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[1] In many geomorphic transport systems, the time and length scales of motion vary
widely: particles can be trapped for both short and long periods of time and they can travel
large or small distances in very short intervals of time. To model such systems we

need fresh conceptual and mathematical formalisms. The goal of this collection of papers
is to challenge existing thinking in geomorphic transport by putting forward new ideas
and theories for environmental fluxes, from particle transport in a single stream, to
landslide debris mobilization, sediment and water transport on hillslopes, dynamic
transport on river networks, and interpretation of sedimentary deposits over geologic time.
Advanced stochastic theories of transport are proposed, the notion of nonlocal flux is
introduced, and fractional advection-diffusion equations are explored as possible models

of geomorphic transport.
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1. Introduction

[2] In November 2007 a working group meeting entitled
Stochastic Transport and Emergent Scaling on the Earth’s
Surface (STRESS) was convened in Lake Tahoe, Nevada.
Its scope was to bring together geomorphologists, hydrolo-
gists, mathematicians, and physicists with the goal of
rethinking the mathematical treatment of transport processes
on the Earth’s surface. The specific questions asked were
(1) How can we reconcile observed patterns and organiza-
tion (from sand dunes, to landslides, sedimentary deposits,
hillslope profiles, and sediment transport in rivers) with
theories and dynamical models that can reproduce these
patterns? (2) Are geomorphic transport laws based on the
notion of a locally derived flux limited in some fundamental
sense, and is the notion of a nonlocal flux (flux determined
by conditions at some distance from the point of interest) a
physically viable alternative? (3) How can we relate
microscale and macroscale dynamics in stochastic transport
theories and in predictive models?

[3] The papers in this special issue provide some insight
into these questions. They stretch the envelope of geomor-
phic modeling by introducing new mathematical theories
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and models of transport, providing new explanations of old
data, and posing alternative hypotheses to explain process
from form. They also open new questions for future research.

2. Challenging Old Theories: Notion
of Nonlocality

[4] Current geomorphic transport laws for landscape
evolution are formulated as partial differential equations
framed around approximations of the physics of advection
and diffusion/dispersion: in particular, assumptions are
made that facilitate the integration of processes from
microscales in time and space to geomorphic model scales.
Such assumptions are inconsistent with transport processes
in which significant contributions to the total flux come from
events across a broad span of magnitude and frequency.

[5] Forexample, the advection-dispersion equation (ADE)
is based on the classical definition of divergence of a vector
field. The classical notion of divergence maintains that as an
arbitrary control volume shrinks, the ratio of total surface
flux to volume must converge to a single value. However, if
a considerable fraction of the total sediment flux during the
period of observation arises from a flux of particles from far
upstream, then the classical divergence theorem fails.
Instead, a divergence associated with a finite volume, and
defined as the ratio of total flux to volume, is more appro-
priate. However, by increasing the arbitrary volume a
greater heterogeneity in the medium properties and in the
physical processes contributing to transport is sampled, and
the degree of resulting variability is bound to depend on
scale. Thus, the ratio of total flux to volume does not remain
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constant but varies with the size of the volume. As a result,
the classical diffusion equation is no longer self-contained
with a closed form solution at all scales. Within the limits of
classical theory, the best that can be done is to assume that
the total flux to volume ratio is constant within small ranges
of scales, allowing one to talk about an “effective” scale-
dependent dispersion coefficient. Another approach is to
depart altogether from the classical theory.

[6] Recently, the physics of advection and dispersion has
evolved beyond describing classical phenomena to include
materials that exhibit variability from large to very small
scales, power law velocity distributions, chaotic dynamics,
and slow reactive transport (e.g., see the review paper of
Schumer et al. [2009]). Fractional calculus treatments of
advection and diffusion/dispersion capture nonclassical
behavior in a simple and elegant form (for an insightful
physical interpretation of fractional derivatives see Podlubny
[2002]). For example, changing the second derivative in the
diffusion equation to a fractional derivative of order less
than two yields a model for superdiffusion, in which parti-
cles spread faster than the classical diffusion equation pre-
dicts. Changing the first-order time derivative in that same
equation to a fractional derivative of order less than one
models subdiffusion. Superdiffusive models are connected
with power law particle jump lengths; subdiffusive models
emerge from power law waiting times between jumps.

