillslopes is ground to silt before passing the outlet point.
The modeled step function fining in entering sediment grain
size at 20 km from the outlet does not significantly affect the
bed load mass reaching the outlet, even when the rocks are
very durable (low values of a).
[69] The effect of varying rock durability on the mean

grain size of the bed load grain size distributions at the
outlet is shown in Figure 16b, for the three width function
shapes. When the rocks are very resistant to abrasion (a �
5 � 10�6/m), all three width function shapes deliver a
relatively coarse mean grain size to the outlet, because the
coarser 100mm particles supplied from upstream retain
significant mass at the outlet despite their long travel
distance. The mean delivered by width function shape A
is less coarse than the means for the other two shapes
because A has about half as much area under the loading
curve upstream of the shift in input sizes as the other two
width functions. As rock durability decreases (a increases),
the mean grain size for all width functions becomes smaller

because the downstream finer supply begins to dominate.
For the weakest rocks the mean grain size is no longer a mix
of the coarse and fine supplies because all the coarse grains
are ground to silt before reaching the outlet. Instead, for this
example, the variation between width functions in the mean
grain size depends on the rate of change of the loading
nearest the outlet. Width function C has a uniform load and
thus delivers the steady state bed load size distribution that
evolves from the single size input of 50 mm. Width
functions A and B deliver finer sediments to the outlet than
‘C’ because the load rates are declining, particularly for B,
such that the resupply near the outlet does not fully offset
the size reduction of the sediments supplied just upstream.
[70] This example illustrates that the basin shape and

branching structure can influence grain size distributions at
a downstream point in the network, but the effect of variable
width function shape is strongly modulated by the efficiency
of particle abrasion.

4. Discussion

[71] Contrary to our initial expectations, channel network
structure alone does not appear to meaningfully influence
bed material grain size distributions. Rather, basin shape
and the internal branching pattern can either amplify or
dampen the effects of spatial variability in the size of
sediments delivered to channels by hillslopes. In the ab-
sence of strong spatial variations in input sizes, rock
durability or erosion rate, downstream abrasion and contin-
uous replenishment of coarse sediment supply combine to
drive the channel system to a steady state bed load flux and
size distribution independent of network structure. As
illustrated above, the influence on bed load variability of
channel network properties such as the width function and
the spacing between tributary junctions depends on the
fundamental length scale imposed by particle abrasion.
Sediments derived from weak rocks wear to silt over such
a short distance that the evidence of the upstream network
structure is effectively destroyed. Themost abrasion-resistant
rocks require such long distances to wear significantly that
differences in travel path to a point don’t result in strong
differences in grain size. It is for sediments of intermediate
rock durability that we expect the greatest variability in bed
load mass, because fluctuations in valley side slope supply
(Figure 2c), tributary junction spacing (Figure 12c), and
basin width are most likely to occur at length scales that
allow for significant wear but not complete destruction of
sediments supplied from upstream.
[72] Our results offer a new perspective on the debate

over the cause of downstream fining. As Rice [1999] and
Heller et al. [2001] have previously suggested, abrasion
alone will not cause fining when there is active resupply
from local sources, which there must be over a sufficiently
long timescale. Thus observed patterns of fining in actively
incising terrain may be due to a combination of relatively
short-term (�1–10 ka) selective transport of finer bed load
material and net deposition of coarser grains, and a
systematic landscape-scale gradient in the size distribution
of sediments delivered by hillslope processes. This second
scenario has been previously suggested by Pizzuto [1995] in
modeling the pattern of fining first reported by Brush [1961]
in an Appalachian watershed with strong lithologic
contrasts.

Figure 16. (a) Mass flux and (b) geometric means of the
bed load sediment for the load functions A, B, and C of
Figure 13 as a function of the abrasion coefficient a.
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[73] The tendency for bed load mass flux to approach a
steady state value has important implications for under-
standing the influence of sediment supply on river incision
and landscape evolution. From our analysis and simulations,
a picture emerges of the mobile bed load mass as a silt
factory, which efficiently adjusts its productivity to match
the rate of coarse sediment input. Contrary to the common
assumption that bed load mass flux increases steadily with
increasing drainage area, our results suggest that bed load
mass equilibrates with hillslope supply over a length scale
of 1/a, after which it becomes independent of drainage area.
For spatially uniform sediment inputs, the fraction of the
total load that travels in suspension should then increase
downstream while the bed load fraction is reduced. Dis-
charge obviously does scale with drainage area [e.g.,
Leopold and Maddock, 1953; Gupta et al., 1996], so that
we might expect the ratio of bed load sediment supply to
transport capacity to decrease downstream, resulting in
greater exposure of bedrock in the channel bed [Sklar and
Dietrich, 1998, 2004] and perhaps a less rapid growth in the
bedrock channel width with downstream distance [e.g.,
Montgomery and Gran, 2001; Whipple, 2004]. If the slope
of bedrock rivers depends on the bed load sediment supply
relative to transport capacity [Sklar and Dietrich, 2006],
then tributary junctions where Ltrib < 1/a < Lm might form
convexities in the main stem profile, even in the absence of
grain size variations [Sklar and Dietrich, 1998]. This would
occur because the marginal increase in main stem load
downstream of the junction is greater than the increase in
discharge, requiring a steeper slope than upstream of the
junction to maintain partial exposure of bedrock and active
bed incision. In the extreme case, hanging valleys could
result where tributaries with high bed load sediment loads
relative to available discharge cannot incise rapidly enough
to keep up with main stem channels that have abundant
discharge but only limited bed load flux. Because bedrock
lithology and rainfall are generally heterogeneous at length
scales equal to or less than the abrasion length scale 1/a,
feedbacks between hillslope sediment supply, bed load
composition, and bedrock incision may be important in
driving dynamic evolution of the drainage network structure
itself.
[74] We can also use our results to speculate about the

