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ABSTRACT

The constellation of spaceborne passive microwave (MW) sensors, coordinated under the framework of the
PrecipitationMeasurementMissions international agreement, continuously produces observations of clouds and
precipitation all over the globe. TheGoddard profiling algorithm (GPROF) is designed to infer the instantaneous
surface precipitation rate from themeasuredMW radiances. The last version of the algorithm (GPROF-2014)—
the product of more than 20 years of algorithmic development, validation, and improvement—is currently used
to estimate precipitation rates from the microwave imager GMI on board the GPM core satellite. The previous
version of the algorithm (GPROF-2010) was used with the microwave imager TMI on board TRMM. In this
paper, TMI-GPROF-2010 estimates and GMI-GPROF-2014 estimates are compared with coincident active
measurements from the Precipitation Radar on board TRMM and the Dual-Frequency Precipitation Radar on
board GPM, considered as reference products. The objective is to assess the improvement of the GPM-era
microwave estimates relative to the TRMM-era estimates and diagnose regions where continuous improvement
is needed. The assessment is oriented toward estimating the ‘‘effective resolution’’ of the MW estimates, that is,
the finest scale at which the retrieval is able to accurately reproduce the spatial variability of precipitation.
A wavelet-based multiscale decomposition of the radar and passive microwave precipitation fields is used to
formally define and assess the effective resolution. It is found that the GPM-era MW retrieval can resolve finer-
scale spatial variability over oceans than theTRMM-era retrieval.Over land, significant challenges exist, and this
analysis provides useful diagnostics and a benchmark against which future retrieval algorithm improvement can
be assessed.

1. Introduction

Observations of clouds and precipitation processes in
the microwave (MW) domain from space have been
performed since the late 1980s (Spencer et al. 1989). The
launch of the Tropical Rainfall Measurement Mission
(TRMM) satellite in 1997, carrying a Precipitation Ra-
dar (PR) along with the passive TRMM Microwave
Imager (TMI), allowed an unprecedented amount of
collocated MW multispectral atmospheric signatures
and radar-derived vertical profiles of hydrometeor type

and density (Kummerow et al. 1998). This enabled the
development of algorithms for the estimation of the
surface (or near surface) precipitation rate from passive
MW observations. Among these algorithms are the
Goddard profiling algorithm (GPROF) and GSMaP,
developed by NASA and JAXA, respectively
(Kummerow et al. 2001; Aonashi et al. 2009). Other
passive MW imagers similar to TMI have been sent into
orbit since then: SSMI/S on board the DMSP platforms,
AMSR on boardAdvanced EarthObserving Satellite-II
(ADEOS-II), AMSR-E on board Aqua, Microwave
Analysis and Detection of Rain and Atmospheric
Structures (MADRAS) on board Megha-Tropiques,
AMSR-2 on board Global Change Observation
Mission–Water (GCOM-W1), etc. In 2014, as a follow-
up to TRMM, the Global Precipitation Measurement
(GPM) Core Observatory satellite carrying the GPMCorresponding author: Clément Guilloteau, cguillot@uci.edu
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Microwave Imager (GMI) passive MW imager and
the Dual-Frequency Precipitation Radar (DPR) was
launched, making available a new set of collocated
passive MW and radar observations of the atmosphere
(Hou et al. 2014).
Several studies have evaluated the performance of

satellite passive MW estimates of instantaneous pre-
cipitation rates by comparison with collocated radar or
rain gauge data (e.g., Petty and Li 2013; Tang et al. 2014;
Oliveira et al. 2015; Ebtehaj et al. 2016). These studies
generally evaluate the ability of MW estimates to re-
produce the statistical distribution of rain rates. They
also quantify the similarity of MW estimates with the
reference dataset through metrics such as mean squared
difference (MSD) or the linear correlation coefficient.
Another important criterion one may consider in

assessing the performance of the MW retrievals is their
‘‘effective resolution,’’ that is, the finest spatial scale at
which they can accurately reproduce desired properties
of precipitation fields. Determining the effective resolu-
tion of the surface rain rate estimated through the in-
version of a multispectral signature is in fact far from
trivial. Indeed, for a given spaceborne MW imager, the
size of the footprint on the ground varies with the channel
(Fig. 1). The scanning geometry and sampling rate com-
bined with the satellite displacement during the mea-
surement may lead to overlapping instantaneous fields of
view for the low-frequency channels and to under-
sampling of the observed scene for the high-frequency
channels (Kummerow et al. 1998; Petty and Bennartz
2017). The relative importance of each channel, and thus
the effective resolution of the retrieval, may vary de-
pending on parameters such as the surface type (Ferraro
et al. 2013). Beyond the issue of the nominal resolution of
each channel of the MW imagers, because of the indirect
relation between observed radiances and the surface
precipitation, the inversion is always ambiguous, and the
MW signal may not contain sufficient information to re-
solve the finescale variability. Thus, the computation
method used to deduce the surface precipitation rate
from the measured MW radiances may induce a filtering
effect or generate ‘‘computational noise’’ affecting the
effective resolution of the estimate.
The above issues limit the classical point-to-point or

pixel-to-pixel comparison with a reference dataset and
calls for developing validation methods and metrics that
compare the multiscale spatial structure and geometri-
cal properties of the retrieved precipitation fields.
Object-based approaches have been proposed to handle
this issue (e.g., Nesbitt et al. 2006; Aghakouchak et al.
2011; Demaria et al. 2011). Objects are defined as con-
tiguous areas with precipitation intensity above a given
threshold. One can consider the number of objects, their

size, their convexity or compactness, etc., and evaluate
the ability of MW estimates to preserve these charac-
teristics. To comprehensively assess the ability of the
estimates to reproduce precipitation patterns, the ob-
jects’ statistics must be computed with multiple thresh-
olds, covering the whole range of possible precipitation
intensities. These methods may be computationally
intensive and lead to a large amount of computed pa-
rameters to be interpreted.
We propose here to use a spatial multiscale de-

composition of the retrieved precipitation fields to
assess the ability of MW-based methods to reproduce
the spatial patterns of precipitation at various scales.
A two-dimensional discrete orthogonal Haar wavelet
decomposition is used to perform the analysis. It allows
characterizing specifically each scale of variation of the
precipitation fields in a nonredundant way. Wavelets
being differential operators result in wavelet coefficients
representing the local spatial gradients (or fluctuations)
of precipitation fields at various scales. The orthogonal
wavelet decomposition erases the spatial correlation of the
analyzed signal, that is, the wavelet coefficient fields are
spatially uncorrelated even if the original signal is spatially
correlated. Wavelet filtering also removes possible non-
stationarities in the original fields (in the case of the dis-
crete Haar wavelet, it removes piecewise constant-level
trends), rendering statistical interpretations more mean-
ingful. Wavelets have been used successfully to character-
ize the spatial structure of the precipitation fields and the
dependence of local precipitation rates on their surround-
ings (e.g., Kumar and Foufoula-Georgiou 1994, 1997).

