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ABSTRACT

Using satellite measurements in microwave bands to retrieve precipitation over land requires proper dis-

crimination of the weak rainfall signals from strong and highly variable background Earth surface emissions.

Traditionally, land retrieval methods rely on a weak signal of rainfall scattering on high-frequency channels

and make use of empirical thresholding and regression-based techniques. Because of the increased surface

signal interference, retrievals over radiometrically complex land surfaces—snow-covered lands, deserts, and

coastal areas—are particularly challenging for this class of retrieval techniques. This paper evaluates the

results by the recently proposed Shrunken Locally Linear Embedding Algorithm for Retrieval of Pre-

cipitation (ShARP) using data from the Tropical Rainfall Measuring Mission (TRMM) satellite. The study

focuses on a radiometrically complex region, partly covering the Tibetan highlands, Himalayas, and Ganges–

Brahmaputra–Meghna River basins, which is unique in terms of its diverse land surface radiation regime and

precipitation type, within the TRMM domain. Promising results are presented using ShARP over snow-

covered land surfaces and in the vicinity of coastlines, in comparison with the land rainfall retrievals of the

standard TRMM 2A12, version 7, product. The results show that ShARP can significantly reduce the rainfall

overestimation due to the background snow contamination and markedly improve detection and retrieval of

rainfall in the vicinity of coastlines. During the calendar year 2013, compared to TRMM 2A25, it is dem-

onstrated that over the study domain the root-mean-square difference can be reduced up to 38% annually,

while the improvement can reach up to 70% during the cold months of the year.

1. Introduction

Accurate estimation of rainfall from space is of para-

mount importance for hydrologic and land–atmosphere

studies, especially where ground measurements are not

readily available. The launch of the Tropical Rainfall

Measuring Mission (TRMM) satellite set a benchmark for

spaceborne estimation of rainfall over the tropics (408S–
408N), providing an invaluable set of rainfall observations

over 17 years with unprecedented accuracy and coverage.

The recently launched Global Precipitation Measure-

ment (GPM) core satellite, together with a constellation

of partner satellites, will provide considerably extended

spatial coverage of precipitation over higher latitudes

(688S–688N). The TRMM satellite carried the TRMM

Microwave Imager (TMI), which was an orthogonally

polarized radiometer with nine channels centered on

frequencies ranging from 10.7 to 85.5GHz (Kummerow

et al. 1998) with a swath width of 878km (after 2001,

during the postboost era). The GPM Microwave Imager
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(GMI) provides 13 dual-polarized channels with central

frequencies within 10.65–183.3GHz over a swathwidth of

904km, which provides more detailed information about

the frozen hydrometeors (Hou et al. 2014) than its pre-

decessor. On board both of these satellites are radars

providing high-resolution measurements of precipitation

reflectivity within a narrower swath width, concurrent

with the radiometric measurements. The TRMM Pre-

cipitation Radar (PR) was a single-frequency Ku-band

radar (13GHz) with a 247-km swath width (during the

postboost era), while the GPM carries a dual-frequency

precipitation radar (DPR) operating at Ku and Ka bands

(13 and 35GHz) with a swath width of 245 and 120km,

respectively.

In the microwave frequency bands ranging from 1 to

200GHz, it is well understood that the transparent

window channels contain a mixture of surface and pre-

cipitation spectral signatures in the upwelling radiative

fluxes reaching the top of the atmosphere (TOA; Grody

1988). Over the oceans, rainfall emission can be dis-

criminated well from the radiometrically uniform, cold,

and polarized background emission. This signature can

be properly explained via the absorption–emission laws

of the atmospheric radiative transfer, giving rise to well-

developed physically based algorithms for rainfall re-

trieval over oceans (e.g., Wilheit et al. 1977, 1991; Berg

and Chase 1992; Chang et al. 1999; Olson 1989; Mugnai

et al. 1993; Kummerow and Giglio 1994a,b; Smith et al.

1994; Petty 1994a,b; Bauer et al. 2001; Kummerow et al.

1996, 2001, 2011). Among these, the so-called Bayesian

algorithms have provided a viable path for operational

rainfall retrievals. This family of algorithms relies on a

priori collected, statistically representative databases

that contain hydrometer profiles and their measured or

simulated spectral radiances at TOA. Given the ob-

served spectral radiance at TOA, candidate spectral

radiances are found in the database, and then their

corresponding rainfall profiles are used to estimate/

retrieve precipitation values of interest. The algorithms

byWilheit et al. (1991) andKummerow et al. (2001) have

been successfully deployed for operational ocean re-

trieval of the Advanced Microwave Scanning Radiom-

eter for Earth Observing System (AMSR-E) on board

the Aqua satellite and TMI. Conversely, over land,

radiometrically warm background emission typically

masks the microwave rainfall emission signal, causing

the retrieval algorithms to often hinge upon weak rain-

fall scattering on high-frequency channels. It turns out

that, as the wavelength approaches the particle size, the

scattering due to the large raindrops and/or ice crystals

causes depression in the field of brightness tempera-

tures (Tb) at high-frequency channels (e.g., 85GHz).

Traditionally, the radiometrically cold raining areas are

discerned from the nonraining background via a fixed

thresholding scheme and then related to the surface rain-

fall through empirical regression-based equations. Among

these are the seminal 85-GHz scattering index (SI) by

Grody (1991) used for the SSM/I and theAMSR-E sensors

(see also Ferraro et al. 1994; Ferraro and Marks 1995;

Wilheit et al. 2003) and the SI5Tb22v 2Tb85v (where 22v

and 85v refer to the 22GHz and 85GHz vertically polar-

ized channels, respectively) used for the operational TMI

2A12 product (Kummerow et al. 2001; Gopalan et al.

2010). A thorough review of the SI methods can be found

in Seto et al. (2005).

Specifically, the TMI land retrieval algorithmmakes use

of the scattering index greater than a certain threshold

(e.g., 8K) to discriminate the rainfall signal from the

nonraining background, as the water vapor channel of

22GHz is not very sensitive to the precipitation scattering.