influence of rock durability on the timescale of adjustment
of bed material to shifts in sediment supply. Temporal
variations in the size distribution or rate of sediment supply
might be caused at longer timescales by changes in hillslope
sediment production processes brought on by changes in
climate [e.g., Inman and Jenkins, 1999] or erosion rate [e.g.,
Peizhen et al., 2001] or exhumation of different lithologies
[e.g., Clapp et al., 2000], and at shorter timescales by shifts
in land use [e.g., Doyle and Shields, 2000] or simply the
temporal variability in sediment delivery inherent in
magnitude-frequency relations of different hillslope sedi-
ment production and transport processes (e.g., landsliding
versus soil creep). The timescale of bed response t should
scale with the ratio of the abrasion length scale L*D to the
average sediment velocity us

t � LD*

us
¼ ln Dmax=Dminð Þ

aus
ð28Þ

Annual downstream transport distances for gravel- and
cobble-sized grains are of order 100m [e.g., Hassan et al.,
1991] so, for example, if Dmax = 100 mm, a = 0.0002/m,
and L*D � 20 km, then approximately t = 200 years are
required for the evidence (in the bed load) of the prechange
sediment supply to be destroyed. For harder, coarser rocks
(e.g., Dmax = 500 mm, a = 0.00005/m, L*D � 100 km), t =
1000 years, while for weaker rocks producing a finer
grained supply (e.g., Dmax = 50 mm, a = 0.005/m, L*D �
0.6 km) t might be less than a decade. This back of the
envelope calculation suggests that the composition of active
river bed sediments adjusts quite rapidly to temporal
changes in sediment supply characteristics, and that
significant supply from long-term storage reservoirs in
floodplains, terraces and fans is required for a previous
sediment supply regime to maintain its influence over
contemporary bed materials.
[75] The predicted tendency for the mass flux to reach a

steady state Mss = q/3a after a distance L*D downstream of
the most distant channel head may provide a simple method
for estimating long-term average bed load in a field setting.
This would require estimating the average hillslope
sediment production rate, the fraction of the hillslope
sediment supply coarse enough to move initially as bed
load, and a representative value for the abrasion coefficienta.
The local topography and channel network structure can
then be used to determine the incremental area per unit
channel length and the location of L*D. Estimates ofMssmight
be useful in a wide variety of practical and theoretical
contexts, from predicting the gravel fraction of reservoir
sediment deposits [e.g., Willis and Griggs, 2003] to
interpreting longitudinal profile concavity [e.g., Sklar and
Dietrich, 2006].
[76] Caution in sampling bed load material sediments

(D � 2 mm) for cosmogenic radionuclide estimates of
watershed-scale erosion rates [e.g., Reusser et al., 2004;
Wolkowinsky and Granger, 2004] is also suggested by our
results. The more efficient the abrasion process (greater a),
the less the bedmaterial will reflect watershed-wide sediment
supply conditions. For the weakest rocks, only the most local
sources will be represented in a sample of bed load material.
Even for the hardest rocks, for sufficiently large basins
abrasion will tend to destroy the signal carried by coarse
sediments entering in the distal portions of the watershed.
Although not considered here, suspended material is also
subjected to abrasion during transport, so that samples of
sand may also be biased toward the local supply.
[77] Two major priorities for further research are sug-

gested by this work. First, the overarching question of what
controls the grain size distribution of sediments supplied by
hillslopes to the channel network encompasses a rich set of
questions about the roles of, and feedbacks between, bed-
rock lithology, climate, erosion rate, and hillslope sediment
production and transport processes, and represents a broad
frontier in process geomorphology. Second, and more
narrowly important, we need an improved basis for quan-
tifying the rate of abrasion of bed load sediments in rivers.
The Sternberg abrasion coefficient a sets the scale for bed
material evolution, yet this model parameter remains some-
what of a black box. Improved models for grain size
reduction that account for splitting as well as abrasion
may also change the predicted extent and pattern of grain
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size evolution with downstream transport. Methods are
needed both for translating experimental measurements of
size reduction and calibrations of a to specific field con-
texts, and for distinguishing in the field the particle size
reduction due to abrasion from other sources of spatial
variability in bed material grain size.

5. Conclusion

[78] We began this study with the thought experiment of
standing next to a gravel river bed in actively incising terrain,
looking upstream, and asking how the distribution of fluvial
travel distances and transport pathways imposed by the
drainage network structure should affect the size distribution
and flux rates of the bed material at this point. We conclude
that we need to look farther upstream, out of the channel and
up to the hillslope source of sediments, to understand the
spatial trends and variability in bed load size distributions.
The processes of particle size reduction by abrasion during
transport, and resupply of the entering sediment by local
sources, combine to drive the bed load transport system
toward two related equilibria: a steady state grain size
distribution that differs little from the hillslope supply, and
a steady state mass flux that abrades bed load mass to silt at
the rate of resupply of coarse sediment. The efficiency of
abrasion, parameterized by a, the exponent in the exponen-
tial abrasion rate law, sets the fundamental length scale for
bed material adjustment to spatial and temporal changes in
sediment supply characteristics, whether those changes are
due to emergent properties of the channel network structure
such as tributary junction spacing, or locally contingent
factors introduced by lithologic contacts or changes in land
use. Rock durability, the dominant factor in abrasion effi-
ciency, then controls where and how spatial variation in
sediment supply is expressed in the bed load size distribution
and mass flux across the landscape. This work highlights the
need to greatly improve our understanding of what controls
the size distribution of sediments produced and delivered to
channel networks by hillslopes.