FIG. 1. Footprints on the ground (23 dB) of several spaceborne
MW imagers compared with the footprints of the PR on board
TRMM and the Ku PR and Ka PR on board GPM.
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Using a discrete orthogonal wavelet basis, which is a re-
constructive basis, leads to a nonparametric reversible
decomposition by which all the information contained in
the original signal is contained in the wavelet coefficients.
In this paper, MW estimates from TMI and GMI based on
two different versions of the GPROF algorithm are com-
pared with radar data in the wavelet domain. A wavelet
spectral analysis is also performed by computing second-
order statistics of thewavelet coefficients, to assess how the
energy (spatial variance) of the signal is distributed
across scales.
The main objective of this study is to assess the im-

provement in retrieval of instantaneous precipitation
rates allowed by the last version of GPROF with the 13
channels of GMI compared to the TRMM-era version of
the algorithm with the 9 channels of TMI. The smaller
footprint of GMI compared with TMI (Fig. 1) is expected
to allow resolving of precipitation structures at finer
scales. However, the effective resolution as defined
herein is a result of not only the nominal resolution of the
instrument, but also of the information content of each
MW channel and the ability of the retrieval algorithm to
accurately interpret this information to reproduce the
precipitation spatial variability and structure at fine
scales. The MW estimated precipitation rates from TMI
and GMI are compared to the precipitation rates mea-
sured by the PR on board TRMMand the DPR on board
GPM, respectively. The radar-derived precipitation rates
are considered an accurate enough reference product for
the evaluation of the MW estimates, meaning that the
radar retrieval error is considered negligible relative to
the MW error. Besides, the regional discrepancies re-
vealed by our analysis can always be assessed in the
context of possible errors stemming from regional varia-
tions in the accuracy of the radar estimates. The potential
inaccuracies in the radar estimates are discussed in the
last section of this paper.
The article is organized as follows. The passive MW

and radar datasets are presented in section 1. Section 2 is
dedicated to the evaluation methodology relying upon
the wavelet transform. In section 3, results are pre-
sented, first with an illustrative case study and then at a
global scale with multiyear statistics. Section 4 discusses
the results.

2. Data

a. TRMM era: 6 years of TMI estimates collocated
with PR observations

The PR on board the TRMM satellite produced mea-
surements of the instantaneous surface rain rate under
the track of the satellite from 1997 to 2015, at 13.8GHz

(Ku band), with a 5-km horizontal resolution. The swath
width of the radar is 245km. The wider swath (880km) of
the TRMM Microwave Imager (TMI) encompasses the
swath of the PR, allowing collocated observations. Here,
6 years (2002, 2005, 2008, 2011, 2012, and 2013) of re-
trieved surface rain rates derived from TMI through
GPROF-2010 (product 2A12v7; TRMM 2011a) are
compared with the surface rain rates from the PR
(product 2A25v7; TRMM 2011b). For the comparison,
TMI-GPROF estimates are projected on the 5-km grid of
the 2A25v7product using a nearest neighbor interpolation.
It is to be noted that the computation schemes ofGPROF-
2010 are different over land and oceans. Over oceans, a
Bayesian inversion scheme is used to retrieve the most
probable hydrometeor profiles from a database made of
65 million coincident TMI and PR observations. Over
land, stratiform and convective precipitation areas are
first delimited using a scattering index. For each type of
precipitation, an empirical relationship between precipi-
tation rate and 85-GHz brightness temperatures is used
(Kummerow et al. 2015; Petković and Kummerow 2017).

b. GPM era: 3 years of GMI estimates collocated with
Ku-PR observations

The equivalent of the 2A12 product for the GPM era is
the experimental 2A-GPROF-GMI product, obtained by
the inversion of theGMI spectral signatures with the new
GPROF-2014 algorithm (GPM Science Team 2016a).
For GPROF-2014, the same Bayesian scheme is used
over land and oceans (Kummerow et al. 2015). Over
oceans, the same database as in GPROF-2010 is used.
Over land a database of coincident ground radar obser-
vations in North America and simulated radiances (from
SSMI/S observations) is used. The GMI-GPROF esti-
mates are collocated with the surface precipitation rates
from the Ku-PR (lowest frequency of the DPR; GPM
Science Team 2016b). TheKu PR on board GPM has the
same characteristics as the TRMM PR. The measure-
ments in the Ka band are not used in this study to ensure
consistency of the reference datasets for the TRMM and
GPM eras and because of the reduced swath width of the
Ka PR (120km only). We consider here 3 years of data,
from March 2014 to March 2017. The GMI-GPROF es-
timates are projected on the Ku-PR 5-km grid for the
comparison.

3. Methodology

a. Motivation

Let RMW(x, y) denote the passive MW retrieved field
we want to evaluate and RR(x, y) denote the radar field
(Fig. 2), considered here as the reference, that is,
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RR(x, y)5Rref(x, y). The classical approach to evaluate
RMW would be to compare it to RR pixel by pixel and
compute scoring metrics such as the linear correlation
coefficient and the mean squared difference. Doing so
with the rain rates in the two images shown in Fig. 2, we
obtain a correlation coefficient of 0.58 and a root-mean-
square difference of 7mmh21. This approach is adapted
when one seeks to characterize a retrieval error that is
stationary, independent of the reference rain rate
Rref(x, y), and spatially uncorrelated, that is, an additive
white noise:

RMW(x, y)5Rref(x, y)1 «(x, y), (1)

where « is a zero-mean random error. With this model,

var(R
MW

)5 var(R
ref
)1 var(«) , (2)

where var( ) denotes the population variance. Un-
fortunately, this simple error model is not fit to charac-
terize some aspects of the errors of passive MW
estimates of precipitation. The error may actually be a
complex combination of several types of errors such as
instrumental noise, location error due to inaccurate
pointing or parallax shift, nonlinear effects from in-
homogeneous beam filling, filtering effects induced
by the signal processing and computation method, etc.