Although the scattering-based approaches have been the

cornerstone of overlandmicrowave rainfall retrievals, they

often suffer from some well-known drawbacks (see Petty

and Li 2013a) including the following:

1) The SI-based screening naturally cannot properly

detect warm precipitation regimes lacking the scat-

tering effects of ice crystals (Liu and Zipser 2009).

2) This technique often confuses the high-frequency

depressions over snow-covered lands or deserts with

those caused by ice/rainfall scattering and produces

biased rainfall estimates.

3) Because of the underlying complexity and transient

structure of the background radiation regime, this

class of methods often misses light rainfall in the

vicinity of coastlines.

In the GPM era, these drawbacks are of great impor-

tance, especially for hydrologic applications in temper-

ate and cold climate regimes with complex land surface

radiation dynamics.

It turns out that microwave emission signals in the

frequency range 1–37GHz respond well to the hetero-

geneity of the land surface features—for example, soil

texture, roughness, and moisture content; vegetation

density, pattern, and water content; and snow cover and

water equivalent—while also containing partial infor-

mation about the atmospheric constituents. For bare

to sparsely vegetated land, soil layers with higher

moisture content are less emissive andmore polarized in

low frequencies, especially in 1–37GHz (Njoku and

Entekhabi 1996; Njoku and Li 1999). Vegetation and

rough surfaces often reduce the polarization signature

because of their Lambertian-like reflection properties

and are typically more emissive than their bare soil

counterparts. Desert surfaces contain little moisture and

exhibit large diurnal variability and polarization in their
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thermal emission, especially for high frequencies with

small penetration depth. Moreover, desert surfaces

scatter the upwelling radiation in a manner very similar

to light precipitation (Grody and Weng 2008). Owing to

the snow metamorphism, snow emissivity exhibits

markedly varying dynamics as a function of snow grain

size, density, depth, water content, and ice crust effects

(Grody 2008). Typically, snow emissivity sharply de-

creases from low- to high-microwave frequencies, es-

pecially for fresh snow, giving rise to appreciably cold

radiometric temperatures in high-frequency channels

(i.e.,$37GHz), very similar to the scattering signatures

of ice crystals in raining clouds. This similarity often

makes the retrieval problem notoriously ill posed. In

other words, it is likely that nonraining and raining

scenes with different atmospheric constituents exhibit

similar scattering signals at TOA, especially over the

aforementioned complex surfaces. This equifinality or

nonuniqueness is naturally themain source of ambiguity

for land rainfall retrievals, especially when the method

only exploits the information content of a limited

number of high-frequency channels. Hence, we need

retrieval methods that can account for various interac-

tions among different channels rather than only using a

few high-frequency bands. In other words, all of the

available spectral channels that contain partial infor-

mation about the land surface emissivity and hydrome-

teor profile need to be exploited and properly encoded

in amultispectral sense to improve rainfall retrieval over

land by better constraining the solution of the retrieval

problem. For instance, over snow-covered surfaces, the

low-frequency channels (10–37GHz) are radiometri-

cally colder than their bare or vegetated counterpart

surfaces (Grody 2008). Therefore, this piece of infor-

mation needs to be properly accounted for to help

decipher whether the depressions in high-frequency

channels are due to the rainfall scattering or perhaps

low emissivity of snow-covered land surfaces.

To this end, a growing body of research has been

recently directed toward a better understanding of

land surface emissivity dynamics for improving the

rainfall retrieval over land (e.g., Skofronick-Jackson

and Johnson 2011; Ferraro et al. 2013; Ringerud et al.

2014; Turk et al. 2014a,b). These efforts are of central

importance in the GPM era, especially as the attempts

are more toward Bayesian approaches for overland

retrievals (see Kummerow et al. 2011; Munchak and

Skofronick-Jackson 2013; Kummerow et al. 2015).

Microwave land surface emissivity is typically estimated

by purely physical modeling and/or radiative energy

balance using satellite measurements. Physical mod-

eling requires a land surface model (LSM) coupled

with a Radiative Transfer Model (RTM) to capture the

space–time variability of both the structural and elec-

tromagnetic properties of the land surfaces. This family

of methods (e.g., Ringerud et al. 2014) requires very

detailed information about geophysical parameters

controlling the land surface–atmosphere interactions,

soil–vegetation dynamics, and their interactions with sub-

surface hydrologic processes. The availability of such

parameters is often limited at a global scale (Prigent

et al. 2006), especially at the fine space–time resolution

of interest for rainfall retrieval. Energy balance approaches

typically make use of satellite measurements of spectral

brightness temperatures and estimates of the surface skin

and atmospheric temperature–moisture profiles. These

estimates are typically used to close the radiation budget

at TOA to approximate the ‘‘clear sky’’ emissivity values

(e.g., Prigent et al. 1997, 2006;Moncet et al. 2011; Norouzi

et al. 2011), which may be used to improve rainfall re-

trieval over land (see Turk et al. 2014a,b).

In this paper, we do not attempt to directly estimate

the land surface spectral emissivity and explicitly in-

corporate it in the rainfall retrieval algorithm. Rather,

we explore the idea of ‘‘implicitly’’ encoding the land

surface information content across all available fre-

quency channels, as part of the recently proposed

Bayesian methodology, called Shrunken Locally Linear

Embedding Algorithm for Retrieval of Precipitation

(ShARP) by Ebtehaj et al. (2015), briefly reviewed in

section 2. In essence, the a priori database in this

Bayesian algorithm is properly organized in an alge-

braically tractable manner via two fat matrices, called

‘‘rainfall’’ and ‘‘spectral dictionaries.’’ The spectral

dictionary contains a large collection of Tb measure-

ments, while the rainfall dictionary encompasses their

corresponding simulated or observed rainfall profiles.

