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A combined nonlinear and nonlocal model for topographic
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[11 Models for the overall topographic evolution of erosional and depositional systems can
be grouped into two broad classes. The first class is local models in which the sediment flux
at a point is expressed as a linear or nonlinear function of local hydrogeomorphic measures
(e.g., water discharge and slope). The second class is nonlocal models, where the sediment
flux at a point is expressed via a weighted average (i.e., convolution integral) of measures
upstream and/or downstream of the point of interest. Until now, the nonlinear and nonlocal
models have been developed independently. In this study, we develop a unified model for
large-scale morphological evolution that combines both nonlinear and nonlocal approaches.
With this model, we show that in a depositional system, under piston-style subsidence, the
topographic signatures of nonlinearity and nonlocality are identical and that in combination,
their influence is additive. Furthermore, unlike either nonlinear or nonlocal models alone,
the combined model fits observed fluvial profiles with parameter values that are consistent
with theory and independent observations. By contrast, under conditions of steady bypass,
the nonlocal and nonlinear components in the combined model have distinctly different
signatures. In the absence of nonlocality, a purely nonlinear model always predicts a bypass
fluvial profile with a spatially constant slope, while a nonlocal model produces a
nonconstant slope, i.e., profile curvature. This result can be used as a test for inferring the

presence of nonlocality and for untangling the relative roles of local and nonlocal

mechanisms in shaping depositional morphology.
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1. Introduction

[2] There is a wide range of problems in river morpho-
dynamics and landscape evolution where simple relationships
between averaged sediment flux and averaged drivers, such as
topography, sediment properties, and water discharge, provide
useful predictive models, especially over large space and/or
time scales. Because the flow is fundamentally gravity driven,
relations of this kind are often cast in a form in which the flux
is a function of the topographic slope. Although there have
been numerous analyses proposing different ways to relate
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flux to topographic slope [Paola, 2000], until recently, there
was little question that the slope to use in such models was
the one at the point of interest. This view, however, has been
challenged in a series of recent papers [e.g., Bradley et al.,
2010; Foufoula-Georgiou et al., 2010; Ganti et al., 2010;
2011; Ganti, 2012; Schumer et al., 2009; Stark et al., 2009;
Voller and Paola, 2010; Voller et al., 2012], which propose
that in some cases the sediment flux at a point might also de-
pend on values of the slope (or other topographic measures)
away from that point. This dependence, typically expressed
via some form of convolution integral, i.e., weighted average
over space and/or time, takes into account the fact that
probabilistic sediment motion may span a wide range of trans-
port length scales. One end-member case is when the sediment
motion exhibits a probability distribution with a power-law
decaying tail (“heavy tail”). In this case, it is not possible to
assign a characteristic length scale of transport [e.g., Benson,
1998] and consequently rigorous descriptions of macroscale
morphologic evolution are best cast in terms of the so-called
fractional calculus [e.g., Podlubny, 1999; Foufoula-
Georgiou et al., 2010; Furbish and Haff, 2010; Ganti et al.,
2010; Ganti, 2012; Schumer et al., 2009; Voller and
Paola, 2010].

[3] The idea that system evolution at a point also depends
on conditions away—potentially quite far away—from
that point is referred to as “nonlocality”. Conceptually, it
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represents a profound shift in thinking about how influence
and information are distributed and propagated in land-
scapes. So one might well ask: Exactly what difference does
nonlocality make to overall morphologic evolution? Clearly,
it is easy to see how a model using a nonlocal flux formula-
tion could produce a much wider range of behavior outcomes
(e.g., anomalous diffusion [Chaves, 1998; Metzler and
Klafter, 2000]) when compared to a model that uses a stan-
dard linear diffusion treatment in which the flux is propor-
tional to the local slope. It has been observed, however
[Foufoula-Georgiou et al., 2010; Voller and Paola, 2010],
that more general, but still local, flux models based on a
nonlinear function of the local slope also allow for prediction
of a wide set of behaviors, many of which partially or
completely replicate the macroscopic behaviors arising from
nonlocality. If this is so, then do we really need nonlocality?

[4] One answer is that if the underlying transport pro-
cess is really nonlocal, representing the effects of that
process via a contrived nonlinearity is likely to be prone
to error, continual tuning, and scale dependence of the
tuned parameters [e.g., Ganti et al., 2012]. More funda-
mentally, any local model implies that two points with
the same local slope, water discharge, etc. would yield
the same sediment flux, no matter where these points sit
in the landscape relative to their upstream and downstream
conditions. Is this really reasonable?

[s] Asdiscussed earlier, nonlocal transport formulations are
often associated with the absence of a characteristic scale of
transport as manifested, for example, in power-law probability
distributions of sediment travel distances (often truncated at
the scale of the system). One sufficient but not necessary
condition for such power-law distributions is the presence of
a “transport network” or collection of pathways that exhibits
fractality or internal self-similarity, e.g., the self-similar
geometry of drainage networks [Rinaldo and Rodriguez-
Iturbe, 1996], braided rivers [e.g., Sapozhnikov and
Foufoula-Georgiou, 1996; 1999; Foufoula-Georgiou and
Sapozhnikov, 1998; 2001; Sapozhnikov et al., 1998], and delta
distributaries [ Wolinsky et al., 2010; Edmonds et al., 2011].
If, to first order, we think of fluvial systems as comprising a
network of efficient sediment transport pathways (channels
and channel segments) and resting places (e.g., floodplains
and bars), then the fractal geometry of the channel network
system suggests a broad range of transport speeds, across
multiple space and time scales. Thus, fractal geometry of
the transport system leads naturally to a power-law distribu-
tion of transport steps. The fractal geometry of channels in a
braided river system, for example, should result in sediment
motions that span a wide range of spatiotemporal scales, and
thus themselves exhibit heavy-tailed distributions. The
occurrence of such heavy-tailed motions is a fundamental
requirement for nonlocal transport [e.g., Ganti, 2012;
Ganti et al., 2010; Schumer et al., 2009], raising the
possibility that nonlocality could be a common, intrinsic
feature of channelized transport systems.

