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ABSTRACT: Satellite precipitation products, as all quantitative estimates, come with some inherent degree of uncertainty. To
associate a quantitative value of the uncertainty to each individual estimate, error modeling is necessary. Most of the error
models proposed so far compute the uncertainty as a function of precipitation intensity only, and only at one specific spatio-
temporal scale. We propose a spectral error model that accounts for the neighboring space–time dynamics of precipitation
into the uncertainty quantification. Systematic distortions of the precipitation signal and random errors are characterized
distinctively in every frequency–wavenumber band in the Fourier domain, to accurately characterize error across scales.
The systematic distortions are represented as a deterministic space–time linear filtering term. The random errors are repre-
sented as a nonstationary additive noise. The spectral error model is applied to the IMERG multisatellite precipitation
product, and its parameters are estimated empirically through a system identification approach using the GV-MRMS
gauge–radar measurements as reference (“truth”) over the eastern United States. The filtering term is found to be essen-
tially low-pass (attenuating the fine-scale variability). While traditional error models attribute most of the error variance to
random errors, it is found here that the systematic filtering term explains 48% of the error variance at the native resolution
of IMERG. This fact confirms that, at high resolution, filtering effects in satellite precipitation products cannot be ignored, and
that the error cannot be represented as a purely random additive or multiplicative term. An important consequence is that precipi-
tation estimates derived from different sources shall not be expected to automatically have statistically independent errors.

SIGNIFICANCE STATEMENT: Satellite precipitation products are nowadays widely used for climate and environmen-
tal research, water management, risk analysis, and decision support at the local, regional, and global scales. For all
these applications, knowledge about the accuracy of the products is critical for their usability. However, products
are not systematically provided with a quantitative measure of the uncertainty associated with each individual estimate.
Various parametric error models have been proposed for uncertainty quantification, mostly assuming that the uncertainty
is only a function of the precipitation intensity at the pixel and time of interest. By projecting satellite precipitation fields
and their retrieval errors into the Fourier frequency–wavenumber domain, we show that we can explicitly take into
account the neighboring space–time multiscale dynamics of precipitation and compute a scale-dependent uncertainty.

KEYWORDS: Precipitation, Remote sensing; Satellite observations; Error analysis; Fourier analysis;
Spectral analysis/models/distribution; Model errors

1. Introduction

A large body of literature focuses in evaluating the accuracy
of satellite quantitative precipitation estimation (QPE) products
[see, e.g., Derin et al. (2016), Petersen et al. (2020), chapters 1
and 3 in Roca et al. (2021), and Pradhan et al. (2022) for a selec-
tive overview]. While this substantial evaluation work provides
useful insights on the local, regional, and global accuracy of
satellite QPEs, it has not converged to a unified framework for
diagnosing the nature of the errors and for quantifying and
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predicting the retrieval accuracy at any time and location. Still
today, only few (Chambon et al. 2013b) of the existing opera-
tional satellite QPEs are provided with a quantification of the
uncertainty associated with each individual estimate. Construct-
ing a statistical error model applicable to satellite QPE products
is the first necessary step toward achieving these objectives.

In Guilloteau et al. (2021) a three-dimensional Fourier wave-
number–frequency analysis was performed to evaluate the abil-
ity of five multisatellite QPEs to reproduce the space–time
dynamics of precipitation. Such an evaluation examines the
dynamical variability of the precipitation field over space and
time, instead of the conventional point-by-point or pixel-by-
pixel comparison of values; it provides information about the
multiscale space–time structure of the error and can give in-
sights about its nature. Indeed, the distortions that affect
QPEs are expected to be of various nature, among which are
not only systematic biases (e.g., from imperfect instrumental
or algorithmic calibration) and random noise (instrumental
noise or environmental noise), but also geometric distortions
(due to the observation geometry and instruments’ limited res-
olution), mislocation and mistiming of the precipitation features,
and linear and nonlinear filtering effects. The spectral character-
istics of the satellite-derived precipitation in Guilloteau et al.
(2021) were compared to those of the GV-MRMS gauge–radar
fields over the southeastern United States. It was found that all
satellite QPEs are too spatially and temporally “smooth,” with a
deficit of spectral power at spatial wavelengths shorter than
200 km and temporal periods shorter than 3 h, i.e., excessive
short-range correlation. This important characteristic of the re-
trieved precipitation fields is not quantified by most of the error
models which have been applied to QPEs. Indeed, classical er-
ror models generally decompose the error into a random term,
which can be an additive or multiplicative noise, and systematic
term, which is generally a function of the precipitation intensity
only (e.g., AghaKouchak et al. 2012; Kirstetter et al. 2013; Tian
et al. 2013; Maggioni et al. 2014, 2016; Wright et al. 2017; Tang
2020; Tang et al. 2021). Eventually, all the information provided
by these types of error model can be reduced to the joint proba-
bility density of the retrieved precipitation against the true
precipitation, at a specified space–time resolution, therefore
ignoring the spatial and temporal structure and multiscale prop-
erties of the error field. We propose here an alternative method-
ology that consists of decomposing the error into a systematic
multiplicative term which is a function of temporal frequency
and spatial wavenumber, i.e., a three-dimensional linear filtering
operator, plus a random noise term. By accounting for the de-
pendence of both the systematic and random components of the
error on spatial and temporal scales through the wavenumber–
frequency decomposition, we can arguably provide a more com-
prehensive representation of the error. This spectral error
model is developed herein and applied to the IMERG precipita-
tion product with the GV-MRMS gauge–radar data serving as a
reference for the estimation of the model parameters.

The conceptual spectral error model is introduced in section 2.
Section 3 presents the application of the spectral error model to
the IMERG multisatellite QPE using the GV-MRMS data as a
reference for calibration. Section 4 discusses the questions of
nonstationarity and heteroscedasticity and the dependence of the

model parameters on geographical locations, climate type and
season, as well as the local dependence between the power
spectra of the noise and of precipitation itself. The implications
of such an error model to QPE evaluation and multisource merg-
ing are discussed in section 5, before the concluding remarks.