Appendix A: Derivation of fb
g(D)

A1. Constant De

[79] We use a derived distribution approach by which the
pdf of a transformed random variable Y = g(X) is easily seen
to be given in terms of the pdf of X, fX(x), as

fY yð Þ ¼ fX xð Þ= g0 xð Þj j ðA1Þ

where g0(x) is the derivative of g(x). The relevant
transformation here is Sternberg’s law which transforms a
distance, and thus lateral load over that distance, to a grain
size D by

D xð Þ ¼ Dee
�ax ðA2Þ

We note from (A2) that dD/dx = �aD and thus for a
uniform lateral load of constant rate q (kg km�1 yr�1) we
can write that

f
g
b Dð Þ ¼ 1

L

�
dD

dx

����
���� ¼ 1

aDL
ðA3Þ

A2. The pdf of Entering Sediment fe
g(De)

[80] The last formula (A3) can be generalized to the case
for which the entering sediment is distributed according to a
probability distribution by grain f e

g(De).
[81] Let us first assume that the length of the channel L is

such that

L > LD;p* ¼
1

a
� ln Dmax;p

Dmin

� �
ðA4Þ

i.e., the bed load distribution has reached its steady state.
The entering sediments with size in the range [De, De + dDe]
result in the following number of grains at distance L:

q � f ge Deð ÞdDe � LDe
* ¼ q

1

a
� ln De

Dmin

� �
f ge Deð ÞdDe ðA5Þ

since the corresponding ‘‘active’’ part of the channel ranges
from the distance L � L*De

down to the distance L. The total
number of grains is given by

ZDmax;p

Dmin

q
1

a
� ln De

Dmin

� �
f ge Deð ÞdDe ðA6Þ

and the relative weight of the entering sediments with size
in [De, De + dDe] is then

p Deð Þ ¼
ln De

Dmin

� �
f ge Deð ÞdDe

ZDmax;p

Dmin

ln De

Dmin

� �
f
g
e Deð ÞdDe

ðA7Þ

[82] These bed load grains, (abraded from input sedi-
ments with size [De, De + dDe]) are distributed with the
following conditional pdf:

f
g
b DjDeð Þ ¼ 1

D ln De=Dminð Þ ðA8Þ

and thus the pdf of the bed load sediment is given by

f
g
b Dð Þ ¼

ZDmax;p

Dmin

f
g
b DjDeð Þp Deð ÞdDe ðA9Þ

Simple calculations eventually lead to

f
g
b Dð Þ ¼ 1

D
�

Z Dmax;p

D

f ge Deð ÞdDeZ Dmax;p

Dmin

f
g
e Deð Þ ln De

Dmin

� �
dDe

ðA10Þ

for Dmin � D � Dmax,p. The computation of the bed load
sediment pdf in the nonsteady state case is similar and
results in equation (14) in the text.
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Appendix B: Derivation of M(L)

[83] The incremental mass change dM(L) in a length of
stream dL is given as

dM Lð Þ ¼ qdL� 3aM Lð ÞdL ðB1Þ

where the first term in the right hand side is the entering mass
over a distance dL and the second term is the lost mass by
abrasion. This second term is derived by noting that each
grain of size De entering at L = 0 becomes Di = Dee

�aL at
distance L, and its mass Mi = De

3e�3aL; thus the mass lost to
abrasion for this grain is dMa,i(L) = Mie

�3aL and the total
mass lost to abrasion from all grains Ma(L) =

P
dMa,i(L) =

M(L)e�3aL yielding the total mass lost due to abrasion
dMa(L) = �3aM(L)dL. From (B1), we solve for M(L)
assuming initial condition M(0) = 0 to get

M Lð Þ ¼ q

3a
1� e�3aL
� �

; L < LD* ðB2Þ

[84] In the case of L � L*D, there do exist grains of initial
size De that have been abraded to the size Dmin and that are
since washed out by the stream. At distance L, there are
NedL = q/kDe

3 dL such grains, since all grains with size Dmin

at distance L have entered the stream at the same
(upstream) distance L � L*D. The corresponding lost mass

is NekDmin
3 dL = q(

Dmin

De

)3 dL. Equation (B1) then becomes

dM Lð Þ ¼ qdL� 3aM Lð ÞdL� q
De

Dmin

� �3

dL ðB3Þ

whose solution is, since M(L*D) is analytically known
through (B2)

M Lð Þ ¼ q

3a
1� Dmin

De

� �3
" #

; L � LD* ðB4Þ

Note that for L � L*D the bed load mass flux does not
depend on L.

Notation

a incremental drainage area per unit channel length
(km2 km�1).

D bed load grain diameter (mm).
De diameter of entering sediment (mm).