Given a pixel-level measurement of spectral Tb values,

this algorithm relies on a nearest neighbor search that

uses information content of all frequency channels to

properly narrow down the retrieval problem to a few

physically relevant spectral candidates and their rainfall

profiles. In this step, our algorithm classifies the mea-

sured Tb values into raining and nonraining signatures

via a simple probabilistic voting rule (detection step).

Then for the raining Tb measurements, it exploits a

modern regularized weighted least squares estimator to

retrieve the rainfall values of interest (estimation step).

Section 3 is devoted to presenting some promising

rainfall retrievals over a region in South and Southeast

Asia with diverse land surface conditions and precipi-

tation regimes. This study area covers the Ganges–

Brahmaputra–Meghna basin and its delta that encompass

some important land surface features, including the

Tibetan highlands, Himalayan range, Thar Desert,

Hengduan Mountains, and the Malabar coasts in the
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western Indian subcontinent (Fig. 1). Because of the

snow-covered and frozen ground, especially over the

Tibetan Plateau andHengduanMountains, this region

has been notoriously problematic for the SI-based

microwave retrievals (see Wang et al. 2009). Moreover,

because of frequent inundation of the Ganges delta,

dense irrigated agriculture, complex Earth surface dy-

namics of the river mouths, and presence of nearshore

orographic features, this region is naturally a suitable test

bed for examining the quality of rainfall retrievals over

wet surfaces and coastal zones. It is important to note

that, although ShARP can be applied uniformly for re-

trievals both over ocean and land, in this paper, we con-

fine our consideration only to its quantitative evaluation

over land. To this end, we populate the spectral and

rainfall dictionaries using collocated TMI 1B11 and PR

2A25 observations and compare the retrieval results with

the standard TMI 2A12, version 7, operational land

rainfall retrievals.Wedraw some concluding remarks and

envision future research directions in section 4.

FIG. 1. (a) Geographic boundaries of the study region and some of its land surface characteristics. (b) Digital elevation model,

(c) annual NDVI, and (d) percentage of snow-covered lands in 2013. The annual average of the rain-free scene brightness temper-

atures measured by the TMI sensor is shown for frequency channels (e) 22v, (f) 85v, and (g) their difference (i. e., Tb2
22v 2Tb2

85v). For

the tracks shown in (b), transects of all TMI channels, their corresponding NDVI, and snow percentage are shown in Fig. 2.
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2. Retrieval methodologies

a. ShARP

In this subsection, we provide a brief explanation of

ShARP for completeness, while a detailed account can be

found in Ebtehaj et al. (2015). It is known that the passive

rainfall retrieval in microwave bands can be defined as a

mathematical inverse problem. In this inverse problem,we

aim to obtain the rainfall profile (input) from the mea-

sured spectral brightness temperatures at TOA (output),

while the Tb values can be related to the rainfall profile

through the physical laws of radiative transfer. Let us as-

sume that, at a pixel level, the observed spectral brightness

temperatures at nc channels are denoted by an nc-element

vector y5 (y1, y2, . . . , ync)
T 2 <nc , while the rainfall

profile of interest, sampled at nr levels through the at-

mospheric depth, is x 5 (x1, x2, . . . , xnr)
T 2 <nr . We can

then assume that brightness temperatures are related to

the rainfall profile via the following nonlinear mapping

y5F (x)1 v , (1)

where F : x/ y can be considered as a functional rep-

resentation of a forward RTM and v 2 <nc collectively

represents the model/measurement error. As is evident,

this mapping is extremely nonlinear, especially over

land where the rainfall signal is severely masked by the

background Earth emission. At the same time, as we

only measure Tb values within a few spectral bands,

different rainfall profiles may give rise to identical or

very similar spectral brightness temperatures, making

this inverse problem severely ill posed.

Let us assume that the a priori collected database is

denoted by D 5 f(bi, ri)gMi51, where the curly brackets de-

note a set andwhere thepairsbi 5 (b1i, b2i, . . . , bnci)
T 2 <nc

and ri 5 (r1i, r2i, . . . , rnri)
T 2 <nr are nc- and nr-element

vectors representing pixel-level spectral brightness

temperatures and their measured/simulated rainfall

profiles. For notational convenience, we organize these

pairs in two matrices B5 [b1j . . . jbM] 2 <nc3M and R5
[r1j . . . jrM] 2 <nr3M, where the square brackets de-

note a matrix with column-wise concatenation of col-

umn vectors, called spectral and rainfall dictionaries,

respectively.

Let us assume that y 2 <nc denotes a pixel-level sat-

ellite measurement of the spectral brightness tempera-

tures. In the first step, our algorithm isolates, in the

Euclidean sense, a set S of ‘‘spectral neighbors’’ as the

k-nearest neighbors of y in the column space of B. Then

these spectral neighbors and their corresponding rainfall

profiles inR are stored in the pair of spectralBS 2 <nc3k

and rainfall RS 2 <nr3k subdictionaries. In this step

(detection step), we label y as a raining or nonraining

pixel, using a simple classification rule. Specifically, we

count the number of profiles in RS that are raining at the

surface. If the number of raining profiles is greater than or

equal to pk, then we label y as raining and attempt to es-

timate its rainfall profile. Note that, here, p 2 (0, 1] is a

probabilitymeasure that controls the probability of hit and

false alarm. In words, a smaller p value gives rise to larger

probability of hit while a larger value reduces the proba-

bility of false alarm. We typically set p 5 0.5, which

corresponds to a majority vote rule for rain/no-rain clas-

sification. In the next step (estimation step), the algorithm

attempts to approximate the observed raining spectral

brightness temperatures, using a linear combination of the

neighboring spectral candidates in BS as follows:

minimize
c

kW1/2(y2B
S
c)k2

2
1l

1
kck

1
1 l

2
kck22

subject to cd0, 1Tc5 1, (2)

where ‘p-norm is kckpp 5�ijcijp, cd0 denotes element-

wise nonnegativity, l1 and l2 are positive regularization

parameters, W 2 <nc3nc is a positive definite precision

matrix that determines the relative importance of each

channel, and 1T 5 (1, . . . , 1)T 2 <k. This precision matrix

encodes rainfall signal-to-noise ratio in each channel. For

instance, it can be properly designed to give more weight

to lower (e.g., 10GHz) or higher frequencies (e.g.,

85GHz) while raining Tb measurements are over ocean

or land, respectively. Note that the nonnegativity con-

straint is required to be physically consistent with the

positivity of the Tb values inKelvins, and the sum to unity

constraint assures that the estimates are locally unbiased.