[6] The potential influence of nonlocal transport on under-
standing the workings of channelized systems goes beyond
simply describing the evolution of topographic profiles.
For example, Voller et al. [2012] recently showed that
nonlocality leads directly to a fundamental consequence for
how topographic information propagates in landscapes:
purely downstream in erosional systems and purely upstream

in depositional systems. We stress that this is a statement
only about how influence flows in space; the particles
themselves, of course, move downstream. The applicability
of insights like this depends on knowing to what extent
nonlocal as opposed to nonlinear effects govern transport
behavior in landscapes.

[7] To this end, untangling the effects of nonlocal versus
nonlinear sediment transport dynamics has been difficult
because the two approaches have been mutually exclusive.
Our primary aim here is to bridge this gap by developing
a combined nonlocal, nonlinear (NLNL) framework for
the topographic evolution of fluvial systems. Our study
highlights the important distinctions and similarities
between the topographic signatures of nonlinear and
nonlocal sediment transport dynamics, and we hope that
it will provide insight and further impetus for more precise
experiments that will allow us to explore unambiguously
the presence and the relative role of nonlinearity and
nonlocality in depositional systems.

2. Background on Nonlinear and
Nonlocal Approaches

[8] We focus on the one-dimensional problem of evolution
of a river long profile over time scales that average many in-
dividual flood events and space scales many times greater
than a characteristic channel width. Under these conditions,
in a long profile with downstream direction x and fluvial
elevation above a datum /(x), a straightforward means of
capturing the relation between sediment flux ¢ and topogra-
phy is to set the sediment flux proportional to the negative
of the local topographic gradient, viz., ¢=— v 0 h/0Ox, where
v is an appropriately adjusted constant diffusivity. Since this
relationship relates flux to a potential gradient, it is often
referred to as a linear diffusion flux model.

[0] In many cases a simple linear diffusion model for the
sediment flux may not be adequate. For example, in a steady
state (0h/0t=0) depositional system subjected to a subsi-
dence rate o(x), solutions of the governing Exner mass
balance equation

d

a(q) =0, (1)

using a linear diffusion model, often result in predictions of
d*hldx*—loosely referred to as the profile curvature—incon-
sistent with those observed in nature or laboratory experi-
ments. In particular, as discussed in detail in Voller and
Paola [2010], predictions of experimental depositional sys-
tems, based on linear diffusive fluxes, persistently suggest
downstream fluvial curvature values in excess of those
observed; typically the predicted curvature is positive, whereas
the observed value is closer to zero (i.e., a straight line).

[10] One approach for dealing with deviations from simple
linear diffusion behavior, such as this “curvature anomaly”,
is to use a nonlinear diffusion model that relates the flux to
a power n of the fluvial slope; such models have been used
in a number of studies that describe fluvial transport in depo-
sitional systems [e.g., Postma et al., 2008; Swenson and
Muto, 2007; Lorenzo-Trueba and Voller, 2010]. In essence,
noting that typical surfaces in depositional systems are con-
cave up, such an approach works since—in the transient
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Figure 1. Schematic of a fluvial surface. Nonlocality arises
because the sediment flux at a given point x =4 is influenced
by transport paths of a wide range of lengths (indicated by the
black paths in the channel network). In a nonlocal setting, the
sediment flux at x=4 is thus controlled by the properties re-
mote from this point. A general nonlocal model of the flux
can be formulated as a power-law weighted sum of functions
of hydrogeomorphic measures throughout the domain; the
figure indicates how such weights decay as we move away
from the point x=A4.

development of a given surface—the appearance of regions
of high fluvial curvatures (high local changes in slope) would
be counteracted by a local increase in sediment supply. This
form of flux model, however, raises a potential inconsis-
tency. Theoretical analysis, based on combining standard
sediment flux relationships with flow and momentum bal-
ance [Paola et al., 1992; Lai and Capart, 2007; Swenson
et al., 2000; Lorenzo-Trueba et al., 2009; Postma et al.,
2008], leads to exponent values in the range 1<n<1.66.
This is in contrast to reported fits to experimental observa-
tions [Swenson and Muto, 2007, Parker et al., 2007,
Parker and Muto, 2003; Postma et al., 2008] that indicate
higher values, in the range 1.95 <n <3.2.

[11] An alternative approach for dealing with the curvature
anomaly starts from the case for nonlocality discussed above.
Channel systems often exhibit a large range of heterogene-
ities and a space-time structure of transport pathways that
lack a characteristic scale. In such cases, using a local sedi-
ment transport formulation is inconsistent with the geometry
and dynamics of the system. A better, more general approach
is then to model the flux at a given point as a weighted sum of
an appropriate function of hydrogeomorphic measures (e.g.,
slope, discharge) taken over an area around the point of inter-
est. A model like this is “nonlocal”, and when used in the
balance of equation (1), has been demonstrated to reproduce
natural large-scale topography and reduce curvature anoma-
lies [Foufoula-Georgiou et al., 2010; Voller and Paola,
2010; Voller et al., 2012].