[7] Several techniques have been proposed in the sub-
surface transport literature to tackle the problem of scale-
dependent dispersivity which arises for similar reasons,
namely, the presence of inhomogeneities at all scales and the
wide range of length and time scales of motion (see discus-
sion and references in the work of Schumer et al. [2009]). The
treatment of surface transport faces similar challenges, i.e.,
time- and scale-dependent flux statistics, presence of het-
erogeneities at all scales, scale invariance and power law
spectra of landscapes (in analogy with fractal porous media
in the subsurface), and yet geomorphic flux laws that can
accommodate such behavior are not available. The con-
tributions in this issue are a step in this direction.

3. New Theories and New Perspectives

[8] The contributions in this volume can be broadly
classified as addressing the following three geomorphic
transport problems: (1) bed load transport in rivers [Ganti
et al., 2010; Bradley et al., 2010; Ancey, 2010; McElroy
and Mohrig, 2009; Hill et al., 2010], (2) transport on hill-
slopes [Foufoula-Georgiou et al., 2010; Tucker and
Bradley, 2010; Furbish et al., 2009a, 2009b, Harman et
al., 2010; Stark and Guzzetti, 2009], and (3) transport in
erosional-depositional systems and river networks [Voller
and Paola, 2010; Zaliapin et al., 2010; Schumer and
Jerolmack, 2009]. A summary of these developments is
presented below.

3.1.

[v] Despite considerable research over the past several
decades, the problem of accurate estimation of bed load
sediment transport in rivers remains unsolved. One of the
main challenges lies in the fact that the motions of indi-
vidual particles happen at random, rendering the process of
transport a stochastic process. Along these lines, contribu-
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tions in this issue relate to the development of new sto-
chastic discrete or continuous formulations of transport that
can explicitly account for stochastic behaviors such as large
variations in particle displacement and long times spent in
immobile phase.

[10] Ganti et al. [2010] reconsider the problem of tracer
dispersal in rivers and argue that long leading tails in tracer
concentration are to be expected in certain cases where the
step length distribution of particle movements is heavy
tailed [see also Stark et al., 2009]. Starting with an active
layer formulation of the probabilistic Exner equation they
show that the continuum equation describing the tracer
concentration in this case takes the form of a fractional
advection-dispersion equation. By identifying the probabi-
listic Exner equation as a forward Kolmogorov equation,
they also propose a stochastic model describing the evolu-
tion of tracer concentration and show that the classical
(normal) and fractional (anomalous) advection-diffusion
equations arise as long time asymptotic solutions of this
stochastic model. More data are needed to fully verify such
a model based on particle-scale and macroscale statistics.

[11] Bradley et al. [2010] revisit a 50 year old tracer
experiment in which the tracer plume exhibits behavior not
possible to be explained with classical transport models,
namely, anomalously high fraction of tracers in the down-
stream tail of the distribution, a decrease of detected tracer
mass over time and enhanced particle retention near the
source. They propose a fractional advection-dispersion equa-
tion and a two-phase transport model (which partitions mass
into detectable mobile and undetectable immobile phases)
and show an impressive agreement with observations.

[12] McElroy and Mohrig [2009] note that the movement
of bed material associated with bed deformation is not
accounted for in standard methods of calculating sediment
flux and propose a framework for calculating that portion of
the flux in sandy bed rivers (which they term deformation
flux). They note differences between laboratory and real
river systems in the statistics of the bed deformation rates
and define normalized metrics for comparing systems of
different size. They also note the time dependence (power
law scaling) of the deformation flux in sand bed rivers, not
explainable by classical theories of advection-dispersion,
motivating the exploration of fractional dispersion models
that can explain such scaling behavior.