Obtaining the representation coefficients ĉ, by solving

Eq. (2), the rainfall profile is then retrieved as x̂5RSĉ.

b. TMI 2A12 and differences with ShARP

As briefly noted, version 7 of the standard TMI 2A12

product uses a scattering index together with regression-

based models for rainfall retrieval over land. However,

over ocean, it makes use of an a priori collected database

of rainfall–radiance pairs. In the following, for com-

pleteness, we briefly explain some basic details of the

TMI 2A12 algorithm.

1) TMI 2A12: LAND RETRIEVAL

For each raining pixel, the algorithm interpolates

between stratiform (strat) and convective (conv) rainfall

mechanisms. To this end, it attempts to estimate a con-

vective probability indicator pc (see McCollum and

Ferraro 2003) and then obtains an estimation of the

near-surface rain rate as follows:

x̂5 p
c
x̂
conv

1 (12 p
c
)x̂

strat
, (3)
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where x̂conv and x̂strat are rainfall estimates for convective

and stratiform conditions as

x̂
conv

5 (211:773 1026)Tb3
85v1 (80:2731024)Tb2

85v

2 1:946Tb
85v

1 182:68 (4)

and

x̂
strat

5 (270:83 1023)Tb
85v

1 19:7: (5)

The above regression equations are derived using

collocated TMI–PR datasets explained in Liu et al.

(2008). For a full exposition to the version 7 status of the

land algorithm, one can refer to Gopalan et al. (2010).

2) TMI 2A12: OCEAN RETRIEVAL

Over oceans, TMI 2A12 relies on a Bayesian strategy.

As noted by Kummerow et al. (2007), the expected

value of rainfall profile of interest is obtained as follows:

x̂5E(x)

5
�
i

r
i
expf20:5[y2F (r

i
)]TV21[y2F (r

i
)]g

�
i

expf20:5[y2F (r
i
)]TV21[y2F (r

i
)]g (6)

whereV is the covariance ofmodel/observation error and

frigMi51 (where the curly brackets indicate a set of vectors)

denotes the derived M rainfall profiles from a set of ex-

isting cloud-resolving model (CRM) simulations for

which the associated vector of brightness temperatures

fbigMi51 are obtained through an RTM as bi 5F (ri). The

estimator in Eq. (6) uses the inverse distance Gaussian

weighting function to linearly combine a subset of rainfall

profiles in the database that are isolated based on the sea

surface temperature (SST) and total precipitable water

(TPW). These variables can be obtained from ancillary

sources or the onboard radiometer. It is important to note

that although the exponential function in the above esti-

mator dies off quickly, it never goes to zero. As a result,

all of the isolated rainfall profiles are linearly combined in

this estimator. In version 7, the algorithm uses a CRM-

generated database that is made consistent with the

TRMMPRobservations as well (Kummerow et al. 2011).

ShARP uses a unified Bayesian approach over land

and ocean and shares some similarities with GPROF,

while exhibiting notable distinctions. Indeed, ShARP

has its heritage in GPROF over ocean, in the sense that

it obtains some optimal representation coefficients in

the spectral space and then uses them to combine their

corresponding rainfall profiles. However, there are sev-

eral important technical distinctions between the two

algorithms.Most notably, ShARP is a two-step algorithm

that first detects and then estimates the rainfall profile.

The detection step in ShARP allows us to control the

probability of detection and false alarm important for

overland retrievals. More importantly, this step screens

out physically irrelevant candidates and provides re-

gionalization skills, which can make the rainfall retrievals

robust to the underlying variability of the land surface

emissivity. GPROF uses an inverse distance Gaussian

weighting interpolation scheme (see Olson et al. 1996),

which does not directly consider any prior probability

for the used rainfall profiles [see Eq. (3) in Kummerow

et al. (2007)]. However, ShARP relies on a modern

variational method in Eq. (2), which can be interpreted

as a Bayesian maximum a posteriori (MAP) estimator

(Ebtehaj et al. 2015). This estimator obtains the co-

efficients in a weighted least squares sense and promotes

sparsity in the solution by assigning nonzero coefficients

only to a few relevant spectral neighbors, which can

lead to improved recovery of high-intensity rainfall and

prevent overly smooth retrievals. Moreover, because of

the variational nature of this estimator, this framework

can be easily extended for optimal integration of mul-

tiple sets of databases, models, and measurements

across different instruments.

3. Results

To create the ShARP dictionaries, one may use the

results of physical modeling, analogous to GPROF over

the oceans, or just focus on satellite observations (e.g.,

TMI and PR) as presented in many previous efforts

(e.g., Grecu and Anagnostou 2002; Skofronick-Jackson

et al. 2003; Grecu et al. 2004; Petty and Li 2013a,b). In

this paper, we focus on demonstrating the advantages of

ShARP over land and use the collocated TMI 1B11,

version 7, products and surface PR 2A25 to populate the

dictionaries.