[12] Both nonlinear and nonlocal sediment flux models
appear able to explain natural topography. Should they then
be viewed as alternative, competing theories of sediment
transport, or as complementary theories? We view them as
complementary, since both nonlinear and nonlocal mecha-
nisms can act simultaneously on a landscape. Thus, our next
step is to construct a general flux model that includes both
nonlocal and nonlinear sediment transport dynamics.
Though we focus on depositional and bypass systems, in
principle, our approach could be applied to erosional systems
as well.

3. A General Nonlocal Framework for Modeling
Sediment Flux

3.1.

[13] We envision a general fluvial surface in which the x
(downstream) direction is scaled to be between 0 and 1,
where x=0 is the input point for water and sediment
(Figure 1). Our objective is to establish a 1-D sediment trans-
port model for this surface. In a local treatment, our starting
point is to assume that the flux at specific point x=A4 can be
expressed by a function (linear or otherwise) of local
hydrogeomorphic measures (slope, discharge, etc.) at point
A. The only spatial averaging permitted at 4 is in the cross-
stream direction, i.e., normal to x. This lateral averaging,
along with temporal averaging over many transport events,
then results in evaluation of the local average flux, which is
then a function of x [see Paola et al., 1992]; we label this
flux ¢=g%(x).

[14] To build a general nonlocal flux treatment, we also
account for hydrogeomorphic measures at points upstream
and downstream of x=A4 [Voller et al., 2012; Furbish and
Roering, 2013]. A convenient and general means of achiev-
ing this is to define the nonlocal flux in terms of the convolu-
tion integral

The Notion of Nonlocal Transport

(Y

q(x) = W(x,&)g"(¢)d¢, @
where W(x,¢) are appropriate weights and in this general case
¢"(x) is a reference flux whose physical interpretation re-
quires some care. It is a function of hydrogeomorphic mea-
sures associated with the transect at location x, as opposed
to the actual flux that would be measured at that position.
The measured flux at position x reduces to g“(x) in two spe-
cific cases: in a purely local treatment or the special case of
nonlocal transport where the transport is spatially uniform
and attention is restricted to a region sufficiently distant from
the domain boundaries. Hence, equation (2) represents a
weighted integral (convolution) of the reference flux ¢*(x)
over the entire domain of interest. As noted in the
Introduction, there are a variety of conditions and processes
that would imply nonlocality. Possible examples include,
but are not limited to, channel network patterns that naturally
exhibit a wide range of transport length scales (e.g., the
power-law distributions of stream lengths and island sizes
found in deltas and braided rivers) and heterogeneous sedi-
ment production and transport (including erosion, slope
failures, channel avulsions, and sediment trapping) that
induce, at any point in the landscape, a broad range of
entrainment and deposition probabilities.

[15] As written, equation (2) is a general definition of a
nonlocal flux. Equation (2) is connected to physical systems
in three ways: first, through the specification of the argu-
ments (i.e., local hydrogeomorphic measures like slope, wa-
ter discharge, etc.) of the function ¢“(x), second, through the
form of this function (e.g., nonlinear versus linear), and third,
through specification of the weights. In the following, we ex-
plore how these definitions and specifications can be made.

3.2. A Local Process Model

[16] To move forward, we narrow our choice of local
hydrogeomorphic measures to the topographic slope. In this
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way, for the specific case when ¢%(x) is a linear function of
this slope, the nonlocal framework in equation (2) will be
consistent with previous fractional calculus models of
nonlocality [Foufoula-Georgiou et al., 2010; Voller and
Paola, 2010; Voller et al., 2012]. Given that our goal is to
develop a combined nonlocal, nonlinear model, our next step
is, through the use of basic sediment transport relations and
reasonable physical assumptions, to arrive at a general local,
nonlinear sediment transport model in terms of the topo-
graphic slope. Nonlocal effects will then be represented
through the weights in equation (2). The development of
the nonlinear sediment flux model follows the ideas and con-
cepts found in previous works [Lorenzo-Trueba et al., 2009;
Swenson et al., 2000].

[17] We start with the classic bed load sediment transport
equation due to Meyer-Peter and Miiller [1948], which
relates a dimensionless sediment transport rate ¢“ to a dimen-
sionless shear stress 7 acting in the fluvial channels on depo-
sitional surface, viz.,

¢~ —1)?, 3)

where 7. is the critical shear stress at which bed load transport
is initiated. Two common field cases are of interest. In gravel
bed rivers, the channel width self-adjusts to keep the bed
shear stress slightly above critical, t=(1+¢)z. [Parker,
1978; Parker et al., 2007]. Alternatively, in sand and fine-
grained channels, > > 7. [Dade and Friend, 1998; Parker
et al., 1998]. In both these cases equation (3) can be simpli-
fied to the form [Paola et al., 1992; Paola, 2000]

qL~T3/2. (4)

[18] In contrast, considering the total bed material load—
the sum of the bed load and the bed material part of the
suspended load—the sediment transport rate can be modeled
by the Englund and Hansen [1967] relation of form

qL"'TS/Z. (5)

[19] Together, while not universal, equations (4) and (5)
suggest that a reasonable general form for the sediment trans-
port rate follows

3 5
q~7, §§m5§~ (6)