[13] Ancey [2010] examines the influence of randomness
in bed sediment flux on the initial genesis of bed forms, and
shows how strong fluctuations in flux can arise even in the
absence of heavy-tailed probability distributions of stream-
bed sediment exchange. A Markovian, birth-death process
model of sediment entrainment is developed and cast into a
stochastic form of the Exner equation. In the large number
limit, he shows that the model admits a Fokker-Planck
representation, simplifying subsequent analysis. Derivations
of the stochastically varying number of particles in motion
and of the coupled bed height are provided, allowing pre-
diction of the scaling of the variance of model bed topog-
raphy with time.

[14] Hill et al. [2010] consider the problem of modeling bed
load transport in gravel bed rivers which exhibit a broad range
of particle sizes. Based on a series of carefully controlled
flume experiments, they document an exponential distribu-
tion of the travel time of entrained particles of a given size,
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with the parameter of the distribution (mean travel distance)
depending on both particle size and shear stress. In real set-
tings, the convolution of the distributions of travel distances
and particle sizes is shown to yield a power law distribution,
which requires reconsideration of standard diffusion models
and introduction of superdiffusive models of transport.

3.2. Transport on Hillslopes

[15] Sediment transport on hillslopes forms an area of
active research both theoretical and experimental. Typical
models available to date include standard diffusive models
which consider a linear or nonlinear formulation of flux
based on local slope or other local attributes such as soil
depth. The contributions in this issue address some impor-
tant elements of hillslope transport related to stochasticity in
the diffusion coefficient to incorporate rain splash effects or
dependence on soil thickness, extension to a nonlocal flux
formulation (in a discrete or continuous framework) to
incorporate large scales of particle motion, reformulation of
the kinematic wave equation for hillslope subsurface trans-
port, and a stochastic theory for landslide-driven erosion.

[16] Stark and Guzzetti [2009] present a physically based
stochastic theory for landslide-driven erosion. The proposed
model describes a simplified process of rupture propagation,
slope failure and debris mobilization, and it reproduces the
probability distributions observed for landslide source areas
and volumes, including their power law tail scaling. The
peak (rollover) and tail scaling of the distributions are
explained in terms of the relative importance of cohesion
over friction in setting slope stability, allowing thus for a
physical interpretation. Numerical experiments validate the
analytical results and document the sensitivity of the model
to parameterization. The interplay of river incision and
hillslope steepening in adjusting the landslide magnitude-
frequency is interpreted in physical and statistical terms.

[17] Furbish et al. [2009a] revisit the problem of soil grain
transport by rain splash and formulate it as a stochastic
advection-dispersion process. One of their innovations rests
on the explicit separation of the grain activity probability
(determined by the rain storm intensity and soil properties at
weather time scales) from the physics of the grain motions.
They perform rain splash experiments to confirm that gra-
dients in raindrop intensity are as important as gradients in
grain concentration and surface slope in affecting overall
transport. Their result points to the importance of the eco-
logical behavior of desert shrubs as “resource islands”
(temporary storage zones of soil derived from areas sur-
rounding the shrubs) and the implication that this behavior
can have for land-surface evolution modeling. The proposed
formulation provides a general framework for transport and
dispersal of any soil material moveable by rain splash,
including nutrients, seeds and soil-borne pathogens.

[18] Furbish et al. [2009b] probe the physical justifica-
tion of the linear slope-dependent transport formulation.
Balancing the particle fluxes that tend to loft a soil with the
gravitationally driven particle settling, they show how a
slope-dependent transport relation emerges with, however, a
statistical description of the diffusion-like coefficient. This
coefficient involves the active soil thickness as a funda-
mental length scale that provides the minimum length scale
over which measurement of the surface slope is meaningful.
This in turn implies that the diffusion-like linear slope-
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dependent model (soil flux proportional to the depth-slope
product) is applicable at scales larger than the disturbance
scales producing the transport. The formulation is consistent
with observations of topographic profiles of hillslopes
evolving by soil creep and by transport associated with bio-
mechanical mixing. However, the theory does not explain the
nonlinear flux-slope relations observed in many systems.