In particular, assuming a spatially uncorrelated error is
not reasonable. Many studies have also shown that the
error actually is dependent on Rref, which is itself a
spatially correlated field (Hossain and Anagnostou
2006; Hossain and Huffman 2008; Aghakouchak et al.
2010; Kirstetter et al. 2013a). The error may also depend
on other spatially correlated environmental parameters
such as the surface MW emissivity. Passive MW re-
trieval is generally more challenging over land than
over oceans because of the spatial and temporal het-
erogeneity of land surface emissivity and because the
overland radiative signature of precipitation is funda-
mentally weaker and less direct when viewed against
a high emissivity background. The question of error
space–time correlation is of prime importance when the
retrieved precipitation is to be combined with other
estimates from ground or spaceborne instruments to
compute multisensor estimation products or with mod-
eled variables in a data assimilation scheme. The degree
of spatial and temporal correlation also drives the rate at
which the error variance decreases through spatial and
temporal aggregation.
Passive MW retrieval methods such as GPROF rely

on the inversion of a multispectral MW signature to
infer the surface precipitation rate. These methods
are generally designed to minimize a quadratic cost

FIG. 2. Collocated radar and passive MW retrievals over the tropical Pacific Ocean at 1530 UTC 15 Nov 2015.
(a) RR(x, y), precipitation rates retrieved by the Ku PR and (b) RMW(x, y), precipitation rates retrieved from GMI
radiances using the GPROF-2014 algorithm.
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function—for example, the mean squared error
(MSE)—or to provide the most likely rain rate given the
observed parameters. Minimum MSE methods, Bayes-
ian or empirical Bayesianmethods such as themaximum
likelihood, maximum a posteriori, best linear unbiased
estimator, etc., tend to produce smooth estimates, dis-
carding the extreme values (DeGroot 2004; Carroll et al.
2006; Buzas et al. 2014; Foufoula-Georgiou et al. 2014).
In that case, the variance of the estimates is always
smaller than the variance of the reference rain rates,
which is inconsistent with the additive random error
model [Eq. (2)]. These smooth estimates are in fact af-
fected by a conditional systematic bias (Ciach et al. 2000;
Kirstetter et al. 2013a), that is, the error necessarily
depends on the reference rain rate. This smoothing of
the rain rates naturally leads to a smoothing of the
spatial gradients. The smoothing effect on the gradients
is complex as gradients at different scales may be af-
fected differently. Therefore, the effect on the effective
resolution is not trivial. As an illustration, Fig. 3 shows
the distribution of local gradients computed as the dif-
ferences between two adjacent pixels (whose centers are
5 km apart), for the fields RMW(x, y) and RR(x, y) dis-
played on Fig. 2. The gradients of RR have a wider dis-
tribution with more frequent extreme values compared
to RMW. Moreover, a very low correlation, 0.085, is
found between the MW and radar gradients (to be
compared with the 0.58 correlation coefficient for the
precipitation rates themselves), showing that the fine-
scale spatial features of the radar field are not repro-
duced by the MW estimate.
The correlation coefficient and MSD between the

precipitation rates RMW(x, y) and RR(x, y), as pointwise

or pixelwisemetrics fail to reveal information about how
well the spatial organization of the precipitation fields is
captured in the retrieval and also do not provide in-
formation on the spatial structure of the retrieval error.
Instead of quantifying absolute rain intensity, the
wavelet coefficients represent the local differences of
intensity at various scales. Thus, they quantify the spa-
tial structure of precipitation fields, and therefore, cor-
relation coefficients and MSD computed on the wavelet
coefficients at each scale provide more specific in-
formation than the correlation coefficients and MSD of
rain rates. In addition, because the wavelet coefficients
are spatially uncorrelated, there is no ambiguity in the
interpretation of their variance or covariance.

b. Implementation

The two-dimensional discrete Haar wavelet transform
used in this study is an orthogonal decomposition,
decomposing a field into series of wavelet coefficients
encoding the spatial variations (i.e., gradients) of the field
at various scales (Mallat 2008; Kumar and Foufoula-
Georgiou 1993).While any orthogonal wavelet basis may
theoretically be used, the Haar wavelet offers simplicity
in interpretation, as the Haar wavelet coefficients can be
interpreted in terms of simple finite differences and the
smoothing function associated with the Haar wavelet as
simple window averaging at different scales.
Figure 4 illustrates the discrete orthogonal de-

composition of the two-dimensional MW precipitation
field RMW(x, y) with the Haar wavelet. At the first level
of the decomposition, the field is decomposed into four
components: three series of wavelet coefficients denoted
as R0

MW,1,k(x, y) with k 5 {1, 2, 3}, and one series of

FIG. 3. Comparison of the gradients of the radar and passive MW precipitation fields displayed in Fig. 2.
(a) Probability distribution of radar and MW spatial gradients revealing the smoother structure of the MW re-
trievals (lower gradients) and (b) scatterplot of MW gradients against radar gradients, revealing that gradients are
uncorrelated. Gradients are computed along track as the difference of two adjacent pixels. Pixel resolution is 5 km.
The linear correlation coefficient between passive MW and radar gradients is 0.085.
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FIG. 4. Five-level discrete wavelet decomposition of the passive MW fields RMW(x, y) displayed in Fig. 2. The top-left panel shows the
original precipitation field at 5-km resolution. The other left panels show the low-pass coefficientsRMW,l(x, y). The wavelet coefficients at
various levels of decomposition are displayed in the right panels. The scales l 5 3 and l 5 4 are not displayed. The decomposition is
performed using the Haar wavelet.
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low-pass (LP) coefficients denoted as RMW,1(x, y). The
wavelet coefficients R0

MW,1,k(x, y) are kept and the LP
component RMW,1(x, y) is further decomposed into
R0

MW,2,k(x, y) with k 5 {1, 2, 3} and RMW,2(x, y) at the
next level of decomposition (level two). This de-
composition is performed for five levels in our case.
Thus, at each level (scale), three sets of wavelet
coefficients R0

MW,l,k(x, y) complement a set of LP
coefficients RMW,l(x, y), where k 5{1, 2, 3} and l is the
scale index. The three sets of wavelet coefficients encode
the variations of the field in three directions of the two-
dimensional space and are necessary to comprehen-
sively represent the spatial variability [see Eqs. (1)–(4)
in Perica and Foufoula-Georgiou (1996) for in-
terpretation of wavelet coefficients in terms of discrete
approximations of spatial gradients]. In the present
study, the three directions, imposed by the radars’
scanning geometry and the satellite trajectory, are along
track, cross track, and diagonal. Because the smoothing
function associated with the Haar wavelet is a simple
averaging operator, RMW,l(x, y) is in fact no more than
the original field coarsened at resolution Ll 5 2lL0,
where L0 is the original grid resolution. While the
wavelet coefficients R0

