Transport and Vulnerability in River Deltas: A Graph-Theoretic Approach

Alejandro Tejedor and Anthony Longjas
St.  Anthony Falls Laboratory and National Center for Earth-surface Dynamics,
University of Minnesota, Minneapolis, MN, USA 55414

Ilya Zaliapin
Department of Mathematics and Statistics, University of Nevada, Reno, NV, USA 89557

Efi Foufoula-Georgiou
Department of Civil Engineering, University of Minnesota, Minneapolis, MN, USA 55414
(Dated: August 25, 2014)

Maintaining a sustainable socio-ecological state of a river delta requires delivery of material and
energy fluxes to its body and coastal zone in a way that avoids malnourishment that would com-
promise system integrity. We present a quantitative framework for studying delta topology and
transport based on representation of a deltaic system by a rooted directed acyclic graph. Applying
results from spectral graph theory allows systematic identification of the upstream and downstream
subnetworks for a given vertex, computing steady flux propagation in the network, and finding
partition of the flow at any channel among the downstream channels. We use this framework to
construct vulnerability maps that quantify the relative change of sediment and water delivery to
the shoreline outlets in response to possible perturbations in hundreds of upstream links. This en-
ables us to evaluate which links (hotspots) and what management scenarios would most influence
flux delivery to the outlets. The results can be used to examine local or spatially distributed delta
interventions and develop a system approach to delta management.

Deltas are landforms with channels that deliver water,
sediment and nutrient fluxes from rivers to oceans or in-
land water bodies via multiple pathways. These systems
evolve naturally by maintaining the balance between sub-
sidence due to compaction and new land formation due
to sediment deposition from the river upstream [1]. This
dynamic interaction results in a low-relief terrain with
slopes as low as 1.0 x 107° [2].

Deltas are highly productive regions supporting exten-
sive agriculture, diverse ecosystems, and containing nat-
ural resources such as hydrocarbon deposits. More than
half a billion people reside in deltas with over 300 million
living in the Ganges-Bramahputra-Meghna, Yangtze and
Nile alone [3, 4]. Unfortunately, many deltas are vulner-
able to both natural and anthropogenic drivers, and are
predicted to be in danger of collapsing within the 21st
century [3]. Any alteration in the delta network can pro-
voke physical (channel morphology), biological (ecosys-
tems) and socio-economic changes. For instance, rapid
sea-level rise exacerbates land loss inducing saltwater in-
trusion upstream and loss of ecosystem habitat. On the
other hand, demands on water and energy from upstream
are satisfied by dams and divergence structures, while
multiple dykes, embankments and sluice gates are con-
structed downstream mainly for irrigation purposes and
to control floods and salinity intrusion. These human-
engineered structures result in unintended consequences
that prevent the growth of deltas and disrupt their nat-
ural ecosystem dynamics. The rising sea-level, in con-
cert with reduction in aggradation and accelerated com-
paction, is putting many deltas in peril [3, 5].

Recent works have focused mainly on modeling delta

growth and evolution [6-11] and developing quantita-
tive metrics to describe delta morphology [12, 13]. At
the same time, formal methodologies for studying deltas’
topology and dynamic processes operating on them are
still lacking. Our study contributes to this direction.
Specifically, we conceptualize a delta as a rooted acyclic
directed graph and use its weighted adjacency matrix to
(i) identify the steady flow along the delta channels, (ii)
detect upstream (contributing) and downstream (nour-
ishing) subnetworks for a given channel, (iii) find the
partition of flow from a given channel to any collection of
downstream nodes at steady state, and (iv) examine how
perturbations at upstream parts of the system propagate
downstream. The developed framework is illustrated by
examining the vulnerability of the downstream (shore-
line) outlets to flux reduction in upstream channels and
building vulnerability maps that can facilitate assessment
of delta development scenarios.

Recall that a graph G = (V, E) is a collection of ver-
tices V.= {v;}, ¢ = 1,...,N and edges F = {(uv)},
u,v € V, where the notation (uv) signifies that the edge
connects the vertices u and v. A graph is called directed,
or digraph, if its edges have directions, that is, edge pairs
(uv) are ordered. A digraph is called acyclic if there are
no directed paths from a vertex to itself. A digraph is
called rooted if there is a vertex r such that there exists a
directed path from r to any other vertex in the graph. A
digraph can be uniquely specified by its (asymmetric) ad-
jacency matriz A such that A(v,u) = 1 if there is an edge
(uv) and A(v,u) = 0 otherwise. Sometimes, edges are
given weights w,,. In this case the graph is specified by
its weighted adjacency matrix W with non-zero elements



FIG. 1. Wax Lake delta. The skeleton network (yellow lines)
is superimposed on the aerial view of the delta in 2005 by the
National Center of Earth-surface Dynamics (NCED). Only
links in the network that connect the delta apex to the shore-
line outlets are considered in the connectivity analysis.