a. Study area

The study region (Fig. 1) is confined between 58 and
358N latitude and 708 and 1058E longitude, extending

from the Indus River basin and Thar Desert along the

border of Pakistan and India to the Hengduan Moun-

tains in southwestern China and Rakhine State in

western Myanmar. From north to south, the region

covers from the Tibetan highlands to the northern

coastlines of the Bay of Bengal. This region is unique in

terms of its diverse climate regimes, biodiversity, land-

forms, precipitation patterns, and types. In the north-

west, the region contains the arid Thar Desert, while in

the southwest it covers the coastlines of the Indian

Peninsula, with a tropical wet climate influenced by the

Western Ghats orographic features. In the north, the
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elevated Tibetan Plateau in high altitudes has a cold

arid steppe climate. The plateau is a glacier landform

with a large number of brackish isolated lakes and is

often covered with snow in cold seasons, especially in

the vicinity of the Himalayan foothills. The Himalayan

range sharply divides the cold upstream climate from

the temperate climate of downstream lowlands at the

base and has permanent snowpack in high elevations. It

is important to note that the study area encompasses

the Ganges–Brahmaputra–Meghna River basins, which

drains more than 1.7million km2 from the Himalayas’

headwaters to the Ganges delta (Frenken 2012). While

the major areas of the basins are of temperate cli-

mate, the Meghna River basin in Bangladesh is of

tropical climate and is among the wettest regions in the

world, with annual precipitation that often exceeds

4000mm (Mirza et al. 1998). The Ganges basin is

heavily populated by dense irrigated agriculture, es-

pecially in the vicinity of its tributary. Rainfall in the

study region is mainly controlled by the monsoon

season from June to September. The Himalayan range

typically forces the southwesterly moist monsoon

winds to dump their moisture over the lowlands and

shorelines of the region, while it leaves the Tibetan

Plateau and Thar Desert relatively dry in rain shadows.

The deltaic region often experiences very strong cy-

clonic storms during the monsoon season, some of

which resulted in significant loss of life and properties.

Among these was Cyclone Sidr, hitting the coastlines of

Bangladesh in November 2007.

b. Surface condition and radiation regime

Figures 1a–d show the boundary and important geo-

graphic features of the study domain, digital elevation

model, the annual normalized difference vegetation in-

dex (NDVI), and snow cover percentage in calendar

year 2013. The vegetation and snow cover data are de-

rived by averaging over the level 3 global monthly

gridded products at 0.058 (MYD13C2 and MYD10CM),

obtained from the Moderate Resolution Imaging Spec-

troradiometer (MODIS) instrument on board NASA’s

Aqua satellite. Figures 1e–g also show the annual fields

of TMI brightness temperatures for the same year at 22v

and 85v and their differences. Note that these Tb fields

are obtained for precipitation-free scenes by overlying

and averaging all overpasses of TMI within the inner

swath, where the PR 2A25 is used for eliminating the

raining areas.

Important radiation patterns can be seen, especially

over snow-covered lands, wet surfaces, and in the vicinity

of coastlines. In particular, even though among low-

frequency channels the 22v exhibits a minimal response

to the surface snow emissivity, we still see notable

depressions in this channel because of the presence of

snow on the ground. More importantly, we see in Fig. 1g

that the high-frequency depressions (SI5Tb22v 2Tb85v)

in rain-free scenes go beyond the prescribed ;8K, es-

pecially over the headwaters of the Brahmaputra basin

and the Hengduan Mountains. This observation sug-

gests that the SI method is prone to false rainfall de-

tection and may give rise to the rainfall overestimation

above snow-covered lands. Near the coastlines, because

of a marked difference between emissivity of ocean

and land surfaces, we see a sharp temperature gradient

at the interface, which poses challenges for rainfall

retrieval.

To provide deeper insight into the information con-

tent of the low-frequency channels relevant to the

rainfall retrieval problem, Fig. 2 shows one-dimensional

transects of all frequency channels along the tracks

shown in the digital elevation model in Fig. 1. On the

one hand, below 288N, the left track (track 1) passes

mainly through moderately vegetated lowlands with

NDVI ’ 0.5, while between 208 and 308N, it crosses

slightly denser vegetation with NDVI5 0.6–0.7 over the

southward slope of the Himalayan range. Over higher

latitudes this track records lower and highly variable

NDVI 5 0.2–0.6 and crosses land surfaces with at most

60% of annual snow cover. On the other hand, the right

track (track 2) crosses the Chin Hills mountain range

with tropical and subtropical forest ecosystem with

high NDVI values ranging mostly from 0.6 to 0.8 below

latitude 278N. For higher latitudes around 208–308N,

this track goes over snow-covered and perhaps frozen

grounds with NDVI5 0.0–0.4, indicating the presence

of sparse vegetation and steppe grasslands. In Fig. 2,

over the tributaries of the Ganges River basin below

308N latitude, track 1 exhibits large polarization and

frequent radiometrically cold spots, especially for

frequencies #37GHz. For higher latitudes in this

track, we see that the polarization gaps start to shrink

over denser vegetation covers. It can be seen that the

snow-covered surfaces create a sharp decrease in

brightness temperatures and slightly increase polari-

zation effects, especially for frequency channels

$37GHz. Note that while over vegetated areas,

channel 85GHz is typically warmer than 37GHz; the

presence of snowmakes it cooler than 37GHz. In track

2, we see less polarization compared to track 1 because

of denser vegetation and rougher pathway over the

Chin Hills. However, we see a few significant isolated

drops in Tb values (see 10 and 37h) due to the radio-

metrically cold wet surfaces, especially where the track

crosses the Meghna–Brahmaputra River system and ir-

rigated agricultural land surfaces. In this track, a signifi-

cant temperature drop can be seen because of the high
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percentage of snow cover around 308N in frequencies

greater than 37GHz.

The annual mean of the raining brightness tempera-

tures along the first track is shown in Fig. 3. This transect

of Tb values is analogous to those explained in Fig. 2,

except for the scenes that are labeled as raining by the

PR 2A25 data. The main goal is to demonstrate the

effect of the rainfall signal on high- and low-frequency

channels and to provide some insights into how the

nearest neighbor isolation of spectral candidates can

provide partial regionalization skill to the ShARP re-

trievals. Over land, we clearly see that the rainfall

spectral signals exhibit minimal influence on the low-

frequency channels below 19GHz, although some

FIG. 2. One-dimensional transects of the nonraining TMI spectral Tb values, NDVI, and annual percentage of snow cover over the tracks

shown in Fig. 1.
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increased polarization can be seen compared to non-

raining Tb values. However, the rainfall signatures are

very pronounced over frequencies greater than 22GHz

and dramatically distort the background surface radia-

tion pattern.