MW,l,k(x, y) are independent from
one scale to another, RMW,l(x, y) can be retrieved from
RMW,l11(x, y) and R0

MW,l11,k(x, y).
A necessary condition for the decomposition to be

orthogonal and reconstructive is that the scale de-
composition is dyadic, that is, the length scaleLl is twice
the length scale Ll21 at the previous level of de-
composition. The finest scale of the decomposition
corresponds to the spatial sampling of the original field,
5 km in our case. The largest accessible scale is half the
size (shortest dimension) of the original field, corre-
sponding to the 245-km swath width of the radars in our
case. Therefore, for this study, only five levels of de-
composition are possible, and the spatial scales of 5, 10,
20, 40, and 80kmare labeled by the indexl5 {1, 2, . . . , 5}.
Finally, all the information contained in the original
field RMW(x, y) is retained in the LP field RMW,5(x, y),
and in the series of wavelet coefficients R0

MW,l,k(x, y),
with l 5 {1, 2, . . . , 5}. In the following, RMW,5, which is
RMW coarsened at the 160-km resolution, is simply noted
as RMW. An identical decomposition is applied on the
radar field RR(x, y) to allow the multiscale comparison
of the two fields.
Computing the energy (sum of squared values) of the

wavelet coefficients at each scale results in the wavelet
energy spectrum, which captures the fraction of the total
energy of the signal contributed by each scale. Indeed,
with the Haar orthogonal wavelet decomposition being
energy conservative, the total energy of the signal is equal
to the sumof the energy of its wavelet andLP coefficients:

!
x,y

R2
MW(x, y)5 !

x,y
R2

MW(x, y)1 !
5

l51
!
3

k51
!
x,y

R02
MW,l,k(x, y).

(3)

The collocated wavelet coefficients R0
MW,l,k(x, y) and

R0
R,l,k(x, y) are compared at each scale l. From Eq. (3)

we can see that the wavelet decomposition allows us to
quantify the contribution of each scale to the total en-
ergy of a field. Similarly, by computing the squared
difference and the covariance between the wavelet co-
efficients R0

MW,l,k(x, y) and R0
R,l,k(x, y), we can quantify

the contribution of each scale to the squared difference
and covariance between RMW(x, y) and RR(x, y).
The scoring metrics used to quantify the similarity of

the wavelet coefficients R0
MW,l,k(x, y) and R0

R,l,k(x, y) at
each scale, and thus assess the effective resolution of the
MW retrieval, are the coefficient of linear correlation
and the Nash–Sutcliffe (NS) efficiency coefficient. The
NS efficiency is a normalized measure of the MSE,
ranging from 2‘ to 1, and accounting for the variance
of the reference signal:

NS(R0
MW,l,k,R

0
R,l,k)512

!
x,y

h
R0

MW,l,k(x, y)2R0
R,l,k(x, y)

i2

!
x,y

n
R0

R,l,k(x, y)2E[R0
R,l,k]

o2
,

(4)

where E[ ] denotes the expected value. Note that, at any
scale, the expected value of the wavelet coefficients
E[R0

l,k] is zero, and thus the energy of the wavelet co-
efficients is proportional to their variance. An NS effi-
ciency equal to one indicates that the evaluated estimate
is identical to the reference. A negative NS efficiency
coefficient of the wavelet coefficients indicates that the
precipitation variability signal is dominated (in terms of
variance) by noise at the corresponding scale. We con-
sider here that the spatial variability of precipitation at
scale l is effectively resolved if the NS efficiency of
R0

MW,l,k(x, y) compared to R0
R,l,k(x, y, i) is above 0.5,

that is, the signal-to-noise ratio is greater than 2:1. Thus,
we can determine the effective resolution as the smallest
scale above which the spatial variability of precipitation
is effectively retrieved. In this study, the dyadic de-
composition allows us to determine a range of scales
within which the effective resolution lies. When the
larger accessible scale (80kmwith the dataset used here)
is not resolved, we can only assess that the effective
resolution is larger than this scale.
Although one could study independently the three

directional wavelet components R0
l,1(x, y), R

0
l,2(x, y),

and R0
l,3(x, y) encoding the along-track, cross-track, and

diagonal spatial variations, we note that these directions
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are somewhat arbitrary as they depend on the orbital
parameters of the satellite and do not have any specific
meaning regarding the precipitation process itself.
Moreover, these directions are not constant in any
georeferenced coordinate system. For this reason, and
to keep the evaluation concise, in the following, we
chose to consider the three directions altogether and not
to discriminate between the along-track, cross-track,
and diagonal components.

4. Results

a. Analysis of a case study

The purpose of this case study is to introduce and
explain the significance of the metrics used for com-
parison. Here we compare the radar and MW fields
shown in Fig. 2, corresponding to collocated GMI and
Ku-PR observations over the Pacific on 15 November
2015. The wavelet and LP coefficients obtained from the
decompositions of RMW and RR are displayed in Fig. 4.
The corresponding wavelet energy spectra are displayed
in Fig. 5a. The larger the spectral energy, the larger the
spatial variability of the precipitation field at the corre-
sponding scale. Comparing the RMW and RR wavelet
spectra, it can be seen that the energy of the wavelet
coefficients is lower for RMW than for RR at all scales
between 5 and 80km. This deficit of energy is particu-
larly strong at the scales of 5, 10, and 20 km, illustrating
the fact that the finescale spatial gradients are smoother
in the RMW field than in the RR field. The radar sees
sharper transitions, as it can detect small cells of very
high rain intensity or identify small isolated rainy areas,
while these are smoothed out in the MW estimates. The
deficit of variability at 5 km, which was already revealed

in Fig. 3, is not surprising, considering that the RMW

original nominal resolution is 12.5 km, spatially in-
terpolated to the 5 km grid of RR. Nevertheless, the
variability at scales of 10–80 km is also underrepresented
in the MW field, demonstrating that the MW retrieval
methodology is not able to reproduce the finescale
spatial variability of the precipitation signal. Also, the
fact that the variance ofR0