[20] On using conservation of fluid mass, assuming that
the momentum balance reduces to 7= — pgh dh/dx, (where
p is fluid density and g is gravitational acceleration) and
adopting a standard quadratic drag law to represent the shear
stress (i.e., 7= C;U?, where Cyis a friction coefficient and U
the depth-average fluid velocity), it can also be shown—see
details in Lorenzo-Trueba et al. [2009] and Swenson et al.
[2000]—that

TN[— @} ™

Combining equations (6) and (7) leads to a general nonlinear
local flux model

dh
dx

&=

)
{_E}’ n>1. ()

[21] Within this basic theory, the exponent » in equation (8)
is in the range 1 <n<1.66. As noted in the Introduction, this is
inconsistent with experimental observations that place the ex-
ponent in the range 1.95 < n < 3.2 [Swenson and Muto, 2007,
Parker et al., 2007; Parker and Muto, 2003; Postma et al.,
2008]. To account for this difference, Postma et al. [2008]
suggest that neglecting the critical shear stress may not always
be valid, presenting analysis to show that, in some systems, ac-
counting for the critical shear stress leads to values of n well
within the experimental range. We note, however, that some
of the experiments used to determine the value of n involve
relatively fine sediments and flow scenarios in which the shear
stress is significantly larger than the threshold shear stress, a
situation consistent with the simplified theoretical treatment.
For example, in analyzing a flume/sediment system similar
to the one used in Swenson and Muto [2007], Parker and
Muto [2003], and Lorenzo-Trueba et al. [2009, Lorenzo-
Trueba and Voller, 2010] show that the applied shear stress
was up to 21 times larger than the threshold shear stress.
Hence, the explanation proposed by Postma et al. [2008]
seems inapplicable to some of the cases where the inferred ex-
ponent in the transport model is out of the range suggested
above. This motivates us to ask whether nonlocal effects could
account for the apparent difference between theoretical and
experimental values of the nonlinearity exponent 7.

[22] To help ease our later analysis, we define a nonlinearity
parameter

p=1 ©

and we restrict attention to systems where the fluvial surface
elevation /(x) decreases monotonically in the downstream di-
rection. The first step means that we measure nonlinearity on
a 0 to 1 scale; the second means that we avoid the awkward
calculus associated with taking absolute values. As such,
our working model for the local flux is in the form

o2 (2 (2)

0> p>1,n2l. (10)

[23] We emphasize that in a purely local model, equation
(10) would be the measured average sediment flux at location
x, i.e., = ¢"(x), whereas in a nonlocal treatment, g“(x) would
be a reference sediment flux for location x.

3.3. Nonlocal Weighting

[24] In essence, a sediment mass balance model represents
the balance of fluxes into and out of a region of the landscape
—a detailed discussion of such a flux balance can be found in
Paola and Voller [2005]. The central element in these models
is an appropriate representation of the sediment flux at a
given location. Here, through our general equation (2), we
are proposing a representation that couples the two concepts
for sediment flux models that form the basis of this paper:
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The first uses our understanding of fluvial sediment transport
processes to relate the flux to functions of local fluvial
hydrogeomorphic measures as embodied in the nonlinear
flux model in equation (10). The second concept is the influ-
ence of nonlocal effects—that is, the representative flux at a
given point can be partially controlled by landscape features
or events remote from that point. With reference to equation
(2), the specific realization of a nonlocal model comes about
from specification of the weights W(x,¢&). In developing such
a realization, it is important to recognize that nonlocality by
its nature reflects the influence of multiple processes occur-
ring across a wide range of space and time scales. Although
useful explanations of specific nonlocal mechanisms have
been proposed [Furbish and Roering, 2013], the range of
potential processes contributing to nonlocal transport is quite
broad. Hence, at this point of our understanding, we think
there is merit in developing phenomenological, nonlocal
treatments through the identification of simple rules for deter-
mining the weights in equation (2). Testing alternative
models of this nature against physical observations will in-
form our developing understanding of what nonlocality and
locality are and how they might operate in the landscape.

[25] As an aside, to provide a historical context and justifi-
cation, we note that when Henry Darcy proposed his
equation to describe infiltration in the Dijon sandstones
[Darcy, 1856], it was for all essential purposes a phenomeno-
logical model that fitted the observed data. It was not until
fairly recently, through the application of extensive theory
[Whitaker, 1985], that a connection between Darcy’s simple
law and the governing equations of the flow in the pores of a
medium was established.

[26] Coming back to the task at hand, obvious require-
ments in a phenomenological nonlocal approach are that
the weights W(x,&) (1) cannot be negative, (2) must decrease
in value with increasing distance from x, and (3) should have
an integral over the domain of order 1. Within these basic
rules, however, we have some choice. An important selection
in this regard is the domain of the integral in equation (2),
which can be viewed as the region about the point x that in-
fluences that point. It is the region over which the weights
W(x,¢) are strictly positive. Since we know that the sediment
moves on average downslope (downstream), an obvious and
intuitive choice is to assume that the contributions to the
nonlocality at point x are confined to points upstream of x.
In this way, our general flux model would have the form

q(x) = ({ W (x,&)g" (&) de. (11)

[27] This is the form of nonlocal model used in modeling
erosional hill slope domains [Foufoula-Georgiou et al.,
2010] so it certainly must be considered as a candidate
nonlocal model for our present focus on depositional sys-
tems. However, that the sediment moves strictly downstream
does not mean that influence flows strictly downstream. In
previous theoretical work, Voller et al. [2012] showed that
in application to closed depositional basins—where the pos-
itive input flux at £ =0 exactly balances a piston subsidence
in 0<¢<l—equation (11) leads to physically implausible
results. This is established through observing how a solution
based on the upstream nonlocality in equation (11) satisfies
the downstream flux boundary condition at £=1, i.e., the

condition that ¢(1)=0. As we approach this boundary,
¢ — 1, (since all weights are considered to be nonzero) the
only way to satisfy the boundary condition with the nonlocal
definition equation (11) is to allow for the occurrence of neg-
ative nonlocal fluxes ¢*(¢) somewhere in the domain [0, 1].
This in turn implies that sediment moves upstream! So while
equation (11) is valid in some sediment transport systems, it
is not universally so. This suggests that an alternative selec-
tion for the region of nonlocality contributions is to do the
opposite of equation (11) and consider only contributions
from the region downstream of x, i.e., set

1
q(x) = [ w(x,&)q" (&) dé.