Let us assume that at each point of the ith track, here

i5 f1, 2g, the annual nonraining and raining Tb values

are represented by y2i 5 (Tb2
v )v2V and y1i 5 (Tb1

v )v2V ,
respectively, where V is the set of all available TMI chan-

nels. Furthermore, let us define the Euclidean distance

(dist) between nonraining and raining brightness temper-

atures along those tracks as disti,j 5 ky2i 2 y1j k2, where
kyk225�v2VTb

2
v. Figure 4 shows Ddist15 dist1,12 dist1,2

(Fig. 4, left) and Ddist25 dist2,22 dist2,1 (Fig. 4, right) for

calendar year 2013. In words, for each track, this

measure of distance difference characterizes the dif-

ference between the Euclidean distances of its non-

raining background signal with the raining ones of both

tracks. We see that the defined measure of distance

difference falls below the x axis in almost 70% of the

FIG. 3. One-dimensional transects of the raining TMI spectral Tb values over track 1 (see

Fig. 1).

FIG. 4. Difference in Euclidean distance between the annual nonraining brightness temperatures along each track

with the raining brightness temperatures along both tracks in calendar year 2013. The bars below the x axis show that

in almost 70% of the points the raining brightness temperatures are closer to their nonraining counterparts along the

same track. (left) Track 1 and (right) track 2 are shown in Fig. 1.
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points in both tracks. In effect, in 70% of cases the

raining points along each track are closer to their

nonraining counterparts along the same track, which

partly represent the underlying surface properties. In

other words, it is likely that the surface properties of

the nearest spectral neighbors are consistent with the

surface properties under the retrieval scene, an im-

portant characteristic that needs to be taken into ac-

count in modern land retrieval techniques (see Turk

et al. 2014a). By visual inspection and comparison of

Figs. 2 and 3, we can see that this skill mainly comes

from the low-frequency channels (10–19GHz), for

which the observed brightness temperatures mainly

respond to the land surface emission and remain almost

insensitive to the atmospheric signals. Thus, one might

interpret this observation as a regionalization skill of

the nearest neighbors isolation of the spectral candi-

dates in ShARP.

c. ShARP parameterizations and settings

In this study we run ShARP for four different Earth

surface classes, namely, ocean, land, coast, and inland

water bodies (see Fig. 5). In other words, we collect four

dictionaries and run the algorithm over each surface

class depending on the geolocation of each pixel. This

surface stratification is obtained from standard surface

data in the PR 1C21, version 7, product in a 5 km3 5 km

grid box. To construct spectral and rainfall dictionaries,

we used collocated pixels of TMI and PR in 2000 orbits,

randomly chosen from a rainfall database collected in

five years, 2002, 2005, 2008, 2011, and 2012. Note that the

sampling was not confined to the study region and covers

the entire TRMM domain. In these sampled orbits,

more than 25 million raining and nonraining pixels were

used to construct the required dictionaries. To obtain

collocated radar radiometer data, we focused on the

swath-level calibrated Tb values and near-surface rain-

fall in the TMI 1B11 and PR 2A25 (Iguchi et al. 2000)

products, respectively. To this end, we mapped the TMI

measurements onto the PR grids using the nearest

neighbor interpolation.

In the detection step, we used k 5 50 and found that

the probabilities of hit and false alarm are not very

sensitive to the number of nearest neighbors k $ 25.

Notice that in the detection step, we consider the in-

formation content of each channel equally important for

the nearest neighbors search. However, in the estima-

tion step, we use the precision matrix W in Eq. (2) to

properly encode the relative importance of each channel

for rainfall estimation. For instance, we assign larger

precision weights to low-frequency channels (e.g.,

10GHz) for retrievals over ocean while high-frequency

channels (e.g., 85GHz) receive larger weights over land.

To this end, we used a diagonal precision matrix for

which the nonzero elements are filled with the co-

efficients of variation of raining Tb values in each

channel, obtained from the collected dictionaries (see

Ebtehaj et al. 2015).

d. Instantaneous retrieval of the Cyclone Sidr

Cyclone Sidr was one of the most intense and histor-

ically disastrous tropical cyclones to hit the coastline of

Bangladesh, on 15November 2007. The TRMMsatellite

flew over the cyclone at 1359 UTC and provided critical

information about the storm vertical structure and spa-

tial extent. Figure 6 shows the retrieved rainfall rates

obtained from ShARP and compares them with the

standard version 7 of PR 2A25 and TMI 2A12.

We see that the multiband structure of the cyclone is

retrieved well by ShARP (Fig. 6, right). Comparing the

results with 2A25 (Fig. 6, middle) and 2A12 (Fig. 6, left),

it is evident that the ShARP retrieval properly captures

the high intense rainbands of the cyclone over land and

in the vicinity of the coastline. For instance, the intense

rainfall band—right above the Ganges delta—is esti-

mated around 8mmh21 in the 2A12, while this estimate

in both ShARP and 2A25 is around 16mmh21. Fur-

thermore, in the vicinity of the coastlines, we see some

discontinuities over ocean in the 2A12 product. In

these regions, it can be seen that some of the light rain

patches close to the shoreline are underestimated or

completely missed. However, the ShARP retrievals

FIG. 5. ShARP land surface classes include inland water body (In), coastal zone (c), land (l), and ocean (o). The data are obtained fromPR

1C21 product (version 7), mapped onto a regular grid at 0.058 (from Ebtehaj et al. 2015).
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remain relatively coherent close to the shoreline and

some isolated rainfall patches are also recovered.