Dmax maximum bed load grain diameter; D > Dmax is
immobile (mm).

Dmax(L) grain diameter that will wear to Dmin after
traveling a distance L (mm).

Dmax,p maximum grain diameter having probability of
nonexceedance p (mm).

Dmin minimum bed load grain diameter; D < Dmin

travels in suspension (mm).
E erosion rate (mm yr�1).

f b
g(D) pdf of bed load grain diameter, frequency by

number of grains.
f b
m(D) pdf of bed load grain diameter, frequency by

mass.
f e
g(De) pdf of entering sediment diameter, frequency by

number of grains.
f e
m(De) pdf of entering sediment diameter, frequency by

mass.

Fe
m(De) cumulative distribution of entering sediment

diameter, by mass.
k grain mass coefficient (kg m�3).
L downstream travel distance along channel (m or

km).
L*D travel distance to reach steady state bed load size

distribution (m or km).
L*D,p distance to steady state size distribution, entering

pdf truncated at p.
L*M travel distance to reach steady state bed load

mass flux (m or km).
L*M,0.95 travel distance to reach 95% of steady state bed

load mass flux (m or km).
M(L) bed load sediment mass flux (kg yr�1).
Mss steady state bed load mass flux (kg yr�1).
Ne Number of entering grains per unit distance

(m�1).
p probability of nonexceedance.
q uniform sediment load entering river laterally (kg

m �1 yr �1).
q(L) spatially variable lateral sediment load (kg m�1

yr �1).
us annual average bed load particle velocity (m yr�1).
a abrasion coefficient (m�1).
ah abrasion coefficient of hard rock (m�1).
aw abrasion coefficient of weak rock (m�1).
DD change in mean main stem grain size across

tributary junction (mm).
DM change in main stem bed load mass flux across

tributary junction (kg yr�1).
rs sediment density (kg m�3).
t timescale of bed response to changes in sediment

supply.
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[1] The Earth’s surface is shaped by the interaction of tectonics, water, sediment, solutes,
and biota over a wide range of spatial and temporal scales and across diverse
environments. Development of a predictive science of Earth surface dynamics integrates
many disciplines and approaches, including hydrology, geomorphology, ocean and
atmospheric science, sedimentary and structural geology, geochemistry, and ecology. This
paper discusses challenges, opportunities, and a few example problems that can serve as
pathways toward this integration.
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geomorphology, geochemistry, and ecology, Water Resour. Res., 42, W03S10, doi:10.1029/2005WR004336.

1. Earth Surface Dynamics as an Integrator

[2] Understanding the dynamics of the Earth’s surface,
from tectonic processes to microbial weathering, is one of
the great integrating challenges of modern science. The
emerging field of ‘‘morphodynamics,’’ the study of the
properties and evolution of surface morphology, is at
the center of this challenge. Because the Earth’s surface
spans an enormous range of environments, spatial scales,
and timescales, a fully realized science of Earth surface
dynamics serves as a natural integrator of many disciplines
and approaches, including hydrology, geomorphology,
ocean and atmospheric science, geology and ecology.
Unfortunately, the level of interaction among these fields
to date has been nowhere near adequate to the task.
[3] This short paper is a call for the scientific community

to work together toward this grand goal: developing a
unified surface process science that would integrate insight
from all of the above fields to provide a comprehensive and
predictive understanding of the dynamics of our planet’s
surface. Integrated Earth surface dynamics is at the core of

environmental science; after all, the Earth’s surface is ‘‘the
environment’’ for most life and human activity. Hydrology
is clearly central to the effort, and not only because of the
role of terrestrial surface and groundwater in creating
surface morphology. A quantitative style is deeply ingrained
in hydrology, hence it has much to offer in accelerating the
infusion into Earth surface dynamics of quantitative meth-
ods for dealing with complex natural systems.
[4] In this paper we focus on channels and channel net-

works as a starting point in the development of a unified
approach to surface process science. Most of the continental
surface is drained by channels, which can be seen as the
arterial system of the landscape, which control, to a large

extent, the spatial and temporal patterns of physical, chem-
ical, and biotic processes. Channel networks illustrate a
fascinating aspect of morphodynamics: the occurrence of
similar patterns across a wide range of environments and
scales. Tributary networks are the most prominent example
but the list of recurring structures includes distributary net-
works; braided networks; bed forms; channel bends, bars,
and scour pits; splays and lobes; and clinoforms (e.g., deltas,
continental margins). These spatial patterns are not restricted
to the terrestrial landscape but, with remarkable similarity of
form, structure submarine landscapes as well.
[5] The similarity of channel networks across environ-

ments and scales has been known for some time, but the last
20 years have seen a revolution in the range and power of
quantitative tools to explore and measure spatial structure
and similarity [Rodriguez-Iturbe and Rinaldo, 1997]. This
has been accompanied by a dramatic increase in the quality
and quantity of topographic data on which to apply them,
and by major advances in the theory of fundamental channel
structures [Federici and Seminara, 2003; Parker and Izumi,
2000; Seminara and Tubino, 1989, 2001; Sun et al., 1996;
Sun and Parker, 2005]. The importance of these recurring,
self-formed patterns is not restricted to the physical land-
scape. By structuring the landscape and localizing the flow
of water, sediment, and nutrients, channels and channel
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networks play a major role in controlling spatial patterns and
dynamics of biota and geochemical processes. The combi-
nation of ubiquity, similarity, and strong control on topog-
raphy and material fluxes makes channel networks and
related spatial forms a natural organizing template for
environmental observation, modeling, and prediction.
Channels and channel networks provide a common spatial
framework for interpreting a broad range of local environ-
mental observations, for transferring results from one system
and scale to another (including from laboratory to nature),
and, by understanding how the channel structure mediates
organization in local physical, ecological, and geochemical
variables (e.g., vegetation and fluxes of sediment and
nutrients), for environmental modeling and prediction.
[6] Channel networks have been traditionally seen by