2. A spectral error model based on linear system theory

The results of the characterization of the satellite QPE errors
in the frequency–wavenumber domain presented in Guilloteau
et al. (2021) demonstrated that, in some frequency and wave-
number bands, the error is not linearly independent from the
true precipitation signal and therefore, cannot be represented
as a pure random process (as for example an additive or multi-
plicative noise with zero expected value). Indeed, if the error
was random and linearly independent from the true precipita-
tion at all frequencies and wavenumbers, the power spectral
density (PSD) of the retrieved precipitation would be equal to
the sum of the PSD of the true precipitation and the PSD of the
error. However, Guilloteau et al. (2021) found that satellite
QPEs have a lower PSD than the gauge–radar precipitation
(which is considered as an accurate proxy of the truth) over a
wide range of wavenumbers and frequencies (Fig. 1, bottom-
left panel), revealing that linear dependences exist between the
true precipitation and the retrieval error in the corresponding
frequency and wavenumber bands. This dependence can be
represented as a frequency-and-wavenumber-dependent sys-
tematic multiplicative bias, i.e., a linear invariant filtering opera-
tion. In addition to this deterministic linear filtering term, some
nonlinearities or randomness also exist in the spectral relation-
ships between the true and retrieved precipitation, as indicated
by the fact that their spectral coherence is not equal to one at
all frequencies and wavenumbers (Fig. 1, bottom-right panel;
more details in Guilloteau et al. 2021).

In this study, these spectral characteristics of the retrieval error
are accounted for by representing the retrieval process as a linear
system, where the true precipitation is one input and the
retrieved precipitation is the output. This type of linear
system representation is classically used in the fields of sig-
nal processing and electrical and mechanical engineering
(Swisher 1976; Chen et al. 2004; Chen 2012); it also has been
applied extensively in hydrology to represent the hydrological
response of a basin to precipitation (Dooge 1973; Bras and
Rodriguez-Iturbe 1993; Jukić and Denić-Jukić 2004; Jiménez-
Martı́nez et al. 2013; Schuite et al. 2019), and, as in the present
paper, to represent and model an observation system (Andricevic
and Foufoula-Georgiou 1991). Our system representation of the
retrieval process consists of the addition of a noise to the precipi-
tation signal, followed by a linear invariant filtering operation in
both space and time. The relation between the retrieved (esti-
mated) precipitation Re and the true precipitation R is therefore
modeled as

Re(x, y, t) � H(x, y, t) * [R(x, y, t) 1 N(x, y, t)], (1)

where {x, y, t} are the space–time coordinates, * is the convolu-
tion operator, and H(x, y, t) is a deterministic space–time convo-
lution kernel (as for example a Gaussian smoothing kernel, or on
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the contrary a “sharpening” differential kernel). The noise N
is defined as having a zero expected value and being linearly
independent from the true precipitation signal R. Nonlinear
dependences, which will be further discussed in the article,
may, however, exist between N and R. The noise is expected
to be spatially and temporally correlated, meaning that its
PSD is expected to vary with frequency and wavenumber; it is
therefore not assumed to be a white noise (with a “flat” PSD).
In the Fourier domain, Eq. (1) becomes

R̂e(kx,ky, f ) � Ĥ(kx,ky, f ) 3 [R̂(kx,ky, f ) 1 N̂(kx,ky, f )]:
(2)

The hat (ˆ) operator represents the Fourier transform;
kx, ky are the longitudinal and latitudinal wavenumbers; and
f is the temporal frequency. The filtering operator, characterized
by its transfer function Ĥ(kx,ky, f ), represents the systematic

frequency-and-wavenumber-dependent distortions of the re-
trieved precipitation signal, as compared to the truth. As H
may not be an even function of space and time, its Fourier
transform Ĥ is generally a complex function. An argument of
Ĥ(kx,ky, f ) different from zero indicates the existence of a sys-
tematic phase shift between the retrieved and the true precipi-
tation. Figure 2 shows a block-diagram representation of this
simple linear system.

Following a classical system identification approach (Keesman
2011), the identification of the spectral error model consists in
determining the transfer function Ĥ(kx,ky, f ) and the PSD of
the noise CN(kx, ky, f). For the system to be identifiable we
assume that N and R are linearly independent in the Fourier
domain, i.e., their cross power spectral density (CPSD),
CN,R(kx, ky, f) is null at all frequencies and wavenumbers.
With such a model, the error Re 2 R can eventually be decom-
posed in two terms:

FIG. 1. (top) Map of the study area. The orange box corresponds to the southeastern United States region
(308–418N, 818–1028W) used for the Guilloteau et al. (2021) study and in the present study. The purple and green
boxes are, respectively, the Oklahoma and northeastern Texas (308–378N, 958–1028W) and the Appalachian Moun-
tains (358–428N, 788–858W) subregions used here to evaluate the variability of the spectral error model parameters
across different climates (see Fig. 14). (bottom) Results of the Guilloteau et al. (2021) study for the IMERG product:
(left) ratio of the PSD of IMERG over the PSD of GV-MRMS and (right) spectral coherence between IMERG and
GV-MRMS as functions of the Fourier spatial wavelength and temporal period.
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Re 2 R � (H*N) 1 [(H*R) 2 R]: (3)

The first term represents the residual noise after the filtering
operator and the second term represents the precipitation sig-
nal “lost” because of the filtering operator. Because these two
terms are orthogonal, the sum of their respective variance
equals the variance of the error:

var(Re 2 R) � var(H*N) 1 var[(H*R) 2 R]: (4)

We can therefore define the fraction t of the error variance
coming from the filtering effect as

t � var[(H*R) 2 R]
var(Re 2 R) , (5)

and conversely, the fraction of the error coming from the
noise as

1 2 t � var(H*N)
var(Re 2 R) : (6)

The parameters of the spectral error model may be esti-
mated through a heuristic analysis of the retrieval process it-
self, assuming that each element of this process can be
modeled mathematically. However, for a multisatellite precip-
itation product relying on a dozen of different instrumental
measurements and multiple calibration and processing
layers, this may be practically unfeasible. We chose here in-
stead to follow a data-oriented benchmarking approach by
comparing the multisatellite estimates to a trusted refer-
ence measurement considered as the “truth” as described in
the next section. The errors and uncertainty of this refer-
ence estimate are deemed negligible compared to those of
the satellite QPE.

