	AGU PUBLICATIONS
1	Control Delicitions
2	Geophysical Research Letters
3	Supporting Information for
4 5	First-order River Delta Morphology is set by the Sediment Flux Balance from Rivers, Waves, and Tides
6 7	C. M. Broaddus ^{1,2} , L. M. Vulis ² , J. H. Nienhuis ³ , A. Tejedor ^{2,4} , J. Brown ¹ , E. Foufoula- Georgiou ^{2,5} , D. A. Edmonds ¹
8 9 10 11	¹ Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, USA, ² Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA, ³ Department of Physical Geography, Utrecht University, Utrecht, NL, ⁴ Department of Science and Engineering, Sorbonne University, Abu Dhabi, UAE, ⁵ Department of Earth System Science, University of California, Irvine, CA, USA
12	
13	Contents of this file
14	
15	Text S1 to S3
16	Figures S1 to S4
17	Tables S2, S4 to S6
18	
19	Additional Supporting Information (Files uploaded separately)
20	
21	Tables S1, S3
22	
23	Introduction
24	This file contains supporting information (text, figures, tables) concerning the model
25	setup, model sensitivity testing, and compilation of the field delta dataset. We also
26	include morphometric results for all simulated and field deltas as tables, as well as the
27	results of our various statistical hypothesis tests (as a table). Finally, we include a figure

showing the depth outputs of a number of model runs with "intermediate" forcing
balances.

31 Text S1 - Model Setup

32 We developed a suite of numerically simulated river deltas using the hydro-33 morphodynamic model Delft3D. Delft3D can reproduce coastal and deltaic 34 hydrodynamics and has been used extensively to simulate the morphological evolution 35 of river deltas at timescales ranging from decades to centuries (Caldwell & Edmonds, 36 2014; Edmonds & Slingerland, 2007; Geleynse et al., 2011; Rossi et al., 2016). Our models 37 use the depth-averaged, Reynolds-averaged Navier-Stokes equations for incompressible 38 free-surface flow (shallow water equations), coupled with the SWAN model for wave 39 energy propagation and dissipation. A detailed description of the governing equations 40 and solution scheme can be found in the Delft3D user manual ("Delft3D-FLOW User 41 Manual," n.d.).

The flow equations are solved on a rectilinear grid of 25 x 25 meter cells (Figure S1a). We model a river entering a basin (9000 m in cross-shore direction and 21000 m in longshore direction) in the presence of waves and tides, ignoring the effects of salinity and base-level change. Our flow domain includes an elongated feeder channel (width = 450 m, length = 59900 m) that extends upstream from the basin, the purpose of which is to prevent the tidal hydrodynamics in the basin from affecting the upstream boundary (Figure S1b).

49 All runs use a computational time step of 30 seconds. We apply a morphological 50 scaling factor of 180 to speed up bed adjustments and decrease computational time for 51 the runs, assuming that bed relaxation is negligible at the modeled timescales. Initial 52 bathymetry in the feeder channel is trapezoidal in cross section and slopes linearly (S \sim 53 10^{-4}) toward the basin. Cross shore bathymetry in the basin follows a power law curve 54 similar to the Dean profile (Dean, 1991), modified here to produce a shallower platform 55 to allow for faster progradation (Figure S1c). This profile reduces cross shore transport 56 and morphological "spin-up" associated with adjustment of the shoreface to the wave climate. We also apply a random roughness (amplitude = 0.01 meter) to the initial 57 58 bathymetric surface to simulate natural variations in the bed topography. Initial sediment 59 thickness is 5 meters throughout the domain.

60 At the upstream boundary, we specify a steady incoming water discharge of 1250 61 m³s⁻¹ carrying a non-cohesive sediment load of uniform grain size (135 microns) at a 62 concentration that is in equilibrium with the hydrodynamics at the boundary. We 63 calculate sediment transport according to the Soulsby and Van Rijn equation from 64 Delft3D ("Delft3D-FLOW User Manual," n.d.; Soulsby, 1997) because it is capable of 65 handling waves. Our use of an equilibrium sediment concentration at the upstream 66 boundary (see Text S1) complicates an a priori sediment flux estimate; instead, we extract 67 the time-averaged Q_{river} value for each model run directly from a cross-section located 68 near the upstream boundary.

In the basin, we specify a harmonic water-level condition at the northern boundary, representing tides with a frequency of 30 degrees per hour and a constant amplitude (ranges from 0 – 2 meters depending on simulation) (Figure S1e). Neumann boundaries are used along the eastern and western edges of the basin, allowing water and sediment to move freely into and out of the domain. Additional significant model variables are listed with their specified values in Table S5. Notably, we use the default value for the transverse bed slope parameter because small changes in the value of this parameterhave been shown to have a large effect on morphology (Baar et al., 2019).