Given that an absolute reference rainfall field for the

above snapshot is lacking, the objective comparison of

these retrievals is not straightforward, especially over

the ocean, where the databases are of different nature

(i.e., observational for ShARP and mainly model based

for 2A12). However, Fig. 7 compares the histogram and

empirical cumulative distribution function (CDF) of the

retrieved rainfall over the inner swath, which mostly cap-

tures the rainfall over land and in the vicinity of shorelines,

where both algorithms attempt to reproduce the PR 2A25

rainfall. We clearly see that ShARP performs well in

retrieving a wide range of rainfall intensities and properly

resembles the distribution of rainfall provided by 2A25. It

is seen that ShARP retrieves rainfall rates below 1mmh21

and above 14mmh21, while a large probabilitymass of the

retrieved rainfall remains between 2 and 5mmh21 in

2A12. The dynamic range of the retrieved rainfall is better

illustrated in the CDF plots. Consistent with the shown

histograms, we see that the passively retrieved rainfall

values are mostly concentrated around the mode in 2A12

while the results in ShARP are stretched and properly

resemble the reference 2A25 rainfalls. Obviously, both

retrievals fall short to properly explain the thick tail dis-

tribution of the PR-retrieved rainfall; however, this

problem seems to be ameliorated in ShARP.

The similarity of the rainfall histograms might be

measured by the Kullback–Leibler (KL) divergence.

The KL is a nonnegative measure that quantifies the

closeness between a reference probability distribution

P5 fpig and an approximate one P5 fp̂ig (where the

curly brackets denote a set of probability measures),

KL(PkP̂)5 �
i

p
i
log

p
i

p̂
i

. (7)

FIG. 6. Rainfall retrievals for the TRMMoverpass capturing Cyclone Sidr at 1359UTC 15Nov 2007 from (left) 2A12,

(middle) 2A25, and (right) ShARP.

FIG. 7. (top) Pixel-level probability histograms and (bottom) empirical CDF of the retrieved

rainfall over the inner swath of the TRMM overpass, capturing Cyclone Sidr at 1359 UTC

15 Nov 2007.

APRIL 2016 EBTEHA J ET AL . 1023



As is evident, this measure is not symmetric and is

zero when the distributions are identical. A simple cal-

culation shows that the distribution of ShARP is much

closer to the distribution of 2A25 than the 2A12 to 2A25,

as an estimate of this measure reduces from 0.6 (2A12 vs

2A25) to 0.06 (ShARP vs 2A25).

e. Monthly and annual retrievals

To better quantify the quality of ShARP retrievals, we

compare its monthly and annual retrievals with the

standard 2A25 and 2A12 over the study domain in cal-

endar year 2013. Even though we show the retrieval

results both over ocean and land, we confine our in-

terpretation only to the results over land and in the vi-

cinity of coastlines, where both retrievals are empirical

in their nature and attempt to reproduce the 2A25. We

need to once again emphasize that 2A25 is not free of

error; however, it provides one of the best estimates of

the total rainfall at a global scale (see Berg et al. 2006).

To this end, we first focus on the detection capabilities

of ShARP. Figure 8 shows maps of probabilities of hit

and false alarm while the retrieval results of ShARP and

2A12 are compared binary-wise with 2A25 for all inner-

swath overpasses in 2013. We can clearly see a few main

points in ShARP retrievals: 1) coherent and improved

detection rate near the coastlines; 2) reduction of false

alarm in rainfall detection over snow-covered land sur-

faces above the Himalayan range, headwaters of the

Brahmaputra basin, and Hengduan Mountains (see

Fig. 1); and 3) improved retrieval of the coastal oro-

graphic precipitation. We can observe that both 2A12

and ShARP are prone to detect fewer raining events

than 2A25 near the coastlines (Fig. 8, top). We see a

systematic decrease in the probability of detection

over a strip of approximately 25–35km parallel to the

coastlines in 2A12, while the ShARP retrievals seem to

robustly absorb the drastic emissivity transition at the

land–ocean interface. In the vicinity of coastlines, the

probability of hit mostly falls between 0.2 and 0.5 in

2A12, while it is within the range of 0.7–1.0 in ShARP.

Over theMalabar Coast with tropicalmonsoon climate—

between the Western Ghats mountain range and south-

west coastlines of the Indian subcontinent—we also see

that the probability of hit in both retrievals decreases

appreciably. However, ShARP shows some improve-

ments in this regime as well. Note that in this wet strip,

the rainfall processes are mainly orographic and highly

seasonal and their annual amount is mostly governed by

themonsoon season fromMay to September. Therefore,

we suspect that the decrease in probability of hit mostly

FIG. 8. Annual probability of hit and false alarm, comparing the 2A12 and ShARP retrievals

with the 2A25 as a reference. The fields show probabilities obtained for all inner-swath over-

passes in 2013 at 0.18 resolution.
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corresponds to the shallowness of the Western Ghats

orographic lifting, which may give rise to weak ice sig-

natures on high-frequency channels. The maps of the

probability of false alarms (Fig. 8, bottom) reveal ad-

vantages of ShARP in retrieving rainfall over snow-

covered lands. A notable decrease in the probability of

false alarm over snow-covered surfaces in theHimalayan

range and Hengduan Mountains is seen in ShARP re-

trievals. Over the tributaries of the Ganges river basin

and its delta, with dense agricultural activities near the

river banks and thus high soil moisture content, we ob-

serve improved probability of hit in ShARP.We also see

that both methods show low detection skills in capturing

sporadic and low-intensity rainfall over the dry region of

the Tibetan Plateau. Specifically, the ShARP detection

rate over the northern part of the plateau falls between

0.0 and 0.5, while this rate tends to zero in 2A12. How-

ever, we will demonstrate later on that these low values

correspond to light rainfall amounts that may not exceed

5–20mmyr21.

Figure 9 compares the seasonal retrievals of ShARP

with the TRMM standard products. The objective is to

further demonstrate the performance of ShARP re-

trievals close to the shorelines and over snow-covered

mountainous regions. Figures 9a–d show 3-month rain-

fall (in millimeters) from January to December 2013.