3. The spectral error model applied to the
IMERG product

a. Satellite and gauge–radar data

The data used in the present study are identical to the data
used in Guilloteau et al. (2021). The GV-MRMS gauge–radar
data (Kirstetter et al. 2012; Petersen et al. 2020) are used as
the “ground truth” for estimating the parameters of the spec-
tral error models of the satellite QPEs. The eastern part of
the United States (Fig. 1, top) is targeted because the radar
and gauge coverage are sufficiently good to provide a robust
ground truth at the 10-km and 30-min resolution. The pre-
sent study focuses on the IMERG V06 Final Run product
(IMERG hereafter; Huffman et al. 2019), because IMERG
was found to perform the best among the evaluated satellite
products in Guilloteau et al. (2021). The “uncalibrated”
IMERG precipitation estimates, which are used in this
study, are satellite-only and do not include gauge adjust-
ment (unlike the “calibrated” precipitation estimates, which
are also provided in the IMERG Final Run product). The
results for the other multisatellite QPEs, namely, the near-
real-time “Early” version of IMERG, CMORPH (V1.0),
GSMaP (V7), and PERSIANN-CCS are made available to
the readers as online supplemental material. As in Guillo-
teau et al. (2021), data from the January 2018 to April 2020
period are used. The months of March 2018 and March 2019
were excluded for having too many measurements not
meeting the quality requirements of the GV-MRMS quality
control.

b. Estimation of the model parameters

When Re and R are known, the identification of the
model parameters is straightforward. The transfer function
Ĥ is computed as

Ĥ (kx,ky, f ) �
CR,Re

(kx,ky, f )
CR(kx,ky, f )

, (7)

FIG. 2. Linear system block diagram representation of the idealized retrieval process used to construct the
spectral error model. The retrieved precipitation Re is described as the result of the space–time convolution of
the true precipitation signal R plus the noise N with the deterministic kernel H. A convolution in the space–time
domain corresponds to a multiplication in the Fourier domain, i.e., a linear filtering operation. Time series are
generated synthetically to provide a simple 1D illustrative example, with a white noise and a Gaussian smoothing
kernel.
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where CR is the PSD of R, and CR,Re is the CPSD of R and Re.
We note that in practice, with finite amount of data, some
regularization is always necessary in the estimation of CR and
CR,Re to avoid overfitting (see appendix). Once Ĥ is identified,
the PSD of the noise component is computed as

CN(kx,ky, f ) � (ĤĤ)21 CRe
2 CR, (8)

where Ĥ is the complex conjugate of Ĥ . Besides the PSD of the
noise, we are interested in the spectral signal-to-noise ratio
(SSNR):

SSNR(kx,ky, f ) �
CR(kx,ky, f )
CN(kx,ky, f )

: (9)

In the present article, when estimating the parameters of the
spectral error model, we assume that they are independent of
the spatial direction and consider all spectral quantities as func-
tions of the temporal frequency f and the spatial wavenumber

k, with k �
����������
k2x 1 k2y

√
. To perform analyses along one dimen-

sion only (space or time) we can derive marginal PSDs and
CPSDs by integrating the two-dimensional space–time PSD
and CPSD along the other dimension. In this article, for easier
interpretation, the results are shown as functions of wavelength
k = 1/k and period p = 1/f rather than wavenumber and fre-
quency. In the following, the modulus of the transfer functions
and the SSNRs are expressed in dB; the dB value of a dimen-
sionless variable y is 103 log10(y).

c. Results

In this section, the parameters of the spectral error model of
IMERG are identified using the GV-MRMS data as the truth.
The equivalent results for CMORPH, GSMAP, PERSIANN,
and for the near-real-time Early Run IMERG product, are pro-
vided as supplemental material to this article. Figure 3 shows
the modulus and argument of the estimated transfer function
Ĥ(k, f ) of IMERG. Figure 4 shows the marginal transfer

FIG. 3. Empirical transfer function Ĥ (k, f ) of IMERG estimated against GV-MRMS from two years of data over the
southeastern United States. Both the modulus (gain) and argument (phase) are shown as functions of the spatial wave-
length k = 1/k and temporal period p = 1/f. Smoothed isocontours are added over the colormaps to improve visualization.

FIG. 4. Modulus of the empirical marginal transfer functions along the (left) temporal frequency and (right) spatial
wavenumber dimensions of IMERG estimated against GV-MRMS from two years of data over the southeastern
United States (solid line). The marginal transfer functions are obtained through Eq. (7) applied to the marginal PSD
and CPSD. The dashed lines show what would be the optimal Wiener transfer function for MSE minimization (see
section 5), estimated from the spectral signal to noise ratio (SSNR) of IMERG as a function of frequency and
wavenumber.

G U I L L O T EAU E T AL . 1387SEPTEMBER 2022

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 08/31/22 06:31 PM UTC



functions (modulus only) along frequency and wavenumber,
obtained by applying Eq. (7) with the marginal PSDs and
CPSDs. A modulus (gain) of 0 dB means that the precipita-
tion signal is not distorted at the corresponding frequency,
positive dB values correspond to amplified precipitation signal
(overestimated variability) and negative dB values to a dimmed
signal (underestimated variability). The argument (phase) of
the transfer function reveals the systematic spatial shift and
temporal delays between the true and retrieved precipitation. A
positive argument indicates that the retrieval is in advance in
time compared to the truth (which, depending on the dominant
direction of propagation of the systems, may also correspond to a
systematic spatial shift). As observed from Figs. 3 and 4, at scales
coarser than the 100–200-km wavelength and the 3–4-h period
the gain is within the 22 to 12 dB range, meaning that the
precipitation signal is not dramatically distorted by the retrieval
process at these medium-to-large scales. However, a gain slightly
higher than 0 dB at k . 300 km and p . 6 h indicates that the
IMERG tends to amplify the variability of precipitation at the
largest scales. At wavelengths shorter than 100 km, the precipita-
tion signal is filtered out with a gain rapidly decreasing below
23 dB and down to values lower than 215 dB. The transfer
function, as it filters out or attenuates the high frequencies and
wavenumbers and preserves the low ones, is therefore essen-
tially that of a low-pass filter along both spatial and temporal
dimensions.