W (v,u) = Wyy. In a marked graph G = {V, E, F'} each
vertex has a quantitative characteristic F;. An acyclic
digraph imposes well defined parent-child relationships
among the vertices. Specifically, each edge (uv) connects
a parent u to a child (offspring) v. In general, each vertex
may have multiple offspring and parents. The vertices
with no offspring are called leaves.

We consider all the links in the delta network that
connect the apex to the shoreline outlets [12], and as-
sume unique downstream direction of fluxes along the
delta channels. The topological arrangement of the delta
channels can be represented by a marked rooted acyclic
directed graph G. The delta apex corresponds to the root
of G; the shoreline outlets — to the leaves; the physical
points where channels intersect (combine or split) or ter-
minate — to vertices; and the channel segments between
intersections/splits/outlets — to edges. The direction of
flux through the delta (from root to outlets) is repre-
sented by the edge directions. The flux intensity at node
1 is given by time-dependent mark F;(t). The distribu-
tion of the flux at a parent vertex u among the offspring
vertices (z, ..., z) is given by vector (wyq, ..., w,,) such
that wy, + -+ + wy, = 1. The weights w,, form the
weighted adjacency matrix W.

The problem of finding the steady flow on a graph
is well-known in transport network studies. At steady
state, the flow through vertex i equals the total in-flow
from its parents: F; = 3 ,w;;Fj. This equation ap-
plies to all the vertices except the root (which does not
have the source of flux) and leaves (which do not have
offspring) — at these vertices the flux cannot reach a

nontrivial steady state. To avoid this problem we con-
sider a cycled version of the network, where the out-
lets (leaves) directly drain their entire flux to the apex
(root). The weighted adjacency matrix for this new
network is denoted by W. Hence, we seek a solution
F = (F1,...,Fyx)T (where 27 is the transpose of ) of
the system

Fy =Y i@;Fj, i=1,...,N. (1)
J

This can be written in matrix notation as F = W F, or
(In —W)F = Oy, where Iy is the N x N identity matrix,
and Op is an N X 1 vector of zeros. In other words, we
need to identify the null space of the matrix Lgp = I—TW.
We also notice that Iy is the out-degree matrix for W,
so Lgr is a graph Laplacian for W. The steady flow at
an edge (uv) is given by Fiy,,) = Fy Wyy. It is clear from
the flux interpretation that there exists a unique solution
to this problem.

Proposition 1 (Steady flow). The steady flow F' through
a rooted acyclic digraph G with weighted cycled adjacency
matriz W is given (up to a scalar factor) by the eigen-
vector that spans the null space of the graph Laplacian:

null (Ls) = null (I - W) - {x (1= W)z = ON} .

Next, we use the results of [14, 15] to identify the
subnetwork that participates in draining fluxes from the
apex to a given vertex u (contributing network) and the
subnetwork that drains fluxes from u to the outlets (nour-
ishing network) [12]. Recall that a reachable set R(3) for
vertex ¢ in a digraph G is the collection of all vertices j
such that there exists a directed path from ¢ to j. The
set R is called a reach if it is a maximal reachable set,
that is R = R (i) for some ¢ and there is no such j that
R(i) C R(j). The exclusive part of a reach R; is defined
as Hy = R; \ Uj%R;. The common part of R; is defined
as C; = R; \ H;. Caughman and Veerman [15] prove the
following theorem.

Theorem 1 (Reaches of a digraph). Let A be the N x N
adjacency matriz for G and D be the in-degree matrix
for A, that is the diagonal N x N matriz with diago-
nal elements taken from Aly. Then the nullspace of the
Laplacian L = D — A has a basis v; in RN whose ele-
ments satisfy: (i) vi(v) =0 forv ¢ R;; (i) v:(v) =1 for
v € H;; (i) vi(v) € (0,1) forve Ci; 3,7 = 1n.