X

(12)

[28] Atfirst glance, it seems hard to imagine, given the pre-
vailing flow of sediment, that the flux at a point is controlled
by downstream events. We note, however, that the flows in
many physical systems are controlled by downstream condi-
tions, e.g., traffic flow upstream of a restriction such as a
tunnel or lane closure [Lighthill and Whitham, 1955], and
of course, in open channel hydraulics, the backwater control
of upstream, subcritical flow by downstream obstacles. There
are also examples in landscape dynamics where there is an
upstream flow of “information”, e.g., the upstream migration
of meanders [Zolezzi and Seminara, 2001; Zolezzi et al.,
2005; Seminara, 2006], upstream migration of erosional
fronts [Tucker and Slingerland, 1994], and upstream-propa-
gating waves of deposition [Hoyal and Sheets, 2009].
Though these examples have not been framed in terms of
nonlocality, they help highlight the key conceptual point,
which is to distinguish the flow of material from the flow of
influence or information.

[29] In light of the above, since we are primarily interested
in applying our resulting model to study depositional systems,
we will, in the first instance, restrict attention to the pure down-
stream nonlocality modeled by equation (12). In comparing
with experimental data related to a zero-subsidence system,
however, we also briefly investigate the upstream nonlocality
of equation (11). This will clearly demonstrate that such an
assumption does not lead to a satisfactory prediction of
observed morphology.

[30] To proceed, we need to define explicitly the weights in
equation (12). On assuming that the heterogeneity length
scales that govern the nonlocality are power-law distributed
through the fluvial domain [e.g., Foufoula-Georgiou et al.,
2010; Ganti, 2012], we can define appropriate (nonzero,
monotonic) weights such that the upstream nonlocal model
in equation (11) takes the form of the convolution integral

X

= [=a e

non—loc—u

(13)

and, in a similar manner, the downstream nonlocal model in
equation (12) takes the form

non—loc—d __ 1

R

1
fe-nt@a  aa
where () is the gamma function. Providing a value of the

nonlocality parameter 0 <a<1 in equations (13) and (14)
gives us a degree of flexibility in specifying the nature of
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our weights; note also that it can be shown that a value of
o=1 reduces the flux definitions in equations (13) and (14)
to be equivalent to a purely local flux at x.

[31] There are other advantages in our choice of weights.
In particular, we note that with a linear definition for the
reference flux, i.e., ¢“=—v dh/dx, equations (13) and (14)
can be respectively identified as the definitions for the left-
and right-hand Caputo fractional derivatives [ Podlubny, 1999]:

x

non—loc—u __
q a J.
0

1

non—loc—d __
q -

X

de”, (15)

—dé (16)

[32] Thus, by using the appropriate Laplace transform (see
for example the appendix in Voller and Paola [2010]), we
find that for a given real # > a,

() if h=x"
1 T+1) .
F(lfa).([(x—f) —ééfir(nﬂ A
(i) if h=(1 —x),
1
F(n+1) a
Iff dé—m(l—x)” . (18)

X

[33] We finally point out that, in the context of a power-law
distribution of heterogeneities, there is a strong assumption in
choosing the weighting schemes in equations (15)—(18), viz.,
that the largest heterogeneity length scale in the system is of
the same order as the domain size. When this is not the case,
i.e., there is a clear scale separation between the domain size
and the largest heterogeneity, we would expect any signal of
nonlocality to be quenched. In other words, depending on the
transport process and the heterogeneity length scales of a
given system, the domain size itself might be a determining
factor in choosing the weighting function.

4. A Steady State Model for Depositional Systems

[34] Following appropriate scaling, a simple but relevant
test model for our proposed NLNL framework can be
constructed by considering a steady state surface in a unit do-
main subjected to (1) no subsidence (c=0) [Postma et al.,
2008] or (2) a piston subsidence of unit magnitude (o= — 1)
[Voller et al., 2012]. From the Exner mass balance equation
(1), the governing sediment transport equation for this sys-
tem 18

4 0, zero
E(q): 0<x<l1, (19)
—1 piston
with boundary conditions
q(0)=1, A(1)=0, (20)

where ¢ is the sediment flux defined by the nonlocal and/or
nonlinear forms above.

5. Model Solutions

5.1.

[35] In the case of a linear, local diffusive flux ¢ = — dh/dx,
where the constant diffusivity is taken equal to 1 for simplic-
ity, it is easily verified through direct substitution that the
solution of equations (19)—(20) is

Local, Linear Diffusion

(1 7x)7

ZE€1ro

@n

piston.