The argument of the transfer function is close to zero at all
frequencies and wavenumbers (Fig. 3, right panel), except where
the gain tends toward infinitely small values (note: for infinitesi-
mal values of the gain, the phase is undefined/random). At the
short periods (,4 h) the average phase is, however, slightly
higher than 0, which reveals that when IMERG does not per-
fectly capture the timing of precipitation it is more likely to
detect precipitation a few minutes early than late. This tendency
has been documented for several satellite QPEs (Turk et al.
2009; Utsumi et al. 2019) and can be explained by the falling time
of the hydrometeors between the upper cloud layers to which
passive spaceborne radiometric measurements are sensitive and
the near-surface gauge–radar measurements.

At the 10-km and 30-min native resolution of IMERG, the
fraction t of the error variance explained by the deterministic
systematic linear filtering effect is 48%, with the remaining 52%
of the error variance coming from the noise. For comparison, if
we consider a systematic intensity-dependent retrieval bias
(conditional bias, Kirstetter et al. 2013) instead of a filtering
term, we only explain 31% of the error variance (Fig. 5, top).
This is because the errors coming from the deterministic filter-
ing appear as seemingly random (or partially random) when
their dependence on frequency and wavenumber is not accounted
for. Moreover, these statistics confirm that, at high resolution, the
error of a satellite QPE cannot reasonably be represented as a
purely random term. However, because the systematic filtering
effect predominantly affects the high frequencies and wavenum-
bers, the relative weight of systematic errors in the error budget
of IMERG decreases when aggregating the data at coarser reso-
lutions. At the 50-km and 2-h resolution for example, t = 19%,
and the intensity-dependent mean bias only explains 3% of the
error variance (Fig. 5, bottom). The fact that the magnitude of

the conditional mean bias decreases at coarser resolutions is an
indication that this bias is in fact a direct consequence of the low-
pass filtering. This is confirmed by Fig. 6, which shows that, at the
10-km and 30-min resolution, the linear filtering term H, while
regressed as a function of frequency and wavenumber and not as
a function of precipitation intensity, actually explains 100% of
the observed systematic intensity-dependent bias. Indeed, the
polynomial fit ofE[Re H ∗R]| follows perfectly the 1:1 line, reveal-
ing that there is no remnant intensity-dependent bias in IMERG
after the filtering effect is accounted for. We note that the system-
atic term in our model only accounts for linear filtering effects
(which can include systematic multiplicative or additive biases); if
nonlinear filtering effects also exist, their contribution to the error
will be reported on the random term.

Turning our focus now on the random error term, Fig. 7 com-
pares the space–time PSD of the noise [derived from Eq. (7)]
with the PSD of the “true” precipitation signal. Figure 8 com-
pares the marginal PSDs. If we focus on periods longer than 6 h
and wavelengths longer than 100 km, we see that the magnitude
of the noise does not change with the period p = 1/f (temporally
white noise). In this wavelength and period range, the magnitude
of the noise slightly increases with the wavelength k = 1/k with a
dependence of the form CN ≈ ak20.6 (spatially pink noise). In

FIG. 5. IMERG precipitation rate Re against the “true”
GV-MRMS precipitation rate R (top) at 10-km and 30-min resolu-
tion and (bottom) at 50-km and 2-h resolution. In both panels, the dif-
ference between the 1:1 identity line (dashed line) and the expected
conditional IMERG precipitation rate E[Re|R] (solid line, fitted as a
fourth-order polynomial) shows the systematic bias as a function of
precipitation intensity. At the 10-km and 30-min resolution, the re-
sidual variance of the polynomial fit is 69% of the variance of error
Re 2 R, which means that the systematic bias E[Re|R] 2 R explains
31% of the error variance. At the 50-km and 2-h resolution, the
residual variance is 97% of the variance of the error.
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the same range of wavelengths and periods, the PSD of the
precipitation signal increases with both wavelength and period;
while the dependence on period does not appear to be log linear,
the dependence on the wavelength is approximately of the form
CR ≈ ak21.5. Consequently, the SSNR tends to increase with
wavelengths (SSNR ≈ ak20.9) and period (non-log-linear depen-
dence); it is consistently around or above 0 dB in this wavelength
and period range, meaning that the magnitude of the precipitation
signal is at least as high as the magnitude of the noise. The periods
shorter than 6 h and wavelengths shorter than 100 km appear to
follow a totally different noise regime. This range of wavelengths
and periods is characterized by high levels of noise, with a SSNR
below21 dB.While the PSD of the precipitation signal decreases
continuously with shorter wavelengths, for k , 100 km and
p , 6 h the PSD of the noise follows an opposite trend,
eventually leading to an extremely low SSNR (between 230
and290 dB) at the finest accessible spatial and temporal scales.
This “pseudo-blue” noise regime (i.e., PSD of the noise increasing

with wavenumber) is likely coming from mislocation errors in the
retrieved precipitation fields and the associated “double-penalty”
phenomenon (Rossa et al. 2008) which causes errors of oppo-
site sign to be frequently found in a close vicinity.