Suppose that a delta system is represented by a rooted
acyclic digraph G. Consider now the same stream topol-
ogy with reversed flux directions; the new network is
specified by the acyclic directed graph G® with adjacency
matrix AT. Each outlet i = 1,...,k of the initial delta
generates a reach R; within G®. The exclusive part of R;
consists of the vertices that in G drain exclusively to the



outlet i. The common part of R; consists of the vertices
that in G also drain to at least one other outlet. It is
easily seen that there are no other reaches in G®. Each
outlet ¢ of the initial delta belongs to the exclusive part
of the respective reach in G®. The apex of the initial
delta belongs to all the reaches of GR. Let B denote the
in-degree matrix for AT, that is the diagonal N x N ma-
trix with diagonal elements taken from AT1 5. Consider
the Laplacian Q = B — ATof the digraph G®. A basis
for the nullspace of @Q is described by Theorem 1. The
subnetwork of G that drains from the apex to the outlet 4
corresponds to the unique eigenvector of the Q-nullspace
with v(i¢) = 1. The nonzero elements of this eigenvector
identify the vertices that participate in the subnetwork.

Notably, if we consider a flow along the directed edges
of G with equal distribution of the parental flux among
the offsprings, then the elements of eigenvectors from the
@-nullspace allow the following interpretation. The ele-
ment ~;(v) equals the proportion of the flux at vertex v
that drains to outlet ¢ in the original network G. This
statement is trivial for the outlets of G, which always
belong to the exclusive part of respective reaches. To
prove the statement for the rest of vertices, observe that
Bv; = AT~;, which means that the element v of the
eigenvector ~; equals the average of its parental elements
in GR. The results of [15] apply as well to general stochas-
tic adjacency matrices, which allows one to generalize the
above discussion to the situation with unequal distribu-
tion of parental flux among the offsprings.

Corollary 1 (Contributing network). Consider flow
along the edges of a rooted acyclic graph G specified by a
weighted adjacency matrix W whose elements w.,, repre-
sent the proportion of flux at parental vertex u that drains
to offspring vertex v. Let Q = B — W7 be the weighted
graph Laplacian, with B being the in-degree matrix for
WT. Then the nullspace of Q has a basis ~; in RN such
that ~v;(v) equals the proportion of flux at vertex v that
drains to outlet i. In particular, v;(v) # 0 if and only if
outlet i receives fluzes from vertex v.

Corollary 1 is readily applied to finding the subnetwork
that participates in draining fluxes to any chosen vertex,
not necessarily an outlet. For that, one needs to make
the examined vertex an outlet, by disconnecting it from
its offspring. The modified weighted adjacency matrix is
then used to obtain the result.

To identify the nourishing network for a node u, we
first make u an apex by disconnecting it from the parents.
The identification is done using the following result.

Corollary 2 (Nourishing network). Consider flow along
the edges of an acyclic graph G with k roots, specified by a
weighted adjacency matriz W whose elements w,, repre-
sent the proportion of flux at parental vertex u that drains
to offspring vertex v. Let L = D — W be the weighted
graph Laplacian with D being the in-degree matriz for

W. Then the nullspace of L has a basis v;, i =1,...,k
in RY such that v;(v) # 0 if and only if vertex v receives
fluzes from root i.
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FIG. 2. Steady state flux (a,c) and number of outlets (b,d)
that a given link contributes to. (a,b) Wax Lake delta: The
distribution of flux among the immediate downstream links
is proportional to the channel width. (c,d) Niger delta: The
flux is distributed equally among the immediate downstream
links. The flux at the apex is normalized to F' = 1.

We illustrate this framework with the Wax Lake and
Niger deltas. The Wax Lake delta is a relatively young
river-dominated delta with a radial shoreline propaga-
tion (Fig. 1) [1]. It directly receives input from the Wax
Lake outlet with an average discharge of 2,783 m3 /s and
between 25 and 38 MT/yr of sediment. The delta is a
product of the diversion of the Mississippi River in the
1970s and since then it has evolved with minimum hu-
man alteration. We utilize the outline of the Wax Lake
delta structure processed by Edmonds et al. [12]; it has
59 links and 24 shoreline outlets. The partition of the
flow at a node among the immediate downstream chan-
nels is proportional to the channel width [12, 16]. The
Niger delta is an older, highly complex distributary net-
work that contains numerous loops and other intricate
structures. We consider the area outlined by Smart and
Moruzzi [17]; it has 180 links and 15 shoreline outlets. In
absence of the channel width data, we use equal partition
of the flow among the immediate downstream channels.