%(1 - x)27

5.2. Local, Nonlinear Diffusion

[36] The first step in obtaining a solution of equations (19)
and (20), in the case where the sediment flux is given by the
local, nonlinear form in equation (10), is to linearize the
equation by setting

_dn\"(_dh\__dy
dx dx)”  dx’

where we simply substitute the product of the two terms in
parentheses in equation (10) with a new derivative. Then,
following from equation (21), the solution of equations
(19)—(20) in terms of the new variable y is

(22)

(1 7x)7

ZEro

23)
| .
E(l —Xx)°, piston,

thus allowing the right-hand side of equation (22) to be writ-
ten as a function of x. The subsequent integration leads to the
solution for the fluvial profile

(1 *X),

ZCro

24)

n=>1, piston.

[37] We note that when n=1, this solution recovers the
linear and local solution in equation (21) and that there is
no signal of nonlinearity (i.e., no dependence on ) in the
case of zero subsidence in the steady state profile. We also
note that equation (24) can be reformulated in terms of
p=1/nas

(1 —x),

Z€ro

25

(=0

piston.
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Table 1. Theoretical Values of the Shape Exponent of 6 in

Equation (32) for Difference Diffusion Flux Models and
Subsidence Styles

Subsidence Style Linear Nonlinear Nonlocal NLNL
Zero 0 0 a—1 (a—1)p
Piston 1 s o oaf

[38] For our purposes, the above notation is more conve-
nient since, unlike #, the parameter f is restricted to the inter-
val (0, 1].

5.3. Nonlocal, Linear Diffusion

[39] If we assume that ¢“(¢) has a linear dependence on the
local topographic slope (n=1/=1), we can use the frac-
tional derivative results in equation (18) to verify that the flu-
vial profile solution to our test problems, when a
downstream-directed nonlocality is present (flux model in
equation (12)), is given by

1 —X), Zero

(1 _x)1+0t’

ist
Fat2) piston

[40] We note that this result recovers the linear result in
equation (21) when ao=1 and the piston solution in equation
(26) matches the one previously obtained by Voller and
Paola [2010]. In the case of piston subsidence, the nonlinear
solution in equation (25) and the nonlocal solution in equa-
tion (26) have identical forms indicating that, with appropri-
ately chosen parameters, both the nonlinear and downstream-
directed nonlocal models have the same potential to match
the curvature of observed depositional profiles.

6. The Nonlinear, Nonlocal (NLNL) Model

[41] Combination of the nonlinear and nonlocal models is
readily achieved by simply using the nonlinear definition of
q" (equation (10)) in the upstream (equation (11)) or down-
stream (equation (12)) nonlocal models. This, for the down-
stream case, leads to the NLNL model

1 n—1
1 . —u dh dh
r(1fa).[(g_x) <_d_¢’> ke
1.‘(
_ 1 ady .
_F(lia)j(é:*x) Iédgy

F =

@7

where the last term on the right-hand side arises from the lin-
earization defined in equation (22). In this way, we see that
the solution of equations (19) and (20), in terms of the linear-
ized variable, y, follows immediately from equation (26), i.e.,

Z€1ro

0<a<l. (28)

piston

[42] When we substitute the above solution into equation
(22), appropriate integration leads us to the following
NLNL solution for the fluvial surface

1 o ;(1 - )H%% .
I CEey x ., Zero
h= non 29)
n [(1+a)]n atn .
a—i—n{l“(a—&—Z)} (1—=x) n , piston.
[43] Or in terms of f=1/n,
1 a 1 1+ap—p
l—l—aﬂ—ﬂ{l"(a—l—l)} (1-x) ,  zero
h= (30)
1 (1 +O() / 1+ap .
1+a,8[1"(a+2)} (1—x)"%, piston,

where 0 < <1, 0<a<l. The solutions in equation (30)
represent a prediction for the steady state depositional profile
that simultaneously accounts for both nonlocal and nonlinear
dynamics in sediment transport. In particular, note that we re-
cover (1) the linear solution when f=a=1, (2) the nonlinear
solution when 0 < < 1, a=1, and (3) the nonlocal solution
when 0 <a< 1, f=1.

[44] When the nonlocality is directed upstream (see equa-
tion (11)), a similar analysis leads to the zero-subsidence
NLNL solution

WP =

p
} (1 —x"thy, 31

1 { a
l+af—p(T(a+1)

[45] This is almost identical in form to the downstream
model solution (see first component of equation (30)) but
with the exponent operating on x as opposed to (1—x), a
change that switches the sense of the fluvial curvature from
concave down to concave up.

7. Analysis

[46] Before we present an experimental illustration of the
operation of our proposed model via equation (30), it is worth
investigating some of its consequences. In this respect, we
note that all of the downstream nonlocality solutions have
the generic forms

h=a(l—x)'"’ (32)

where a is a constant and the exponent 6 determines the
resulting shape of the surface. Table 1 tabulates all of the
forms of the shape exponent 6. The key conclusion is that
the degree of nonlinearity is always biased by the presence
and level of nonlocality. The way in which this bias operates,
however, depends on the contrasting subsidence styles. In the
case of piston subsidence, the exponent in all models has the
same form and in the NLNL case the nonlinear and nonlocal
parameters contribute multiplicatively to the exponent, i.e.,
0=af. As such, we note that, in matching a given value of
6, an increase in the nonlocality (a decrease in the value of &)
requires a reduction in the level of nonlinearity (an increase
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Figure 2. Experimental fluvial profiles in a depositional system; on the left, the fluvial surface plan view
and, on the right, elevation of the profiles along different transects. Note this figure is taken from Figure 1 in
Voller and Paola [2010] with the addition of the transect locations in the plan view and the subtraction of

prediction in the elevation.

in the value of f5). Hence, this behavior suggests that account-
ing for nonlocality in the system may allow for levels of
nonlinearity f=1/n that fall within the theoretical range
1<n<1.66.