The PSD of the noise shown in Figs. 7 and 8 is computed as an
average over two years of data and over the whole 2 million km2

study domain. The noise is, however, expected to be nonstation-
ary and its PSD is expected to be highly variable across space
and time and locally related to the PSD of the precipitation
(even if the two variables are linearly independent by definition).
For the implementation of the error model, we therefore chose
to parameterize the SSNR instead of the PSD of noise (in addi-
tion to the parameterization of the transfer function). The pa-
rameterization is made in the wavelet domain (see appendix;
Kumar and Foufoula-Georgiou 1997; Cottis et al. 2016) instead
of the Fourier domain, using a discrete 3D Haar wavelet trans-
form, because discrete wavelets provide a “natural” discrete
decomposition of the frequency–wavenumber space, leading
to a finite number of frequency-and-wavenumber bands. The
gain of the transfer function and the SSNR are assumed to be
constant within each one of the frequency-and-wavenumber
bands resulting from the discrete wavelet decomposition. Assum-
ing a constant SSNR is equivalent to assuming that the local PSD
of the noise scales linearly with the local PSD of precipitation
within each frequency-and-wavenumber band.

The principal advantage of using a spectral error model
when compared to classical intensity-dependent error models
is the ability to account for the spatial and temporal correlation
of the noise and of the precipitation signal itself, to eventually
provide a prediction of the uncertainty not only at the pixel
scale, but also at any aggregated space–time scale. After deriv-
ing the local PSD of the noise from the local PSD of Re using
the previously estimated SSNR parameters and a maximum-
overlap wavelet transform (see appendix) for robust estimation
of the local PSD, we can estimate its local variance (or standard
deviation) at the desired scale by integrating its PSD from the
zero frequency and zero wavelength to the chosen frequency
and wavelength. Finally, at the desired location and time,
and at the desired scale, the local variance of the error
s2
err � var(Re 2 R) is computed as the sum of the local residual

noise variance after filtering var(H*N) and the local variance

FIG. 7. (left) Power spectral density of the “true” precipitation signal R computed from two years of GV-MRMS data over the southeastern
United States. (center) Power spectral density of the noise N for the IMERG product estimated for the same region and period. (right) Spec-
tral signal-to-noise ratio. Smoothed isocontours are added over the colormaps to improve visualization.

FIG. 6. IMERG precipitation rate Re against the filtered
GV-MRMS precipitation rate H*R at 10-km and 30-min resolu-
tion. The filtering term H applied here to GV-MRMS mimics the
systematic filtering effect of the IMERG retrieval. The black line
shows the expected conditional IMERG precipitation rate
E[Re H *R]| fitted as a fourth-order polynomial.
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of the precipitation signal lost due to the systematic filtering
term var[(H*R)2 R]. Figure 9 shows maps of the predicted
standard deviation serr of the IMERG error around longitude
998W and latitude 338N, at 1945 UTC 7 January 2018, at the
native 10-km and 30-min resolution of IMERG (Fig. 9c), and
at the coarsened resolution 40 km and 2 h (Fig. 9d). As

expected, the predicted uncertainty, quantified as the standard
deviation of the error, decreases with space–time coarsening,
however, with a spatially heterogenous rate and not as rapidly
as would be the case for a white noise.

From Fig. 9b we can see that the predicted standard deviation
of the error serr does not depend only on the precipitation

FIG. 9. (a) IMERG retrieved precipitation intensity between longitudes 958 and 1028W and latitudes 308 and 378N,
for the 30-min period centered at 1945 UTC 7 Jan 2018. (b) Scatterplot of the predicted standard deviation of the
IMERG error from the spectral model vs IMERG estimated precipitation intensity at 10-km and 30-min resolution,
for the same area as in (a), from 1900 UTC 6 Jan 2018 to 2130 UTC 8 Jan 2018. (c) Map of the predicted standard
deviation of the IMERG error at 10-km and 30-min resolution at 1945 UTC 7 Jan 2018. (d) Map of the predicted stan-
dard deviation of the IMERG error at 40-km and 2-h resolution at 1945 UTC 7 Jan 2018.

FIG. 8. Marginal power spectral density of the noise N of IMERG (dashed line) compared to the PSD of the “true”
GV-MRMS precipitation signal R (solid line), along the (left) temporal frequency and (right) spatial wavenumber dimen-
sions; computed from two years of data over the southeastern United States. The spatial and temporal power spectra of
the noise are not monotonic, revealing the existence of different noise regimes at different scales.
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intensity as would be the case for classical error models. Because
in our case the predicted uncertainty is driven by the local PSD
of precipitation, we can have Re(x1, y1, t1) = Re(x2, y2, t2) and
serr(x1, y1, t1)Þ serr(x2, y2, t2). Specifically, if the local variability
of precipitation is stronger around the location (x1, y1, t1) than
around the location (x2, y2, t2), then serr(x1, y1, t1). serr(x2, y2, t2).
The left panel of Fig. 10 shows the distribution of the pre-
dicted error standard deviation at IMERG’s native resolution,
over the whole 1200 km 3 1900 km 3 2 yr study area and pe-
riod, for different values of the IMERG precipitation intensity
Re. While the predicted error standard deviation increases in av-
erage with the precipitation intensity, a relatively large dispersion
of serr can be observed for a given value of Re, and in particular
for the large Re values. The right panel of Fig. 10 shows the em-
pirical standard deviation of the error Re 2 R of IMERG
against GV-MRMS versus the predicted serr of IMERG from
the spectral model (considering all values of Re together). We
can see that, over a large sample set, the empirical standard de-
viation increases with the predicted standard deviation and that
the model can accurately predict the error standard deviation
up to 4 mm h21. We note, however, that the model tends to
overestimate large values of serr (.4 mm h21), likely because it
assumes that the SSNR is independent from the precipitation
intensity. In addition, Fig. 11 shows that, for several specific
values of the IMERG precipitation intensity Re between 0.5 and
12 mm h21, the spread of the empirical distributions of the errors
Re2 R increases with the predicted standard deviation.