During the cold seasons such as January–March (JFM;

Fig. 9a) and October–December (OND; Fig. 9d), we see

considerable overestimation in passive retrievals along

the Himalayan range and southeast of the plateau,

covering the Hengduan Mountains. However, as is evi-

dent, this overestimation is markedly reduced in the

ShARP retrievals. This improvement is largely due to

the multispectral nature of ShARP and its nearest

neighbors screening in the detection step. Indeed, as

explained, information content of the lower-frequency

channels allows us to better filter out the noisy back-

ground signal of snow and constrain the estimation step

only to a few physically relevant candidates in the sub-

dictionaries. It is worth nothing that this improvement

persists during the snow-melting season April–June

(AMJ; Fig. 9b), indicating the robustness of our algo-

rithm against the drastic changes in the temporal dy-

namics of snow emissivity.

During the warm months of the monsoon season in

July–September (JAS; Fig. 9c), we see that both re-

trieval methods reproduce well the target 2A25 over the

Tibetan highlands and the Himalayas. However, con-

sistent with the observations in Fig. 8, some rainfall

underestimation can be spotted over the coastal strip

of the Malabar region in southeastern India and the

Rakhine coasts in western Myanmar. The rainfall regime

over both of these regions is heavily influenced by the

presence of the Western Ghats and Arakan orographic

barriers blocking the moist southeasterly monsoon

winds. Among these two coastal areas, it is important to

note that the land–ocean interfacial radiation regime

seems to be more complex at the vicinity of the Rakhine

coastlines, particularly because of the presence of

complex deltaic landforms and the dynamics of multiple

river mouths. The observed underestimation in passive

retrievals over the Malabar strip seems to be pro-

nounced both over coasts and shores, perhaps in-

dicating that the total rainfall is largely controlled by

prolonged periods of warm and shallow orographic

lifting. While less significant, underestimation over the

coasts of the Rakhine State might be an indication that

the rainfall is more influenced by deeper convections

and more cold clouds in this region, compared with the

Malabar strip.

Figure 10 shows some quantitative measures that

compare monthly retrievals in 2013, restricted to land

and coastal areas of the study domain. Specifically, we

computed the monthly root-mean-square difference

(RMSD) and mean absolute difference (MAD) of both

retrievals with 2A25 and reported their relative reductions,

for example, (RMSDShARP 2RMSD2A12)/RMSD2A12

(Fig. 10, left). As is evident, ShARP is markedly closer

to 2A25 throughout the entire year, especially during

cold seasons. The reduction in the chosen proximity

metrics reaches up to 75% in the snow-falling months of

November and December. As expected, the relative

improvements of these metrics reach their minimum

values (10%–15%) during the warm months of July–

September, over which retrieval is less challenging for

the SI-based techniques. We see notable differences

between the reduction of RMSD and MAD metrics

over the JFM period, which is apparently due to the

precipitation overestimation above snow-covered land

surfaces. Note that the RMSD quadratically penalizes

the error and thus is more sensitive to large values and

the tail of the distribution of retrieval differences

than the MAD metric. The correlations (Fig. 10, right)

of the monthly retrievals with 2A25 also confirm the

observed trend in the evaluated proximity metrics. In-

deed, we see that the quality of the monthly ShARP

retrievals is robust and remains relatively independent

of the seasonal rainfall variability and transition in land

surface radiation regime.

Finally, density scatterplots of the retrieved annual

rainfall are shown in Fig. 11. The results in this figure

demonstrate pixel-level pairs of the annual rainfall es-

timates over land, in 2013, projected onto a regular grid

at 0.28. The density scatterplots confirm that both passive

retrievals are slightly subject to underestimation of the

high-intensity rainfall patches. We can also see that an
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FIG. 9. Monthly rainfall retrievals over the study region shown at 0.18. The 3-month accumulations of total rainfall (mm) are shown for

(a) JFM, (b) AMJ, (c) JAS, and (d) OND throughout the calendar year 2013. The results only contain the rainfall captured within the

TRMM inner swath.
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appreciable amount of rainfall pairs are away from the 1:1

line in the 2A12, pointing to the notable overestimation

reported in Fig. 9. Comparing annual passive retrievals

with the 2A25, the annual RMSD in ShARP is 38%

smaller than the one in the 2A12, mainly because of im-

proved retrievals of rainfall over snow-covered ground.

Note that, because of the reported overestimation, the

annual correlation (corr) and coefficients of determina-

tion r2 in 2A12 are less than 0.5, while these statistics

reach 0.8 and 0.65 in ShARP, respectively.

4. Concluding remarks

We presented promising results for passive rainfall

retrieval over land and coastal zones, using the recently

proposed Shrunken Locally Linear Embedding Algo-

rithm for Retrieval of Precipitation (ShARP; Ebtehaj

et al. 2015). Even though the algorithm uses a single

dictionary over land, the results indicate its robustness

to the underlying variability of land surface emissivity

values. We provided evidence that as ShARP uses in-

formation across all spectral channels through a nearest

neighbor detection step, it allows us to properly dis-

criminate background radiation from the rainfall signal

over snow-covered grounds. In the vicinity of coastlines,

some improved results in rainfall detection and estima-

tion are elucidated, which promise a step forward for

applications related to snow and coastal hydrology in the

era of the Global Precipitation Measuring (GPM)

project. Research is currently underway to compare

ShARP with ground-based observations and the results

by the latest version of GPROF (Kummerow et al.

2015), which uses multiple surface classes to improve

retrievals over land. While ShARP has been tested for

observationally based TRMM data, its extension to use

combined physically based and observationally gener-

ated dictionaries across multiple platform might be of

future research interest.

FIG. 10. (left) Relative reduction (%) inmonthly RMSDandMAD in ShARP retrievals compared with 2A12. The

results are confined to land and coastal areas of the study domain in 2013. The reference rainfall is set to be 2A25.

(right) The correlation coefficients of the monthly retrieved fields with the 2A25.

FIG. 11. Smooth scatterplots of the total rainfall (mm) for 2A25 vs (left) ShARP and (right)

2A12 in 2013. The plots are obtained from pairs of the total rainfall over land and coastal areas

of the study domain projected onto a regular grid at 0.28.
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