hydrologists as relatively static boundary conditions. Water
is routed through them to predict the hydrologic response of a
basin to a given precipitation input. Less emphasis has been
placed on the evolution of the channel geometry and the
coevolution of the channel and its floodplain, which deter-
mine nutrient and sediment delivery downstream as well as
the variability of extreme floods, which are influenced by
overbank storage and release of water. In terms of physical
processes, we can divide the surface realm into three broad
timescales, corresponding to shortest scale on which impor-
tant variability occurs: a ‘‘water’’ timescale of minutes to
hours; a ‘‘sediment’’ timescale of hours to centuries, and a
‘‘tectonic’’ timescale of centuries and up. The static view of
channel systems breaks down as we move from the ‘‘water’’
to the ‘‘sediment’’ scale because the channel geometry is
essentially controlled by the sediment flux, including storage,
at a given time. Thus the connection between hydrology and
surface dynamics must strengthen as hydrologists tackle
longer-term forecasting problems, or problemswhere changes
in land use or climate could lead to major changes in sediment
yield and hence channel properties and conveyance.

2. Motivation for Integrated Earth Surface
Science: Three Examples

[7] There are many ways in which a unified approach to
Earth surface dynamics would benefit science and society.
Major application areas include environmental forecasting,
river and landscape restoration and management, assessing
location, size, and geometry of subsurface fluid conduits
and reservoirs, hazard assessment and reduction, and quan-
tifying cycling and storage of carbon and other major
geochemical actors. Here we provide three examples that
illustrate the need for combined research in hydrology,
ecology, geochemistry, and geomorphology:

2.1. Generalized Environmental Forecasting:
Beyond Climate

[8] It is now becoming possible to forecast the effect of,
for instance, a doubling of atmospheric carbon dioxide level
on rainfall and temperature in a given area [Bonan et al.,
2002; Stainforth et al., 2005; Intergovernmental Panel on
Climate Change, 2001]. How would such climatic changes
affect streamflow and the spatial and temporal patterns of
sediment and solute flux through the channel network? This
question is difficult to answer for a static channel network
and all the more difficult when dynamic interactions be-
tween network fluxes and geometry are considered. Chang-

ing rainfall, for example, would directly affect rates of
sediment and solute creation and delivery to streams in
ways that cannot at present be predicted with confidence.
Sediment flux and caliber strongly influence channel
dimensions and so would be expected to affect flood
statistics and habitat. In addition, the rainfall changes could
also change the distribution of biota from microbes to trees
and burrowing animals on hillslopes and floodplains. These
organisms are directly involved in mediating sediment
production and delivery, so changes in the ecosystem could
significantly affect sediment flow as well as channel mor-
phology (through, for instance, bank stabilization). The
point is that at present, considering the whole physical-
biological-chemical system of a watershed, we cannot
predict even qualitatively how it will respond to climate
and land use changes.

2.2. Stream Restoration

[9] An increasing public interest in the environmental,
recreational, and esthetic values of rivers has led to in-
creased recognition of the impact of human actions and the
desire to return rivers to a more natural, attractive, and
resilient state. This has created a substantial demand for
restoration or rehabilitation of impaired streams, creating a
booming but mostly small-scale industry known generically
as ‘‘stream restoration’’ [Wohl et al., 2005]. Projects in the
United States alone number in the tens of thousands, with
associated costs measured in billions of dollars per year
[Bernhardt et al., 2005]. Restoration efforts range from
local projects on short reaches of small streams to multibil-
lion dollar projects such as restoration of the Everglades and
the Mississippi Delta.
[10] The scientific basis for stream restoration is weak, the

success of existing projects not well known, and the con-
nection between research and practice is poorly developed.
Current stream restoration practice is based on analogy; a
template is sought in a nearby or idealized channel that the
designer judges to be suitable. However, if a disturbed
stream is adjusting to changes in essential controlling
factors, a template for analog-based design is unlikely to
exist [Wilcock, 1997]. What is needed instead is a testable,
predictive framework linking cause and effect. Such a
framework must be based on a quantitative, transdisciplinary
understanding of the physical, chemical, and biological
dimensions of disturbance and recovery in streams, account-
ing for natural and human-induced variability.
[11] A major challenge facing a predictive restoration

science is placing the restoration project in a watershed
context. The most obvious and persistent cause of physical
failure is ignoring, or inadequately predicting, the supply of
water and sediment from the watershed. Current best
practice is generally based on a narrative watershed history
identifying the timing and location of major watershed
disturbances, including anthropogenic changes. Predictive
restoration science requires transforming this history to a
quantitative basis and integrating historical records with
landscape-scale predictive modeling.