4. Variability of the model parameters, nonstationarity,
and heteroscedasticity

In the previous section the parameters of the spectral
error model were estimated from two years of data over a
2 million km2 area. Using constant parameters, the spectral er-
ror model is expected to produce reasonable predictions of the
uncertainty when considering a large set of estimates that are sta-
tistically representative of the average climatic, environmental,
and observational conditions corresponding to the data use for

the calibration. However, the optimal parameters of the error
model are likely to vary with climate regimes, seasons, and precip-
itation types. To evaluate the ability of the spectral error model to
always produce reasonable estimates of the uncertainty of the
QPE under all possible conditions, and to determine to which
degree a dynamical and adaptive parameterization would eventu-
ally be necessary, we explore here the variability of the relation-
ships between R̂(k, f ), Ĥ(k, f ), and N̂(k, f ) over our study area
and period.

Figure 12 shows how variable the marginal transfer functions
Ĥ(f ) and Ĥ(k) are when computed over subsets of the available
data. We computed a total of 9345 empirical “local” transfers
functions over 600 km3 600 km3 64 h blocks of data belonging
to the 1200 km 3 1900 km 3 2 yr dataset. Of concern here is
how wide the distributions, as indicated by the various quantile
lines, are at different frequencies and wavenumbers. The mar-
ginal transfer functions have a small spread in gain at large scales
(p . 6 h, k . 100 km) with a maximum of 3-dB difference
between the 15% and 85% quantiles. At shorter periods and
wavelengths, the gain is consistently below 23 dB; it is, how-
ever, proportionally more variable, with up to 10-dB difference
between the 15% and 85% quantiles.

Figure 13 shows the variability of the marginal PSDs of the
noise and of the SSNR. One can see that the PSD of the noise is
highly variable with at least an order of magnitude between the
15% and 85% quantiles at all frequencies and wavelengths. The
SSNR, is found to have a smaller spread, with a difference
around 3–5 dB between the 15% and 85% quantiles, except for
the very short wavelengths and periods (p , 2 h, k , 50 km)
where the difference goes up to 15 dB. While the reliance on a
static parameterization of the SSNR is clearly a limitation of the
spectral error model, it is still far more reasonable than assuming
constant PSD of the noise (i.e., variability of noise is constant at
all scales).

Arguably, while the transfer function is more dependent on
the observation system itself (i.e., instrument resolution, sampling
rate, etc.), the noise level is more dependent on environmental
parameters (e.g., the background emissivity of Earth’s surface).

FIG. 10. (left) Distributions of the predicted standard deviation serr of the IMERG error at 10-km and 30-min
resolution for different values of the IMERG precipitation intensity Re (with a 63% tolerance range on the Re values),
highlighting the relatively large dispersion of serr for a given value ofRe, and in particular for largeRe values. (right) Com-
puted empirical standard deviation of the IMERG error at 10-km and 30-min resolution (against the GV-MRMS truth)
as a function of the predicted standard deviation of the error from the spectral model (dots); the vertical bars show the
number of samples used to compute the empirical standard deviation in each bin; the solid diagonal line is the 1:1 identity
line. In both panels, statistics are computed over the full 1200 km3 1900 km3 2 yr dataset.

G U I L L O T EAU E T AL . 1391SEPTEMBER 2022

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 08/31/22 06:31 PM UTC



This is illustrated in Fig. 14, which shows the climatic variability
of the transfer function and the SSNR when computed over two
different climatic regions, namely, Oklahoma and northeastern
Texas (308–378N, 958–1028W) and the Appalachian Mountains
(358–428N, 788–858W). It shows strong stability of the transfer
function across these two regions with different climates. The
SSNR, however, varies significantly across the two regions and is
found to be 1–3 dB lower in the Appalachian Mountains com-
pared to the Oklahoma and northeastern Texas region at all
periods longer than 6 h and all wavelengths longer than 100 km.
This is consistent with many previously published studies

showing that precipitation in mountainous areas is particularly
challenging for satellite QPEs (Barros and Arulraj 2020). We
note, however, that the geographical climatic variability only ex-
plains a small fraction of the event-to-event variability shown in
Figs. 12 and 13.

In terms of heteroscedasticity, while a dependence between
the local PSD of the noise and the local PSD of the true pre-
cipitation certainly exists, the results presented here and in
Guilloteau and Foufoula-Georgiou (2020) and Guilloteau
et al. (2021) suggest that this relation is not perfectly linear,
i.e., that the SSNR varies with precipitation intensity. The results

FIG. 11. Empirical distribution of the errors Re 2 R as a function of the predicted standard deviation of the error
serr for different values of the IMERG precipitation intensity Re (with a 63% tolerance range on the Re values). The
boxes range from the 25th to the 75th percentile and the whiskers from the 10th to the 90th percentile, the horizontal
lines mark the median. Each box is computed from at least 2000 samples.
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of Guilloteau et al. (2021) and several other published studies
(Tian et al. 2013; Maggioni et al. 2016; You et al. 2020) seem to
indicate that the SSNR of satellite QPEs actually increases on
average with the spectral power (magnitude) of the precipitation
signal. This is corroborated by the fact that our spectral model
tends to overestimate large serr values when using the constant
SSNR hypothesis (Fig. 10, right). Figure 15 further confirms the
existence of nonlinear relationships between the magnitude of
the precipitation signal and the standard deviation of the noise

in the wavelet domain. Because the wavelet coefficients are
the result of a bandpass filtering in the Fourier domain, they
characterize the local variations of the signal in a specific fre-
quency–wavenumber band. Therefore, comparing the magni-
tude of the wavelet coefficients WN(x, y, t) derived from the
noise N(x, y, t) to the magnitude of the wavelet coefficients
WR(x, y, t) derived from R(x, y, t)is equivalent to comparing
the local value of the PSDs of N and R in the corresponding
frequency–wavenumber band. The wavelet filter used for Fig. 15

FIG. 12. Variability of the IMERG “local” transfer functions across time and space. Median, 15%, 30%, 70%, and
85% quantiles of the marginal transfer functions as functions of the (left) frequency and (right) wavenumber, computed
from 600 km3 600 km3 64 h subsets of the 1200 km3 1900 km3 2 yr available dataset.