[19] Tucker and Bradley [2010] are concerned with
transport on hillslopes exhibiting a broad distribution of
grain motion length scales. They examine, in a simple dis-
crete particle-based model, relations between grain motion
dynamics, bulk transport rates, and hillslope morphology,
and they illustrate conditions under which standard local
gradient theory is not appropriate. They show that a non-
linear relationship between flux and local gradient emerges
from their discrete model formulation at steep slopes and
make a preliminary exploration of continuum general-
izations based on a probabilistic form of the Exner equation.
They provide insightful discussion on the notion of nonlocal
flux computation and how high-probability, long-distance
particle motions violate the assumption embedded in many
commonly used local gradient-based geomorphic transport
laws, calling for extensions.

[20] Foufoula-Georgiou et al. [2010] propose a nonlocal
formulation of sediment flux on hillslopes to account for the
wide range of particle displacement lengths related to dis-
turbance processes. This formulation computes flux at a
point not only as a function of local topographic attributes,
such as slope, but also as a function of topography upslope
of the point of interest. They show that such a formulation
leads to a continuum constitutive law that takes the form of
fractional diffusion. The model predicts a hillslope equilib-
rium profile that is parabolic in shape very close to the ridge
top and becomes power law downslope, with an exponent
equal to the nonlocality model parameter. Furthermore, they
show that a nonlinear relationship between sediment flux
and local gradient emerges from this linear nonlocal model
and that the model reproduces, with a single parameter, the
natural variability of sediment flux found in real landscapes.

[21] Harman et al. [2010] revisit the problem of subsur-
face transport in hillslopes with heterogeneous conductivity
fields. They argue that, in such cases, variations in the
downslope velocity of impulses induce a nonpiston type
flow response (piston response would arise from impulses
starting at different locations but moving at a constant
speed). Assuming heavy tails in the velocity distribution of
those impulses, they invoke the notion of subordination
(replacing real time with a random time representing the
time that impulses spend in motion). As a result they recast
the standard kinematic wave equation into a subordinated
kinematic wave equation appropriate for modeling flow
response in heterogeneous hillslopes. They evaluate their
model under different degrees of heterogeneity and link the
statistical parameters of the heterogeneous random fields
and the parameters of the subordinator, implying that the
subordinator can eventually be parameterized by physical
measurements of hillslope properties.

3.3. Transport in Erosional-Depositional Systems
and River Networks

[22] Zaliapin et al. [2010] develop simple theories of
dynamic transport on river networks. They introduce the
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concept of a “dynamic tree” to describe transport of fluxes
on a topological static tree representing the river network.
They show that the corresponding dynamic trees exhibit
self-similarity, albeit with different parameters than the
underlying static trees, providing thus the possibility of
developing process-specific dynamic scaling frameworks.
They also report a “phase transition” in the dynamics of
river networks indicating a time (or equivalently length)
scale at which the connectivity of the system reaches a
critical point; that is, the system acts as a single cluster.
Analysis of three real river networks indicates a possible
universality and points to the need for further analysis to
understand how this framework can be used for stochastic
flux propagation and for scaling of dynamic processes
operating on river networks.

[23] Schumer and Jerolmack [2009] provide a novel
interpretation of the field-documented observation that
sediment deposition rate decreases as a power law function
of the measurement interval. They argue that this phenom-
enon is the result of the heavy tailed distribution of non-
deposition periods and use limit theory and Continuous
Time Random Walk (CTRW) models to estimate the actual
average deposition rate from observations of the surface
location over time. Their analysis highlights that caution has
to be exercised in attributing observed changes in accumu-
lation rates through time to real changes in the rates of
erosion and deposition. The consequences of these finding
for interpreting the stratigraphic record in terms of climate
variability are important.