MW,l is consistently lower than
the variance of the reference R0

R,l at all scales confirms
that the retrieval error cannot be described as an addi-
tive zero-mean random noise [Eqs. (1) and (2)],
suggesting a systematic and scale-dependent conditional
bias in the retrieved spatial gradients. On the contrary,
for the LP component (which captures precipita-
tion variability at scales coarser than 80 km), as
var(RMW). var(RR), the simple additive random error
model may be adapted. These elements highlight the
need of an orthogonal decomposition such as presented
here for a more meaningful comparison.
As a consequence of the underrepresentation of

finescale variability in the MW estimates, the energy of
the error (R0

MW,l 2 R0
R,l) increases and the correlation

between R0
MW,l and R0

R,l decreases with finer scales
(Fig. 5b). Specifically, at scales of 5–20km, the energy of
the error is of the same order as the energy of the ref-
erence signal R0

R,l, leading to low NS efficiency, im-
plying that the MW retrieval provides little information
on the spatial variability of precipitation at those scales.
From the NS efficiency of the wavelet coefficients, the
effective resolution of RMW is found to be between 20
and 40 km in this case study.

b. Global results during the TRMM era

Collocated RMW(x, y) and RR(x, y) precipitation
fields derived respectively from TMI through the

FIG. 5. Multiscale comparison of microwave RMW and radar fields RR displayed in Fig. 2. (a) Wavelet energy
spectra of RR (circles), RMW (triangles), and Error 5 (RMW 2 RR) (crosses). (b) Correlation coefficient (circles)
between the wavelet coefficients R0

MW,l and R0
R,l and NS efficiency coefficient (triangles), as function of scale. In

both plots, the rightmost symbols depict the values corresponding to the LP fields, that is, scales larger than 80 km.
The energy deficiency and low correlation at scales finer than 40 km of the wavelet coefficients of the MW fields
compared to the PR fields document the inability of the MW retrievals to reproduce small-scale features and
establish 40 km as the ‘‘effective resolution’’ of the retrieval product.
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GPROF-2010 algorithm and from the TRMM-PR are
compared in the wavelet domain. These observations
correspond to more than 34 000 orbits completed by
TRMM over 6 years (2002, 2005, 2008, 2011, 2012, and
2013). To perform regionalized analyses, the tropics
(358N–358S) are divided into 38 3 38 grid cells. In each
cell, for each TRMM overpass, the five-level, two-
dimensional Haar wavelet decomposition of the MW
and radar fields is performed. The average number of
TRMM overpasses per grid cell during the six years is
about 3000. Figure 6 shows the average observed pre-
cipitation rate. One can note the strong consistency
between the MW estimates and radar observations in
terms of the spatial patterns of the 6-yr mean at large
scales. The only notable difference is the strong over-
estimation of the mean precipitation rate over the
Himalayas for RMW compared to RR.
In all cells, the energy of the wavelet coefficients

R0
MW,l(x, y) and R0

R,l(x, y) is computed at each scale
l and summed over all TRMMoverpasses. The energy of
the wavelet coefficients at all scales from 5 to 80km,
shown as percentage of the total energy of RR(x, y) in
each cell, is mapped in Fig. 7. It can be seen that, ac-
cording to the radar, the contribution of the 5- and 10-km
scales is strong everywhere, with those two scales gener-
ally accounting for more than 50% of the spatial variance
in the radar fields. Over oceans, theMWestimate shows a
high deficit of energy at the 5-, 10-, and 20-km scales
compared to the radar. Once again, this result is not
surprising, considering the way the passive MW retrieval
is performed. The energy associated with the fluctuations
at the 40- and 80-km scales and with the LP component
is consistent between the radar and MW fields over
oceans. Over land, the comparison shows much more

heterogeneous features. Over Amazonia, the MW and
radar fields have a similar distribution of their spatial
variability across scales (except at the 5-km scale, which
for theMWfield shows significantly less variability). Over
central and western Africa, it appears that the MW
overestimates the amplitude of spatial variations at scales
of 20, 40, and 80km. In this region, the variability of the
LP term is also overestimated.Over theHimalayas,much
larger energy is observed at all scales for the MW esti-
mates than the radar fields, indicating that the MW re-
trieval strongly overestimates not only the mean intensity
of precipitation (as shown by Fig. 7), but also the ampli-
tude of its spatial variability at all scales.
Figure 8 shows the map of the correlation of wavelet

coefficients R0
MW,l and R0

R,l, along with the map of the
NS efficiency of the wavelet coefficients at each scale.
Globally, the finer the scale, the lower the correlation
and NS efficiency of the wavelet coefficients. Over the
Himalayas and the Chilean Andes, the correlation and
NS coefficients are low at all scales, as well as for the LP
term. This indicates large-scale biases in the retrieval
over these mountainous regions and erroneous spatial
variability at all scales. In some continental regions, the
NS efficiency coefficient is low while the correlation
coefficient is relatively high. For example, over Sahelian
Africa, the NS efficiency coefficient is negative at scales
of 20, 40, and 80km, while the correlation of wavelet
coefficients is relatively high at the same scales. This
demonstrates that in these regions, the form of the
spatial variation of instantaneous precipitation at these
scales is well captured by passive MW, but their ampli-
tude is overestimated, as shown by the larger energy
seen at these scales (Fig. 7). This feature had been pre-
viously identified by Petković and Kummerow (2017),

FIG. 6. Six-year, 38 3 38 average precipitation rates from the (top) PR and (bottom) TMI.
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who explained it as a systematic overestimation of rain
rates for deep convective systems that are predominant
in this area.
Figures 9a–c displays the global wavelet spectra of

RR and RMW, along with the spectrum of their difference,

over oceans and over land (excluding the Himalayas), as
well as the regional spectra over the Himalayas. Over
oceans, at all scales between 5 and 80km, the energy of
R0

MW,l is lower than the energy of R0
R,l, which indicates

a conditional systematic bias and smoothing of the

FIG. 7. Across-scale decomposition of the energy associated with the spatial variability of PR and TMI pre-
cipitation fields. The top five panels of each column show the energy of the wavelet coefficients (left) R0

R,l and
(right) R0

MW,l at scales of 5–80 km, respectively. The bottom panels show the energy of the LP fields for RR on the
left and RMW on the right. For each 38 3 38 cell, at each scale, the energy is computed over all TRMM overpasses
during 6 years and normalized by the total energy of the PR field RR. Areas with no plotted value are excluded, as
the number of observed precipitation events is not sufficient to compute robust statistics in these areas. The con-
tribution of the 5- and 10-km variability to the total variability is strong in the radar fields over land and oceans. In
contrast, the 5- and 10-km scales barely contribute to the variability of the MW fields over oceans.
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FIG. 8.Multiscale regionalized comparison of PR and TMI precipitation fields. (left) The top five panels show the
correlation of the wavelet coefficientsR0