FIG. 13. Variability of the PSD (top) of the noise and (bottom) of the SSNR of IMERG across time and space.
Median, 15%, 30%, 70%, and 85% quantiles of the PSD of the noise and of the SSNR as functions of the (left) tem-
poral period and (right) spatial wavelength. Individual PSDs computed over 600 km 3 600 km3 64 h subsets of the
1200 km3 1900 km3 2 yr available dataset.
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is a “Daubechies 8” 3D filter (Cohen et al. 1992; Whitcher 2020)
centered on the frequency f = 1/4 h21 and on the wavenumber
k = 1/200 km21. Figure 15 confirms that the local PSD of the
noise scales with the local PSD of the precipitation signal, but
also reveals that this scaling is not perfectly linear and that the
SSNR tends to increase with higher magnitude of the precipi-
tation signal. Eventually, while assuming constant SSNR (i.e.,
linear scaling) for given f and k may be a rough approxima-
tion, the feasibility and pertinence of defining a parametric
representation of the SSNR as a function of k, f, and of the local
magnitude of the PSD of precipitation CR(k, f) would eventu-
ally be driven by the volume of data necessary to perform the
parameter estimation without overfitting.

5. Discussion, implications for QPE evaluation, and
multisource merging

It was found herein that, for the IMERG QPE, and for all
other analyzed multisatellite QPEs (see supplemental material),
the transfer function Ĥ(k, f ) is essentially a low-pass filter. This
can be partially attributed to the error-minimization procedures
used in the retrieval algorithms. From signal processing the-
ory, the mean squared error (MSE) caused by an additive
noise can be minimized by the Wiener optimal filter (Wiener
1949; Vaseghi 2008; Daliakopoulos and Tsanis 2012) of the
form

Ĥopt(k, f ) �
CR(k, f )

CR(k, f ) 1 CN(k, f )
: (10)

Even if the retrieval algorithms are not necessarily explicitly
designed following theWiener optimal filtering theory, the actual
transfer functions of the QPEs are found here to be relatively
close to the Wiener optimal transfer functions (see Fig. 4 for
IMERG). This is not surprising, as a QPE designed to have mini-
mal MSE is expected to filter out the fine spatial and temporal
scales at which the noise level is high.

The dependence of the retrieval error on frequency and
wavenumber, and the existence of a systematic filtering effect
have important consequences in terms of QPE evaluation,
comparison, and product merging. One first consequence is
that, because of the systematic filtering term H, the error is not
independent from the true precipitation signal R, and therefore,
the hypothesis of additive and mutually orthogonal errors
across different QPEs in not valid in general. Indeed, when
considering the decomposition of the retrieval error given by
Eq. (3), the term (H*R)2 R is expected to be correlated
across different QPEs, even when those are derived from to-
tally independent sources. The linear correlation across the
errors of different QPEs may in fact be relatively high consid-
ering that most QPEs are expected to have similar low-pass
transfer functions; and it is expected to be more pronounced
at high resolutions where the effect of the low-pass filtering is
the strongest (see Fig. 5). This effect may arise not only when
comparing two satellite QPEs but also when comparing a sat-
ellite QPE to interpolated gauge data. Indeed, most gauge
precipitation datasets utilize smooth interpolation techniques
which effect is similar to that of low-pass filtering. The issue of

FIG. 14. Variability (top) of the transfer function and (bottom) of the SSNR of IMERG across two different climatic
regions, namely, Oklahoma and northeastern Texas (308–378N, 958–1028W; solid line) and the Appalachian Mountains
(358–428N, 788–858W; dashed line). The transfer functions and SSNR functions are computed from two years of data.
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nonorthogonal errors across products is particularly critical
when using techniques such as total least squares or triple
collocation for QPEs evaluation (e.g., Alemohammad et al.
2015; Li et al. 2018; Lu et al. 2021), and more generally when
ranking QPEs based on their consistency with supposedly
“independent” data. For example, a QPE that would cor-
rectly reproduce the fine-scale variability of precipitation
may show seemingly poor performance when compared to
smoothly interpolated gauge data, and a QPE that would
filter out the fine-scale variability would misleadingly show
higher consistency with this smoothly interpolated gauge
data.

Nonadditive and nonorthogonal errors across products also
have important consequences in terms of product merging, as
inverse error variance weighting (e.g., Huffman et al. 1995;
Mastrantonas et al. 2019) is no more an optimal minimum
MSE solution in that case. With our proposed representation
of the error, if we have m estimates Ri such as

Ri � Hi * (R 1 Ni) (11)

with i in {1, 2, … ,m}, E[Ni] = 0, CNi ,R � 0, and CNi ,Nj � 0 if iÞ j,
the linear combination:

Ropt �
∑m
i�1

Gi *Ri (12)

has a minimal mean squared error E[(Ropt 2 R)2] when

Ĝi �
Ĥi

Ĥi

∣∣ ∣∣2 3
1

CCNi

3
CR

CR 1 C21 , (13)

with

C � ∑m
j�1

1
CNj

: (14)

The first term of Eq. (13), which is the inverse of the transfer
function of each individual estimate, is necessary to suppress
the linear dependences across the errors of the different esti-
mates before merging.

We note that our model cannot provide the full stati-
stical distribution of the errors if the characterization of
the noise is limited to its PSD (as the PSD only character-
izes the order-two moment). One may explore the higher-
order spectra of the noise from the data, which is always
possible after having estimated the transfer function Ĥ , or
assume a given parametric distribution, as long as it can be
defined by its first two moments (we recall that, by definition,
E[N] = 0).

The spectral error model proposed here can serve as a basis to
generate ensembles of possible precipitation fields for the QPEs.