The steady state flux for the Wax Lake delta is illus-
trated in Fig. 2(a). There exists no dominant shoreline
outlet for this delta — the maximum outlet flow of about
12% of the apex flux is achieved at 4 out of 24 outlets.
The flux at the shoreline shows that 25% (6 out of 24)
of outlet links receive 60% of the flux at the apex. This



result is comparable to the synthetic sediment flux distri-
bution at the shoreline for the Wax Lake delta obtained
by Edmonds et al. [12]. The steady state flux for the
Niger delta is illustrated in Fig. 2(c). This delta has
a singe dominant outlet that receives 50% of the apex
flux, with the second largest outlet receiving 12%. Fig-
ures 2(b),(d) show the number of outlets a given link
contributes to in the two examined deltas. This plot
highlights the relative importance of a link in the delta
network: the hotspot (red) links affect many outlets while
blue links only affect a single outlet. The hotspots can
be interpreted as “highways of perturbation” since, even
if the steady flux in the link is not high, the effect of
the perturbation will be experienced by many shoreline
outlets in the delta. Representative examples of the out-
let contributing networks are highlighted in Fig. 3(a)-(d)
(where the colors should be ignored for now). In the Wax
Lake delta, most of the outlet contributing networks (18
out of 24, or 67%) have a single path connecting the
delta apex to the shoreline outlet. On the contrary, in
the Niger delta all the networks have multiple pathways.

Flux reduction is recurrent in deltas due to dams and
impoundments. Flux reduction at edge (uv) leads to flux
reduction within the nourishing area of v. The flux re-
duction is specified by adding a new outlet z to the ver-
tex v and assigning new weights w,. = w24(1 — a) and

uv
wieV = wlda, 0 < @ < 1. The reduced flux in the en-

uv
tire delta is computed using Proposition 1 with the up-
dated weighted adjacency matrix. We are interested in
identifying “vulnerable” links defined as the links whose
flux reduction would cause the highest reduction at the
outlets. For that we compute the flux reduction at the
outlets caused by an = 0.4 flux reduction at a given
link, considered one-by-one. The results are illustrated
in vulnerability maps for the representative subnetworks
in Fig. 3. The links colored red, yellow, and blue rep-
resent high (r > 40%), medium (20% < r < 40%) and
low (r < 20%) flux reduction at the shoreline outlet, re-
spectively. In general, if a given link drains p - 100%,
0 < p <1, of its flux to a given outlet, and the steady
flux f°4 at the link is related to the steady flux ¢°' at the
outlet as 14 = Cg¢°d, C' > 0, then a-reduction at this
link results in the outlet reduction g"®" = fol4(1—apC).
Here, « is a local characteristic of the link, while both C'
and p are spatially extended pairwise characteristics of
the link and the examined outlet. We also notice that in
multi-paths networks (Fig. 3 except (c)) the vulnerabil-
ity might not be monotone along individual downstream
channels. These observations support the necessity of a
systematic, spatially-extended approach to studying the
effects of link modifications.

In contrast to well-studied topology of tributary chan-
nel networks (networks that drain to a single outlet;
e.g. [18]), the exploration of the topology of distribu-
tary channel networks (networks that originate from a
single source and drain to multiple outlets) is still in
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FIG. 3. Vulnerability maps for the Wax Lake (a-d) and Niger
(e-h) deltas. Each panel highlights the contributing network
for a single outlet. Shoreline outlets are shown in black.
Red, yellow, and blue links represent high(r >40%), medium
(20%< r <40%) and low (r < 20%) reduction to the shoreline
outlet, respectively, where a 40% flux reduction is applied to
the link.

its infancy. Yet, this topology defines the distribution
of network fluxes and dictates how changes in a given
part of a network propagate to the rest; it also paves the
way to better understand the intricate self-organization
of deltaic systems. We present here a framework for ana-
lyzing the topology of delta networks, and specifically for
identifying the upstream and downstream subnetworks
for any given vertex, computing steady-state flux propa-
gation in the network, and performing vulnerability anal-
ysis by assessing parts of the network where a change
would most significantly affect the downstream or shore-
line fluxes. Notably, all the results follow directly from
the spectral decomposition of the Laplacian for the graph
representing the examined delta. Although we focus on
the steady state topology of a delta that does not directly
incorporate the dynamic evolution of the channel mor-
phology or its topology, extension of the framework to
incorporate time-evolving adjacency matrix is possible.
The proposed framework can form a basis for delta net-
work topology classification and for defining comparative
vulnerability metrics among different deltas as well as
for the same delta under natural and/or human-induced
changes.
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