R,l andR0
MW,l at scales of 5–80 km. The sixth panel shows the correlation of

the LP coefficientsRR and RMW. The bottom panel shows the correlation of the rain rates RR and RMW. (right) The
top five panels show the NS efficiency of R0

MW,l against R0
R,l at scales of 5–80 km. The sixth panel shows the NS

efficiency ofRMW againstRR, and the bottompanel shows theNS efficiency ofRMW againstRR. For each 38 3 38 cell,
at each scale, the correlation andNS efficiency coefficients are computed over all TRMMoverpasses during 6 years.
Areas with no plotted value are excluded, as the number of observed precipitation events is not sufficient to
compute robust statistics in these areas.
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finescale variability. For the LP term RMW, the random
additive error model may be appropriate as
var(RMW)’ var(RR)1 var(«); note that the variance of
the LP error is low compared to the variances of RR.
Over land, the error appears to be much more com-

plex, as the spatial variability is overestimated by the
MW retrieval at scales of 40 and 80 km and under-
estimated at scales of 5 and 10km. At the 20-km scale,
R0

MW,l and R0
R,l have about the same variance, but, from

the correlation coefficient (Figs. 9d–f), it appears that
only 50% of this variance is attributable to correctly
capturing the localized variability, with the remaining
50% being attributable to random noise. At the 10- and

5-km scales, the variance of the error R0
MW,l 2R0

R,l is
very high (higher than the variance of R0

R,l), leading to a
negative NS efficiency (Figs. 9d–f). Note that the cor-
relations are not significantly lower over land than over
oceans, as one could have expected, indicating that the
form of the spatial variations of precipitation rates over
land is captured by the 85-GHz brightness temperature
as effectively as over oceans through the combination of
all channels. However, the NS efficiency is lower over
land than over oceans, indicating erroneous estimation
of the amplitude of the spatial variations.
Over the Himalayas, at all scales from 10 to 80 km, the

energy of R0
MW,l is higher than the energyR0

R,l. The LP

FIG. 9. Multiscale global comparison of TMI and PR precipitation fields. (left) As in Fig. 5a, but computed
globally (between 358N and 358S) from 6 years of collocated TMI and PR observations over (a) oceans and (b) land
and (c) at the regional scale over the Himalayas. (right) As in Fig. 5b, but computed globally (between 358N and
358S) from 6 years of collocated TMI and PR observations over (d) oceans and (e) land and (f) at the regional scale
over the Himalayas. For the land statistics in (b) and (e), the Himalayan region is excluded. Over oceans the
variance of theMWwavelet coefficients being lower than the variance of the radar wavelet coefficients indicates an
error correlated to the reference field at scales finer than 80 km. For the LP fields, var(RMW)’ var(RR)1 var(«),
which is consistent with a random error independent from Rref .
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term RMW also shows more energy than RR. The low
correlations between RMW and RR and between R0

MW,l

and R0
R,l at all scales indicate that the RMW signal over

the Himalayas is mostly noise, whose variance is larger
than the variance of the precipitation signal. According
to Petković and Kummerow (2017), this predominant
noise is due to the indiscrimination between cold
85-GHz brightness temperatures coming from snow-
covered areas and precipitation clouds. The wavelet
analysis reveals that this noise is spatially correlated as it
affects all scales of the signal.
From the wavelet decomposition theRMW field can be

reconstructed as linear combinations of the LP fields
RMW and of the wavelet-encoded variations. Similarly,
the correlation and MSD between RMW and RR are
linear combinations of the correlations and MSD of the
wavelet and LP coefficients. The last row of Fig. 8 shows
themap of correlation and NS efficiency of precipitation
rates RMW against RR. Figure 10 shows the effective
resolution of the GMI-GPROF estimates, computed
from 6 years of data, for each 38 3 38 cell. Over oceans,
the effective resolution is generally between 20 and
40km. Even if the effective resolution is also between 20
and 40km in some continental areas, over land, the ef-
fective resolution is more often found to be coarser than
40km and even coarser than 80km in some regions.

c. Global results during the GPM era

The same diagnostics used to analyze six years of
collocated PR and TMI observations are applied on the
2014–17 collocatedGMI andKu-PR observations (more
than 16 000 GPM orbits). Rain rates are derived from
GMI measured radiances through the GPROF-2014
algorithm. As for the TRMM era, the large-scale
global patterns of the MW-derived mean intensity are
very consistent with the radar estimates (Fig. 11). The
overestimation over the Himalayas that characterized
the TRMM-era retrievals (Fig. 6) does not appear
anymore.

Figure 12 is the equivalent of Fig. 8 for the GPM era
and shows the distribution of energy across scales for the
MW and radar fields. Note that because of the reduced
number of observations per 38 3 38 grid cell compared to
the TRMM era (700 on average from the GPM era
against 3000 for the TRMM era), the results show less
spatial coherency, the ‘‘noisy’’ appearance of the maps
being an effect of sample size. The orbit of GPM allows
the observation of the regions between 358 and 658 of
latitude, which was not observed by TRMM.As for TMI
during the TRMM era, the GMI fields show less energy
than the radar fields in the scales of 5, 10, and 20km over
oceans. Note that this deficit of energy is also observed
over land while it was not the case during the TRMM
era. This may result from the adoption of Bayesian re-
trieval scheme over land for the 2014 version of the
GPROF algorithm, leading to smooth estimates both
over land and oceans. The energy in scales of 40 and
80 km and in the LP term is consistent between the MW
and radar fields, over land and oceans. Note that the LP
term strongly contributes to energy of theMWand radar
fields over medium- and high-latitude oceans. This re-
veals that over medium- and high-latitude oceans, pre-
cipitating systems tend to be dominated by large-scale
features and be correlated over long distances, with
relatively small finescale variability.
Figure 13 is the equivalent of Fig. 8 for the GPM era.

As previously observed, globally, the finer the scale, the
lower the correlation andNS efficiency. At all scales, the
correlations between R0

MW,l and R0
R,l are significantly

higher over oceans than over land. One will, however,
note lower performance at all scales over the Southern
Ocean below 608S, which can be explained by the com-
plex surface emissivity due to the presence of sea ice.
Concerning the LP term, the correlation between RMW

and RR is high everywhere, even over Chile and over the
Himalayas. Figure 14 shows the average spectra com-
puted over oceans and continents (excluding the Hima-
layas) and the regional spectra for the Himalayas.