2.3. Surface to Subsurface

[12] The interaction of surface water and groundwater is a
major research issue in hydrology. An analogous problem in
surface dynamics is the relation between surface dynamics
in active depositional systems and subsurface stratigraphy.
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Depositional subsurface architecture in turn controls the
spatial heterogeneity of permeability and porosity, and
hence the flow of subsurface fluids like water and hydro-
carbons. Major challenges include: understanding surface
dynamics in depositional systems, including biotic influen-
ces; understanding how surface processes interact with
external drivers like sea level, sediment supply, climate,
and subsidence; and understanding how surface dynamics
in time and space is transformed into three-dimensional
subsurface structure. Modern high-resolution seismic imag-
ing methods [Davies and Posamentier, 2005] provide
subsurface data analogous to LIDAR topography data,
except that the subsurface data are three-dimensional and
provide a record of temporal evolution. Learning to exploit
these records will transform sedimentary geology, and what
it can tell us about both surface dynamics and subsurface
structure, just as high-resolution topographic data have
transformed geomorphology. The data are costly to obtain
and are mostly privately held, so building new partnerships
between academia and industry will be critical to advancing
this field. However, the effort will be worthwhile: in
addition to improved prediction of subsurface heterogeneity,
quantitatively coupling surface to subsurface can help
provide long-term flux records needed for sustainable
restoration and landscape management.

3. Four Problems for Integrative Research

[13] Next we pose four problems in integrated Earth
surface science that lie at the interface of hydrology,
geomorphology, geochemistry, and ecology. These prob-
lems, structured around channel networks, represent oppor-
tunities for major advances during the coming decade: (1)
understanding channel networks across environments and
scales to learn from similarities and dissimilarities, (2)
relating channel morphology and network geometry to the
spatial organization and scaling of floods, sediment fluxes,
riparian vegetation, and river food webs, (3) developing
new mathematical techniques for modeling and prediction,
and (4) exploring the role of new observational techniques
and laboratory studies in advancing surface process
research.

3.1. Channel Networks Across Environments and
Scales: Tributary Networks, Deltas, Braided Rivers,
and Submarine Channels

[14] Channels organize themselves into networks of var-
ious forms that recur across many environments and fre-
quently show self-similarity. Some central questions are:
How does the overall (macroscale) pattern arise from small-
scale local interactions? What can be learned from the
similarities and dissimilarities of those patterns across
diverse environments e.g., subaerial and submarine, depo-
sitional and erosional? Can organizational principles of
channels and channel networks be unified and their physical
causes understood for the purposes of improved modeling
and prediction? Considerable progress has been made over
the years in regard to the scaling signatures of river basins in
the upper portion of the river system where most of the
water and sediment are produced [Rodriguez-Iturbe and
Rinaldo, 1997]. The progress made in understanding the
network structure in the erosional uplands stands in contrast
with the fact that we are just beginning to understand the

distributary structure that characterizes depositional deltas
and fans [Syvitski, 2005; Sun et al., 2002]. Yet deltas and
fans, though globally much smaller in area, are critical
sediment sinks and so determine rates and patterns of
delivery of sediment, organic matter, nutrients, and pollu-
tants to the sea. They are also storehouses of hydrocarbons,
home to a sizable fraction of the world’s population, and as
recent events make abundantly clear, a crucial buffer
between ocean storms and urban and industrial centers.
[15] Another type of channel organization is that of

braided channel systems [Sambrook Smith et al., 2006];
these in effect have a topology intermediate between trib-
utary (junction dominated) and distributary (division dom-
inated) such that both junction types occur about equally
often. These are highly complex dynamic systems charac-
terized by intensive but spatially localized erosion, sediment
transport and deposition and frequent channel shifting. They
have been found to exhibit a statistical scale invariance in
their morphology and dynamics which is of similar form in
diverse flow regimes, slopes, types of bed material and
braid plain widths, indicating the presence of universal
features in the underlying mechanisms responsible for the
formation of their spatial structure [Foufoula-Georgiou and
Sapozhnikov, 2001; Murray and Paola, 1994; Sapozhnikov
and Foufoula-Georgiou, 1997] We still need to improve our
understanding of the hydraulic geometry of braid channels
(e.g., depth-width relationships, velocities at junctions, speed
of lateral channel shifts), how these channels interact with
vegetation [Bennett and Simon, 2004], and how they dictate
the spatial distribution and storage of hydrocarbons and other
substances in the subsurface [Lunt et al., 2004a, 2004b].
[16] The submarine landscape is veined with channel

systems that appear to be analogous in many ways to their
subaerial equivalents. Analogous morphologies include
tributary systems [Mitchell, 2004], lobes, bed forms, and
meandering channels [Abreu et al., 2003; Das et al., 2004;
Imran et al., 1999]. Submarine channel systems are formed
largely by turbidity currents: density underflows driven by
the weight of suspended sediment. At present, work on
developing the analogy between subaerial and submarine
channel systems is in a period of rapid growth, fueled in
large part by intense interest in deep-water hydrocarbon
reservoirs. Since each realm (subaerial, submarine) ampli-
fies certain aspects of the fundamental channel dynamics
relative to the other, we gain a clearer picture of channel
dynamics by studying them together.