[47] The zero-subsidence shape exponent reveals a differ-
ent form of relationship between the nonlocality and
nonlinearity. In particular, we note that in the absence of
nonlocality (i.e., a = 1), there is no signal of the nonlinearity
in the steady state profile for zero subsidence, i.e., the profile
becomes trivially linear (see equation (23)). It is only when
nonlocality is present (i.e., 0 <a < 1) that curvature is
induced and the signal of the nonlinearity revealed. This is
an important observation because it suggests that the
appearance of curvature in the steady, nonsubsiding fluvial
profile indicates the presence of nonlocality, i.e., steady
state profile curvature cannot be attributed to a nonlinear
transport process alone. Further, in contrast to the piston
subsidence case, the values of a and f in the zero-subsi-
dence case do not counter one another in dictating the shape
exponent. Indeed, for a given value of — 1 <0=(a— 1) <0,
a decrease in a (an increase in nonlocality) also leads to a
decrease in f (an increase in nonlinearity). In this way, the
contrast in the nature of the fluvial shape exponent between
the two subsidence styles provides a means—through
experimentation on systems with controlled subsidence—of
distinguishing and quantifying the degree of nonlocality
and nonlinearity.

8. Experiment Illustrations of the NLNL Model

[48] The foregoing analysis of our combined NLNL model
(equation (30)) suggests how the discrepancy between exper-
imental and theoretically derived values of the nonlinear
parameter =1/n could be removed and how an observed
fluvial profile might indicate the presence of nonlocality.

To illustrate these features, here we fit our NLNL model to
data obtained from fluvial profile experiments presented in
the literature: a depositional system with subsidence investi-
gated by Voller and Paola [2010] and a zero-subsidence
depositional system reported by Postma et al. [2008]. We
note that measurement noise, imperfect approach to steady
state, and lack of complete knowledge of the entry and exit
conditions, among other things, could in part obscure the sig-
nature of nonlinear and nonlocal sediment transport dynam-
ics predicted by the proposed NLNL model. Nonetheless,
this exercise still serves to illustrate how the NLNL model
links—or should link—to physical systems and to show
how more exact and definitive experiments for untangling
nonlinear and nonlocal transport might be constructed.

[49] Data on deposition with subsidence [Voller and Paola,
2010] come from one of the Experimental Earthscape runs
performed at Saint Anthony Falls Laboratory, University
of Minnesota [Kim et al., 2006]. The experiment consists
of supplying a mixture of quartz and anthracite sand
(100-500 pm), to a tank (length 6 m, width 2.5 m) with
a programmable subsiding floor. During the experiment,
the supply rate of sediment is scaled to the rate of creation
of volume by subsidence (accommodation), and the trans-
port system organizes itself to deposit sediment to balance
subsidence and maintain roughly consistent elevation, sub-
ject to external forcing. Figure 2 shows three experimental
profiles from different downstream transects (indicated
in the plan view photograph of the tank also shown in
Figure 2). These profiles are from a period when the
experiment was close to steady state, with the system
running out of sand without a commensurate change in
slope. The plan view of the experiment shows that this
runout point is consistent during the period of interest;
here we take a single representative value, 3750 mm. In
order to compare this data with our NLNL model, we digitally
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Table 2. Elevation for Subsidence Experiment Digitally Extracted
from Figure 2

Downstream Position (mm) Elevation (mm)

y=0.8m y=13m y=18m

500 208.33 205.00 217.08
750 187.50 186.67 191.67
1000 162.50 164.58 167.50
1250 137.50 145.83 142.50
1500 120.83 127.08 122.92
1750 100.83 112.50 100.83
2000 81.25 91.67 83.33
2250 66.67 73.75 66.67
2500 49.58 56.25 50.42
2750 32.92 37.50 37.50
3000 20.83 24.17 21.67
3250 12.50 12.50 12.50
3500 5.00 5.00 5.00

extracted the elevation profiles from Figure 2. The resulting
profiles, with elevation every 250 mm, are given in Table 2
and plotted as symbols in Figure 3; the first downstream
point we use is ~500 mm, a distance beyond the influence
of perturbations associated with the sediment input. The
form of NLNL to fit to these data is the second component
of equation (30) written here as

x )1+97 0= ap.

"~ 3750 (33)

h:A(l

[s0] We selected the parameters in this model to minimize
the sum of squares for our extracted data points, i.e.,

3 13

sS= ¥ 3 (W —hx).

profile k=1 i=1

(34

[5s1] The best fit line defined in this way, shown as a solid
line in Figure 3, gives 4 =260 and exponent §=0.47. If we
assume that nonlocality has no role in establishing this profile
(i.e., a=1), this fit would suggest that our nonlinear exponent
is f=60=0.47, (n=2.13). This value is higher than the

300
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0 1000 2000

distance (mm)

3000 4000

Figure 3. Plotting of experimental data in Table 2 (white
squares: y=1.30m; circles: y=1.80m; black squares:
y=0.80m) and best fit of NLNL model (solid line) #=260
(1 —x/3750)! 4047,

140

120 |

elevation (mm)
P (o)) (o] 5
o o o o

[553
[=)
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2000
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Figure 4. Plotting of experimental data in Table 3 (sym-
bols), best fit NLNL model (solid line) A=118(1 —x/
3750)' %14 and best fit linear (dashed line) #=124(1 —x/
3750).

experimental value suggested by Postma et al. [2008], that
is £=0.3125, (n=3.2)), but still 20% short of the expected
lower theoretical limit f=0.6, (n=1.67)). This shortfall
can, however, be mitigated if we allow for nonlocality in
the system. In particular, since the exponent in the NLNL
model is aff =6, nonlocal exponents that satisfy <a<1.67
will, for a given value 6, always result in a nonlinear expo-
nent within the theoretical range 1 <£<0.6.