FIG. 10. Effective resolution of TMI-GPROF-2010 estimates. The effective resolution is
computed from 6 years of collocated observations with the PR in each 38 3 38 cell.
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Over oceans, the MW retrieval smooths spatial vari-
ations at scales of 5–40km. For the 80-km scale and the
LP term, the error is very low. The relative variances of
RMW and RR and of the LP error indicate again that the
LP error is random (i.e., independent from RR). The
correlation of MW and the radar wavelet coefficients at
all scales are higher than during the TRMM era. The LP
component of the MW and radar fields is also better
correlated than during the TRMM era, indicating a
better performance of GPM retrievals to accurately
capture the precipitation variability at scales larger
than 80 km.
Over land the error appears to be of the same type as

over oceans: very little spatial variability is resolved for
scales finer than 80 km (smooth spatial gradients), and
unbiased estimates (random errors) are found for scales
equal to or larger than 80 km. The relative variance of
the LP error is higher over land than over oceans. Al-
though the variance of R0

MW,l has been reduced over
land compared with the TRMM-era estimates, mean-
ing smoother estimates and noise reduction, no im-
provement is noted in terms of correlation of the

wavelet coefficients, still implying a lack of ability to
accurately resolve precipitation features at scales
finer than 80 km. For example, over the Himalayas,
the variations at scales finer than 80 km are essen-
tially noise. However, contrary to the TRMM era,
the correlation for the LP terms RMW and RR is rel-
atively high (about 0.8), demonstrating the ability
of GPM passive MW in capturing the form of spatial
variations scales coarser than 80 km in a mountainous
area (although the amplitude of these LP variations is
overestimated).
The computed local effective resolution of 2014–17

GMI-GPROF-2014 estimates all over the globe is dis-
played in Fig. 15. The GMI estimates have an effective
resolution between 10 and 20km over most of the oce-
anic areas, which actually corresponds to the nominal
resolution of the product (12.5 km). Although significant
improvements in error reduction at the coarse scale are
observed over land compared to the TRMM-era esti-
mates, the effective resolution is still found to be coarser
than 40km over most of the continental areas for GMI
estimates.

FIG. 11. Three-year, 38 3 38 average precipitation rates from the (top) Ku PR and
(bottom) GMI.
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FIG. 12. Across-scale decomposition of the energy associated with the spatial variability of the Ku-PR and GMI
precipitation fields. As in Fig. 7, but for the GPM era (from March 2014 to March 2017): (left) Ku-PR fields and
(right) GMI fields. For each 38 3 38 cell area, at each scale, the energy is computed over all GPM overpasses during
3 years and normalized by the total energy of the Ku-PR field RR.
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FIG. 13. Multiscale regionalized comparison of Ku-PR and GMI precipitation fields. As in Fig. 8, but for the
GPM era (from March 2014 to March 2017).
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5. Conclusions

The ability of passive MW precipitation retrievals to
reproduce the spatial variability of precipitation fields at
various scales is evaluated during the TRMM era and
during the GPM era, seeking to quantify the improve-
ment allowed by the enhanced instrumental capabilities
of GPM and algorithmic developments. Instead of
comparing theMWestimates with a reference dataset in
terms of rain rates, our evaluation relies on compar-
ing the wavelet coefficients resulting from a two-
dimensional dyadic orthogonal wavelet decomposition
of MW and radar precipitation fields. The wavelet
methodology offers advantages as it filters out possible
trends and nonstationarities in the original fields; it
captures ‘‘edges,’’ that is, intensity contrasts due to local

precipitation features of different scales, and it renders
the wavelet coefficient fields spatially and across-scale
independent for more meaningful statistical analysis.
Using the radar precipitation fields as the reference, our
analysis allowed us to determine which scales of vari-
ability can be effectively retrieved through passive MW.
The main findings are as follows:

1) Over oceans, rainfall variability down to spatial
scales of 20–40 km is accurately retrieved from

TRMM, while improvements down to scales of

10–20 km have been realized from GPM.
2) Over land, in most areas, only scales around 40–

80km or coarser are resolved for both the TRMM
era and the GPM era. The adoption of the Bayesian
retrieval over land for the GPM era led to smoother

FIG. 14. Multiscale global comparison of GMI and Ku-PR precipitation fields. As in Fig. 9, but computed with 3
years of collocated GMI and Ku-PR observations over (a),(d) oceans; (b),(e) land; and (c),(f) the Himalayas. For
the land statistics, the Himalayan region is excluded. The land and ocean statistics extend to the latitudes between
358N(S) and 658N(S) that were not observed during the TRMM era. Contrary to the TRMM era, the error
structures are similar over land and oceans, consistent with the fact that the sameBayesian scheme is used over land
and oceans during the GPM era.
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estimates. The magnitude of the finescale noise over
land is reduced compared to the TRMM era, but the
finescale spatial variability is still unresolved over
land during the GPM era.

3) The spatial variability of precipitation rates at a given
scale may not be resolved by the MW retrieval for
two different reasons. First, they may be filtered out
during the retrieval. In that case, the variance of the
wavelet coefficients is low, and the information at the
corresponding scale is missing. Second, they may be
altered by noise. In that case, the wavelet coefficients
have a high variance; they contain information, but
this information appears to be unrelated to the
precipitation process. These two cases may coexist
at different scales and can hardly be represented by a
unique error model.

4) The low-pass term representing the coarse scale
(coarser than 80km) spatial variations of the fields is
well retrieved everywhere except over mountainous
areas during both the TRMM and GPM eras.