3.2. Effect of Network Topology and Channel-
Floodplain Morphology on the Scaling of Floods,
Sediment and Nutrient Fluxes, and Ecosystem Dynamics

[17] Scaling of floods has been the subject of consider-
able research in hydrology starting with the simple normal-
ization methods, e.g., the index flood method, to the recent
statistical multiscaling theories [Gupta et al., 1994]. A key
question concerns the variation of flood intensity and
frequency with the drainage area of the basin (scale).
Analysis of observations from several regions has supported
the inference that floods exhibit a multiscaling structure
(i.e., the statistical moments scale as power laws with
drainage area with an exponent that depends nonlinearly
on the order of the moment) with a scaling break at a
characteristic scale. Although such an approach yields a
concise statistical model which can be useful for regional
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flood quantile estimation of design events, a number of
open questions remain: For example, what is the physical
origin of the observed scaling and what determines the scale
of the break? What is the relative role of space-time
precipitation variability versus geomorphologic controls,
e.g., systematic variability of hydraulic geometry with scale
and dynamic channel-floodplain interactions, in determin-
ing the scaling of floods and streamflow hydrographs
[Dodov and Foufoula-Georgiou, 2004, 2005; Menadbe
and Sivapalan, 2001]? Bringing sediment into the picture,
what controls the size distribution of sediments produced
and delivered to channel networks by hillslopes? How are
the size distribution and flux rates of bed material affected
by the drainage network struture? And how does bedload
sediment flux relative to available discharge drive the
dynamic evolution of the drainage network structure itself?
[18] Recent research has shed new light on how the

spatial structure of ecosystems interacts with the spatial
structure of the landscape [Caylor et al., 2004, 2005;
Porporato et al., 2004; Porporato and Rodriguez-Iturbe,
2002]. Channel networks provide an organizing template
for the ecohydrological and biogeochemical interactions
that determine the vegetation patterns and ecosystem dy-
namics in a river basin. Important questions remain to be
answered: What are the feedbacks between flow regime and
dynamics of riparian vegetation? What is the relative role of
large-scale determinants of vegetation patterns, e.g., optimal
response to water stress, and smaller-scale controls mediated
by the network structure? What is the relative role of space-
time rainfall variability versus channel network topology in
determining the spatial patterns and dynamics of vegeta-
tion? How does the physical structure of the landscape
influence habitat quality and diversity, and how does it
control sources and flows of organisms and limiting
nutrients [Power et al., 1995, 2005]? In turn, how do
organisms shape the landscape through microbial weather-
ing, the stirring and diffusion of soil, flow baffling and the
stabilization of bars, banks and floodplains [Dietrich and
Perron, 2006]? What are the coupled dynamics of hillslope-
floodplain-stream interactions and what is their role in
biogeochemical cycling [Green et al., 2006]?

3.3. Modeling Tools: Coping With Self-Organization
and Variability Across Scales

3.3.1. Hierarchical Modeling, Upscaling, or
Direct Simulation?
[19] Channel networks span a wide range of length and

timescales. Identifying the scales at which each of these
processes operate, i.e., the scales at which they exhibit most
of their variability and the major interactions will determine
what classes of numerical models would be most pertinent
for modeling and prediction. Important questions to be
explored include: (1) Can the concepts of homogenization
and upgridding, widely used in porous media flows, be
adapted for land surface process modeling? (2) Can the
concept of large-eddy simulation (LES), widely used in the
atmospheric sciences, be adapted to earth surface process
sciences to enhance the range of spatial scales over which
prediction of earth surface processes can be made? (3) How
can we apply often nonlinear slope-dependent flux laws
[Dietrich et al., 2003] to fractal landscape surfaces? (4) Is
direct simulation, i.e., mechanistic modeling based on

small-scale processes, computationally feasible and concep-
tually valid in light of the complexity of earth surface
systems and the spontaneous emergence of organization at
larger scales [Werner, 1999]?
3.3.2. Data Assimilation and Ensemble Prediction in
Earth Surface Dynamics
[20] Data assimilation and probabilistic prediction are

now recognized to be essential elements of any numerical
modeling system of complex natural phenomena. The
goal of data assimilation is to produce a regular, physi-
cally consistent representation of a system from a hetero-
geneous collection of in situ and remote sensing
observations that sample the system imperfectly and
irregularly in space and time. Can naturally occurring
similar spatial structure such as that provided by channel
networks be used to improve both positioning of local
environmental sensors and assimilation and interpolation
of locally sensed data?
[21] Probabilistic prediction acknowledges that there is

uncertainty in our understanding of the physical system and
therefore in the equations and/or parameters that we use to
describe it as well as in the initial conditions of the system.
Therefore a single deterministic prediction of a future state
of the system is not adequate and a suite of such predictions
(ensemble prediction) which account for all uncertainties is
needed. The areas of data assimilation and ensemble pre-
diction have been extensively explored in the oceanic and
atmospheric sciences and more recently in the hydrologic
sciences. How can these methods be best adapted to Earth
surface science?
3.3.3. Coupling Across Scales, Nonlinear Dynamics,
and Predictability
[22] Channel systems, and landscapes in general, are

formed by nonlinear processes that interact with each other
over a wide range of scales. Prediction of a future state of
the system knowing its initial conditions is a fundamental
problem with important applications in geomorphologic
restoration and planning. It is known that in many natural
systems, small perturbations can lead to larger-scale dis-
turbances (even under constant forcing) altering the evolu-
tion of the system and reducing its predictability from an
initial known state. Models based on the equations of
motion show limitations in predicting future states of geo-
morphologic systems [Werner, 1999]. It is important to
analyze the intrinsic predictability of attributes of these
systems, such as flow, sediment flux, channel geometry
and shifts, and to understand how system predictability
varies as a function of scale, adapting techniques from other
fields [Basu et al., 2002]. Theoretical advances in the
physics and dynamics of coupled systems have consider-
ably advanced over the past few years but much remains to
be done to apply these advances to the highly nonlinear,
highly interactive space-time evolution of Earth surface
systems.
3.3.4. Self Organization, Pattern Formation, and
Moving Boundaries
[23] Channels and channel networks represent the most