FIG. 15. Standard deviation (dots) of the wavelet coefficients WN at f = 1/4 h21 and k = 1/200 km21 derived from
the noise N(x, y, t) of IMERG estimates against the absolute value of the wavelet coefficients WR derived from the
GV-MRMS truth R(x, y, t). Wavelet coefficients are the result of a bandpass filtering of the signal, they characterize
the local signal variations in a specific frequency-wavenumber band. A 3D “Daubechies 8” wavelet is used
here; high-order Daubechies wavelets are practical for their narrow bandwidth. The vertical bars show the
number of samples used to compute the standard deviation in each bin. The full 1200 km3 1900 km3 2 yr dataset
is used here.
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For this purpose, one shall consider the “inverse” system corresponding
to the equation: R(x,y, t) �Hinv(x,y, t)* [Re(x,y, t)1 Ninv(x,y, t)].
Once Ĥ inv and CNinv are identified, the ensemble generation
simply consists in drawing multiple realizations of the noise
{Ninv,i} with the CNinv PSD and applying the convolution opera-
tor Hinv to the sum Re 1 Ninv,i. This ensemble generation ap-
proach will impose in particular that each ensemble member
preserves the space–time PSD of the true precipitation (see
Guilloteau et al. 2018).

6. Conclusions

The results presented in Guilloteau et al. (2021) exposed the
fact that the spectral properties of the retrieval errors in the eval-
uated satellite QPEs are incompatible with the representation of
the error provided by most of the classical error models, which
do not account for the dependence on the spatial wavenumber
and temporal frequency. To formally account for this depen-
dence, we introduced a spectral error model that is general and
thus applicable to any QPE product. The model describes the
retrieved precipitation as the result of applying a deterministic
space–time filtering operator to the sum of the “true” precipita-
tion signal and a random noise. The model is parameterized in
the Fourier domain, the transfer function of the space–time filter
and the PSD of the noise are directly estimated from data.

For IMERG and the other assessed multisatellite QPEs (in
supplemental material), the transfer function is found to be that
of a low-pass filter along both spatial and temporal dimensions,
which was expected considering the existing limitations in terms
of instrument resolution and temporal sampling of the observa-
tions, as well as the (dynamic) interpolation and error minimiza-
tion procedures, as for example the Kalman filters used in
several multisatellite QPE algorithms (Ushio et al. 2009; Joyce
and Xie 2011). While most of the previously published analyses
of errors in satellite QPEs, which did not account for the fre-
quency and wavenumber dependence of the systematic errors,
found that random errors broadly dominate the error budget
(e.g., AghaKouchak et al. 2012; Maggioni et al. 2016; Tang
2020), here we found that the deterministic filtering term,
which represents systematic distortions of the precipitation
signal, explains nearly half (48%) of the error variance of
IMERG at its native 10-km and 30-min resolution. We note
that a nonlinear systematic filtering term could potentially
explain an even greater fraction of the error variance; how-
ever, the identification of nonlinear systems in the Fourier do-
main is far from trivial. By highlighting the existence of
systematic frequency-and-wavenumber-dependent distortions
of the precipitation signal in QPEs, our model calls for caution
when performing evaluation, comparison and merging of pre-
cipitation estimates from independent sources, as it implies that
the hypothesis of mutually orthogonal errors across QPEs is
generally not verified.

After having characterized the transfer function Ĥ (k, f ) and
the PSD of the noise CN(k, f) we are able to derive, via localized
wavelet-based analysis, an estimate of the local variance of the
retrieval error from the local PSD of the retrieved precipitation
at any location and time, and at any desired spatial and temporal
resolution. By deriving the local PSD of the noise from the local

PSD of the retrieved precipitation, our model can handle the
nonstationarity of precipitation and the resulting heteroscedastic-
ity. However, within the study area, the SSNR, which is used to
relate the PSD of the noise to the PSD of the precipitation signal,
was not found to be identical over different regions eventually
calling for a dynamical adaptive parameterization.

As for any data-calibrated error model, the most challenging
question in view of global application is the generalization of
the regionally learned parameters. We note in particular that
only precipitation over land has been considered in the present
article. The SSNR, and potentially the transfer function, are ex-
pected to be significantly different over ocean from what they
are over land; the main difficulty over ocean is, however, to find
a reliable reference dataset for the model calibration. Future
work will explore the environmental factors that locally drive
the variability of the spectral error model parameters, as well
as their dependence on the instantaneous configuration of the
constellation of observing sensors for multisatellite products
(Chambon et al. 2013a; Kidd et al. 2021; Ayat et al. 2021; Rajagopal
et al. 2021), to eventually provide accurate estimates of the local
variance of the retrieval error at any location of the globe. In
particular, the convective available potential energy and the ele-
vation are among the environmental parameters which are likely
to be influential; concerning the observational parameters, the
delay between two successive overpasses of microwave sensors
over the region and period of interest is expected to be one of
the determinant factors.
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APPENDIX

Power Spectral Density and Cross-Power Spectral
Density Estimation

Numerous methods exist for the estimation of PSDs and
CPSDs in one or several dimensions. These methods can be
broadly separated into two categories: parametric and nonpara-
metric. In the present study, nonparametric approaches, which
are generally simpler to use and produce robust estimates with
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large datasets, are used. A parametric approach would be pref-
erably used with a more limited amount of data or with dis-
continuous data (such as gauge measurements). The Welch
method (Welch 1967) was used to compute the 1D marginal
(cross-)spectra (Figs. 4, 8, 12, 13, and 14) and the “regional”
3D (cross-)spectra (Figs. 1, 3, and 6). The Welch method
simply consists in computing PSDs and CPSDs over prede-
fined overlapping space–time windows using a discrete Fourier
transform (DFT) and averaging them. The “local” 3D spectra
(Figs. 9 and 10) were estimated using a 3D maximum-overlap
discrete Haar wavelet (Subramani et al. 2006; Zhang 2018;
Whitcher 2020). The local PSD at a given scale is computed
as the local variance of the wavelet coefficients at the corre-
sponding scale. In addition to allow a robust estimation of
the local PSD, discrete wavelets provide a “natural” discreti-
zation of the Fourier frequency–wavenumber domain, allow-
ing to represent the PSD with a reduced number of coeffi-
cients corresponding to an equivalent number of frequency-
and-wavenumber bands.
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