[24] Voller and Paola [2010] put forth the observation
that laboratory experiments of aggrading rivers, driven by
subsidence or base level rise, display profiles that deviate
from those expected from standard diffusion models. They
propose a fractional diffusion model which accounts for
non-Fickian sediment transport in systems where the length
scale of significant sediment extraction is comparable to the
scale range of the channel pattern behavior. They point out
that these length scales seem well separated in natural sys-
tems but not in laboratory systems. This distinction may
explain discrepancies between laboratory and natural system
profiles and has implications for modeling.

4. Closing Remarks and Open Problems

[25] The 15 papers in this volume present new ideas for
modeling transport on the Earth’s surface from tracer and
bed load transport in rivers, to hillslope transport, to the
complexities of mixed erosional/depositional systems, and
to transport along the whole river network. They explore
stochastic formulations that account for the deformation of
bed forms as they contribute to sediment flux, the erosional
impact of spatially and temporally variable raindrops as they
contribute to the ecology and geomorphology of hillslopes,
theories for explaining the power law distributions of
landslide areas and volumes, and theories that take into
account the broad range of scales participating in transport.
Several papers revisit old data sets and show that predictions
from generalized transport laws agree with observations
more closely than predictions based on classical theories. A
few papers attempt to make connections between microscale
(particle scale) dynamics and macroscale statistics and note
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that parameters of the macroscale models can be resolved
from physical observables as opposed to empirical fitting.
Emphasis is placed on parsimonious parameterizations, that
is, on models that can explain the observed structure and
variability with few parameters. The idea of nonlocality in
flux computation is discussed in several papers and frac-
tional advection-dispersion formulations or discrete space-
time models are proposed.

[26] Several open problems have emerged from the
research presented in these papers. First, the physical
motivation of nonlocal transport laws and the data needed to
more directly estimate model parameters and discriminate
between local and nonlocal hypotheses are areas of future
study. Also, stochastic formulations that invoke particle-
scale statistics explicitly or implicitly require new kinds of
data, such as statistics of particle movement, to be tested and
validated. The same applies to models that consider bed
form deformation as a diffusion problem. The idea of
extending well known transport models via time subordi-
nation is compelling and awaits more exploration: such an
approach will have application in the modeling of envi-
ronmental fluxes in which “time in motion” rather than
“clock time” is relevant and where time can therefore be
treated as a random variable. The exploration of Continuum
Time Random Walk (CTRW) models as discrete counter-
parts of continuum formulations has to be further studied,
and extensions of those models to two dimensions awaits
development.

[27] A problem with all local geomorphic transport laws is
that they yield scale-dependent sediment flux since the local
slope and curvature are scale (resolution) dependent. As
such, closures are needed to incorporate the effect of subgrid
scale variability and render the model coefficients scale
independent [see, e.g., Passalacqua et al., 2006]. An open
problem for future research is to examine whether nonlocal
transport models naturally overcome the problem of scale
dependence, as this becomes an issue of increasing concern
with the availability of high-resolution topographic data.

[28] Theories for the transport of fluxes on river networks
where the heterogeneity of the input (e.g., spatially variable
precipitation which dynamically changes over time, or dis-
crete fluxes that are injected at only a portion of the nodes of
the network) await further development such that scaling
relations incorporating both the topology of the network and
the dynamics of the driving process are considered. Finally,
models for transport in erosional/depositional systems that
capture the large range of scales of motion, and the use of
these models for the interpretation of the stratigraphic record
(e.g., apparent scale-dependent erosion rate), require new
data to be rigorously tested and validated. The outcomes
could have important implications for deciphering climate
variability from stratigraphy.
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