spatially significant instance of spontaneous pattern forma-
tion and self-organization on Earth. In many cases the
evolution of these patterns requires tracking evolving
boundaries between specific transport domains, for instance,
the boundary between gravel-dominated and sand-dominated
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sediment transport, a shoreline, or an ecological boundary.
These are termed ‘‘moving boundary’’ problems because
the front must be found and tracked as part of the problem’s
solution [Paola and Voller, 2005; Swenson et al., 2000;
Voller et al., 2006]. The development of numerical techni-
ques for tracking moving boundaries, starting with methods
developed for, for instance, solid-liquid fronts, is a major
research frontier in surface dynamics.

3.4. Role of New Observational Techniques

[24] Geosciences is witnessing an era of rapid devel-
opment of new sensor technology and observational
techniques that are poised to revolutionize our under-
standing, and thus predictive modeling capabilities, of
Earth surface dynamics. High-resolution topography
(e.g., 1 m topography data from LIDAR) and wireless
sensor technology with embedded networked sampling
(e.g., concurrent and adaptive sampling over large spatial
coverage and short time intervals; and particle-tracking
techniques) provide an opportunity to bridge the gap
between the small scales at which biogeochemical pro-
cesses occur and the larger scales at which organizing
patterns are observed. Wireless technology, smart sensors
with controlled activation capabilities, e.g., during ex-
treme floods or high temperatures, small sensors that
can be attached to moving gravel (‘‘talking stones’’)
[McNamara and Borden, 2004], isotopes for dating, radar
imaging, etc. can all work synergistically to sample
processes at scales ranging from a few mm and seconds
to planetary length and time scales. However, despite the
extreme spatial and temporal variability and the large
range of scales of interacting processes, one cannot
sample everywhere and all the time. Thus the challenge
exists to use even rudimentary knowledge of the under-
lying variability, of cause-effect relationships, and of
possible scaling relationships to optimize sampling net-
work design. To that effect, detailed knowledge of to-
pography is expected to play a significant role.
[25] The newly available high-resolution LIDAR topo-

graphic data [Carter et al., 2001] provide the opportunity
to explicitly resolve channel and floodplain morphology,
stream corridor geometry (including geomorphologic dis-
turbances at confluences), and vegetation characteristics
throughout the basin. Having such high-resolution chan-
nel morphology continuously available along stream rea-
ches and over the whole watershed offers the potential of
understanding cause-effect relationship between channel
attributes and biological and geochemical processes. Such
relationships can guide efficient design of environmental
observatories and also guide efforts to upscale local
processes, e.g., algal production [Hondzo and Wang,
2002], denitrification potential, etc., to stream reach
averages, and ultimately to indices characterizing the state
of the whole watershed [Boyer et al., 2006]. However,
existing methods for extracting channel networks from
90 m or 30 m DEMs do not perform well when applied
to the extraction of topographic features from 1 m
LIDAR data. New ‘‘geomorphologically informed’’ image
processing techniques are needed to take advantage of the
rich information provided by these sensors, including the
automatic mapping of service roads and skid trails created
during logging that are large contributors of sediment to
the streams.

3.5. Role of Laboratory Studies

[26] The complexity and tendency toward spontaneous
pattern formation of channels and channel networks make
them inviting targets for study under controlled conditions
in a laboratory setting (flume or outdoors facility) where
individual and interactive effects of primary drivers can be
teased apart. Experiments yield improved process under-
standing and provide the basis for testing hypotheses
rigorously. Laboratory study is a useful complement to field
studies for processes that are too slow, infrequent, inacces-
sible, and/or violent to permit direct observation in the field.
This includes a wide range of important natural processes,
so we expect experimentation to play a major role in Earth
surface science for some time to come. Laboratory study has
been especially fruitful for the study of self-organization,
where the ability of the experimental system to develop
patterns on its own is important. Self organized natural
patterns that are fractal (a small part of the spatial pattern
shows statistical similarity to the whole pattern) are espe-
cially appropriate for laboratory study even where formal
conditions for dynamic similitude cannot be satisfied. A
newer area for experimental study is physical-biological
interactions, for example the contest between vegetation and
physical processes that strongly influences the form and
kinematics of river channels [Gran and Paola, 2001; Tal et
al., 2004]. In addition, we see bright prospects for experi-
ments combining physical, geochemical and microbial pro-
cesses, but as far as we know very little work has been done
in this area.

4. Conclusion

[27] Prediction of the evolution of the Earth’s surface is at
the heart of environmental science: the surface is the
environment in which most life and human activity take
place. At present, we do not have the tools needed to
reliably model and predict the interwoven physical, biolog-
ical, geochemical, and human dynamics that shape the
Earth’s surface. Developing these tools will require inte-
grating a broad range of fields including Earth sciences,
hydrology, ecology, geochemistry, social sciences, physics,
and mathematics. Earth surface dynamics should be an
attractive area for young researchers with quantitative skills
and a taste for interdisciplinary work.
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