[52] As a further comparison, we turn to the zero-subsi-
dence experimental data presented in Postma et al. [2008],
which were digitally extracted from the near-steady state
experimental profile reported in Figure 1 of their paper
(squares in Figure 4; see Table 3 for list of the extracted data).
The original experimental profile was arrived at by running a
transient sand-sized deposition system to steady state, in a
flume of length 4.5m and width 0.11 m. Starting at x =250
mm, we extracted data from this profile at intervals of Ax=250
mm. As for the subsiding floor experiment, to reduce the im-
pact of entry conditions, we chose the starting point for our
data analysis a little away from the sediment input origin

Table 3. Elevation Data Extracted from Steady Sate Profile of
Figure 1 in Postma et al. [2008]

Downstream Position (mm) Elevation (mm)

250 112.83
500 103.50
750 100.00
1000 97.50
1250 89.67
1500 82.50
1750 77.50
2000 72.00
2250 67.50
2500 60.00
2750 52.00
3000 45.00
3250 38.33
3500 31.83
3750 24.50
4000 16.67
4250 10.17
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x=0. Here, with reference to the first component in equation
(30), we fit the model

X
4500

h=4(1 )He, 0= af—B. (35)

[53] The best fit, shown as a solid line in Figure 4, has
constant 4=118 and exponent §=—0.14. These choices
generate a sum of squares of differences with the experiment
data of SS=30; as a point of contrast, the best linear
(a=1,0=0, A=124) fit, shown as a dashed line in
Figure 4, has a sum of squares SS=237. As noted in our
previous discussion, any negative nonzero exponent 6 in
equation (35), exhibited as a curved rather than a linear
fluvial surface, indicates the presence of nonlocality. We do
recognize that the observed curvature in this case is quite
subtle. This could be attributed to the width of the flume
(0.11 m), which may not allow for the full development of
the channel network. We also recognize that there is some
ambiguity in choosing experimental geometric parameters.
To this last point, we note that (1) if we shift the first collected
data point downstream from x =250 mm to x=500 mm, the
best fit exponent value decreases slightly to 6=—0.143 or
(2) if we move back the projected end of the deposit from
x=4500 mm to x=4350 mm, we decrease this exponent to
6=—0.21. So we have a reasonably high degree of confi-
dence that the extracted elevation data in Table 3 and
Figure 4 demonstrate the appearance of nonlocality.
Beyond this, the data also support the idea that in this system,
built through depositional processes, the nonlocality is purely
directed downstream.

[54] Although preliminary, the two example experimental
data sets we have analyzed here also point toward a means
by which we might be able (1) to justify the mutual presence
of nonlocality and nonlinearity in depositional systems, and
(2) to constrain an estimate of the nonlinear and nonlocal
parameters f and a. Using the best fit values, the depositional
experimental data imply

aff = 0.47 (36a)
and the bypass experimental data imply
aff — p = —0.14. (36b)

[55] Solution of the system (36) results in f=0.61 and
0.=0.77, where the value of the nonlinear parameter is within
the expected theoretical range 1 > £=0.61 > 0.6.

[56] In summary, we think that the two sets of experimen-
tal data used here, despite imperfections, meet our objectives
of illustrating how nonlocality can modify the exponent in a
nonlinear model and induce fluvial profile curvature in
systems where local processes alone would predict none.

9. Conclusions

[57] The transport of sediment in the landscape is intrinsi-
cally nonlinear and, we argue, often intrinsically nonlocal.
Our goal here has been to construct a framework for combin-
ing these two fundamental but previously disparate aspects of
sediment transport dynamics: a unified nonlinear, nonlocal
(NLNL) sediment flux model for prediction of river long

profile evolution. On developing the NLNL model for
systems with no subsidence and with piston-style subsi-
dence, and comparing the model predictions with available
experimental data for steady state depositional profiles, we
conclude the following:

[s8] 1.In combination, nonlinearity and nonlocality interact
in ways that counterbalance one another in creating profile
curvature for the piston subsidence case but oppose one
another for the no subsidence case. Accounting for nonlocality
in comparisons with experimental steady state fluvial profiles
brings the best fit values of nonlinear parameters within
the range of those expected from theoretical sediment
transport arguments.

[59] 2. A concave fluvial profile formed in zero-subsidence
experiments would unambiguously indicate the presence
of nonlocality.

[60] 3. The ability of the proposed NLNL model to consis-
tently reproduce experimental measurements from two
independent systems provides support for the use of both
nonlinear and nonlocal treatments in general sediment
transport models.

[61] 4. Comparing subsiding and nonsubsiding steady state
systems suggests a test by which nonlocal and nonlinear
effects can be disentangled. The dependence of the interactions
between the nonlocal and nonlinear components (competition
versus amplification) due to the nature of the subsidence
should allow for the construction of experiments that distin-
guish between the roles of nonlinearity and nonlocality in
constructing topography.
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