The results help us better understand the scale de-
pendence of the retrieval error. As expected, the finescale
variability is generally less accurately retrieved than the
large-scale variability. The exception is mountainous
areas for which the retrieval of coarse-scale variability
is also problematic. In most areas, the larger part of
the error in MW rain rates comes from the un-
derrepresentation of the finescale spatial variability (at
scales finer than 40km). Amuch smaller part comes from
the error affecting the coarse-scale fields; this coarse-scale
error has the characteristics of a random noise.
Itmust be noted that whileGPROF-2014 retrieval over

oceans has been developed in the continuity of GPROF-
2010, over complex terrains it marks a deviation from
previous versions, as GPROF-2014 is the first version of

GPROF implementing the Bayesian retrieval over land.
As expected, the Bayesian retrieval produces smoother
fields than the empirical relation used for the TRMM-era
overland retrieval. The passive MW retrieval over land
remains more uncertain than over oceans because of the
heterogeneity of land surface emissivity. If the spatial
variability at scales finer than 80km is still hardly re-
trieved over land, the coarse-scale variability is well re-
produced: coarse-scale correlations with radar are high
everywhere, and except for mountainous areas, no large-
scale systematic bias is noted. The next step in the
ongoing development of the GPROF algorithm is the
integration of coincident GMI and DPR observations in
the database used for the retrieval.
In this paper, the radar precipitation fields from the

PR on board TRMM and the DPR on board GPM are
used as a reference. It is assumed that the radars are able
to resolve precipitation spatial variability at scales down
to 5km. The radar products have been validated and
calibrated regionally against ground radar data (Islamet al.
2012; Kirstetter et al. 2013b; Chen and Chandrasekar
2016). Nevertheless, part of the discrepancies between the
passive MW and radar estimates may come from errors of
the radar estimates. Frozen precipitation is known to be
challenging for both radar and passive MW retrieval,
which may explain part of the discrepancies over moun-
tainous areas and high-latitude regions. Moreover, the ef-
fective resolution of the radar estimates is also eventually
questionable, and an approach similar to the one presented
here may be used to determine it.
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FIG. 15. Effective resolution of GMI-GPROF-2014 estimates. The effective resolution is
computed from 3 years of collocated observations with the Ku PR in each in each 38 3 38 cell.
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for the 2002–13 period. The wavelet decomposition
procedure was implemented in R distributed under
GNU General Public License, using the Waveslim 1.7.5
package (Whitcher 2015).
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Petković, V., and C. D. Kummerow, 2017: Understanding the sources
of satellite passive microwave rainfall retrieval systematic errors
over land. J. Appl. Meteor. Climatol., 56, 597–614, doi:10.1175/
JAMC-D-16-0174.1.

NOVEMBER 2017 GU I LLOTEAU ET AL . 3069

http://dx.doi.org/10.1016/j.advwatres.2010.02.010
http://dx.doi.org/10.1175/2010JHM1298.1
http://dx.doi.org/10.2151/jmsj.87A.119
http://dx.doi.org/10.2151/jmsj.87A.119
http://dx.doi.org/10.1109/URSIAP-RASC.2016.7601343
http://dx.doi.org/10.1029/2010JD015157
http://dx.doi.org/10.1175/JHM-D-15-0164.1
http://dx.doi.org/10.1109/TGRS.2012.2199121
http://dx.doi.org/10.1007/s10712-013-9264-9
http://dx.doi.org/10.1007/s10712-013-9264-9
https://disc.gsfc.nasa.gov/datasets/GPM_2AGPROFGPMGMI_V05/summary
https://disc.gsfc.nasa.gov/datasets/GPM_2AGPROFGPMGMI_V05/summary
https://disc.gsfc.nasa.gov/datasets/GPM_2AKu_V05/summary
https://disc.gsfc.nasa.gov/datasets/GPM_2AKu_V05/summary
http://dx.doi.org/10.1109/TGRS.2005.863866
http://dx.doi.org/10.1175/2007JHM925.1
http://dx.doi.org/10.1175/BAMS-D-13-00164.1
http://dx.doi.org/10.1016/j.jastp.2012.01.001
http://dx.doi.org/10.1002/qj.1964
http://dx.doi.org/10.1175/JHM-D-12-030.1
http://dx.doi.org/10.1029/93WR00548
http://dx.doi.org/10.1029/97RG00427
http://dx.doi.org/10.1175/JTECH-D-15-0039.1
http://dx.doi.org/10.1175/JTECH-D-15-0039.1
http://dx.doi.org/10.1175/MWR3200.1
http://dx.doi.org/10.1016/j.atmosres.2014.11.010
http://dx.doi.org/10.1029/95JD02372
http://dx.doi.org/10.1175/JAMC-D-16-0174.1
http://dx.doi.org/10.1175/JAMC-D-16-0174.1


Petty, G. W., and K. Li, 2013: Improved passive microwave re-
trievals of rain rate over land and ocean. Part II: Validation
and intercomparison. J. Atmos. Oceanic Technol., 30,
2509–2526, doi:10.1175/JTECH-D-12-00184.1.

——, and R. Bennartz, 2017: Field-of-view characteristics and res-
olution matching for the Global Precipitation Measurement
(GPM) Microwave Imager (GMI). Atmos. Meas. Tech., 10,
745–758, doi:10.5194/amt-10-745-2017.

Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Pre-
cipitation retrieval over land and ocean with the SSM/I:
Identification and characteristics of the scattering signal.
J. Atmos. Oceanic Technol., 6, 254–273, doi:10.1175/
1520-0426(1989)006,0254:PROLAO.2.0.CO;2.

Tang, L., Y. Tian, and X. Lin, 2014: Validation of precipitation
retrievals over land from satellite-based passive microwave

sensors. J. Geophys. Res. Atmos., 119, 4546–4567, doi:10.1002/
2013JD020933.

TRMM, 2011a: TRMM Microwave Imager Hydrometeor pro-
file L2 1.5 hours, V7. Goddard Earth Sciences Data and
Information Services Center (GES DISC), accessed
23 April 2016, https://disc.gsfc.nasa.gov/datacollection/
TRMM_2A12_7.html.

——, 2011b: TRMM Precipitation Radar rainfall rate and pro-
file L2 1.5 hours, V7. Goddard Earth Sciences Data and
Information Services Center (GES DISC), accessed
23 April 2016, https://disc.gsfc.nasa.gov/datacollection/
TRMM_2A25_7.html.

Whitcher, B., 2015: Waveslim: Basic wavelet routines for one-,
two- and three-dimensional signal processing, version 1.7.5.
R package, https://CRAN.R-project.org/package5waveslim.

3070 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

http://dx.doi.org/10.1175/JTECH-D-12-00184.1
http://dx.doi.org/10.5194/amt-10-745-2017
http://dx.doi.org/10.1002/2013JD020933
http://dx.doi.org/10.1002/2013JD020933
https://disc.gsfc.nasa.gov/datacollection/TRMM_2A12_7.html
https://disc.gsfc.nasa.gov/datacollection/TRMM_2A12_7.html
https://disc.gsfc.nasa.gov/datacollection/TRMM_2A25_7.html
https://disc.gsfc.nasa.gov/datacollection/TRMM_2A25_7.html
https://CRAN.R-project.org/package=waveslim