77 Wave equations are solved on a separate, larger domain that overlaps the flow 78 domain (Figure S1a). The larger wave domain allows boundary effects to spatially 79 dissipate prior to wave interaction with the flow model. The wave grid has a variable 80 resolution to facilitate faster computational times: areas overlapping the flow domain 81 have square 50 x 50 meter cells while all other areas have rectangular, 200 x 50 meter 82 grid cells. Coupling between the flow and wave domains occurs at a regular interval (120 83 simulation minutes). Boundaries are placed along the North, East, and West edges of the 84 wave domain, and impart significant wave heights ranging from 0 - 3 meters at a 85 frequency of 5 seconds (Figure S1d). Wave amplitude varies between runs but is constant 86 throughout a given run. Wave direction randomly varies between -45, -30, 30, and 45 87 degrees relative to shore normal throughout the run, but the directional (and temporal) 88 distribution of wave energy is constant for all runs (Figure S1d). For stability reasons, we 89 allow the hydrodynamics in the flow model to spin-up for 12 hours (in hydrodynamic 90 time) prior to initiation of wave coupling and morphodynamic adjustment.

91 As with all models there are limitations inherent to our schematization. Delft3D uses 92 a simplified scheme for the erosion of dry cells whereby an "erosion factor" is applied to 93 dry cells adjacent to wet cells experiencing erosion (dry cell erosion = erosion factor * 94 wet cell erosion). This scheme is effective at allowing channels to migrate and avulse to new locations, but seems to inhibit their ability to adjust their width in response to 95 96 changes in hydrodynamics at the river mouth. As a result, our models do not reproduce 97 the increase in river mouth width with tidal-dominance predicted by Nienhuis et al. 98 (2018). Adjusting the dry cell erosion factor does not have a significant effect on the 99 channel width at the river mouth. See Text S2 for details on simple sensitivity tests that 100 were performed to test the robustness of our results to the selection of computational 101 parameters.

102 The model is not designed to represent specific delta conditions but instead to have 103 characteristics (boundary and initial conditions) representative for a wide swath of river 104 deltas. Certain processes are excluded from the model (salinity and density differences, 105 vegetation, permafrost, etc.) based on the assumption that their effects on morphology 106 are second order. Other factors known to affect morphology (sediment grain size and 107 cohesion, basin bathymetry) are intentionally held constant to keep the analysis focused 108 on the role of sediment flux balance. Thus, the overall interpretation of model results 109 relies on the assumption that these factors, while important in determining the overall 110 morphology of an individual delta, do not change the nature of the flux balance -111 morphology relationships discussed here.

Specifically, we use a set of steady state boundary conditions, assuming that seasonal variability in discharge and environmental forcings is less important than the net sediment flux balance. We assume the morphodynamics of non-cohesive delta systems can be adequately modeled with a single sediment fraction in both the bed and the flow. Adjustments to the standard deviation of the grain size distribution have been shown to have little effect on the morphologic output of Delft3D models (Caldwell and Edmonds (2014)).

119 Interpreting the temporal scale (and consequently the spatial scale) of the 120 simulations in terms of real-world time-space scales is complicated. Our simulations run 121 for 31 days of constant river discharge and wave energy. Multiplying by the total 122 simulation time by the morphological scale factor would suggest that the simulations 123 model ~15 years of delta evolution. However, considering that the majority of 124 geomorphic work occurs during periods of high flow and/or wave energy, and that our 125 simulations evolve under a constant river discharge and constant wave energy, the results can be thought of as representing a "fast-forwarded" version of delta growth. 126 127 Interpreting the results in this manner relies on an assumption of intermittently effective 128 wave transport with timescales similar to that of the fluvial system, which is unlikely in 129 continental scale systems where catchment and shoreline conditions are largely 130 decoupled (tidal prism here depends on fluvial discharge and thus is coupled). Instead, 131 the results are better interpreted based on the fundamental behaviors that they reveal 132 regarding the interaction of forcing and morphology in the simplest case imaginable.

133

134 **Text S2** - Model sensitivity tests

135 To assess the robustness of our model results to user-defined computational 136 parameters, we developed a suite of test runs that vary in computational timestep, wave-137 flow coupling interval, and morphological scale factor. Each test holds all other 138 parameters constant. Morphological scale factor (MSF) and computational timestep (DT) 139 tests were performed using a river dominated simulation, while the coupling interval test 140 was performed using a wave dominated simulation. While the results of each test do 141 vary slightly in terms of their channel networks and shoreline structure (Figure S4), the 142 differences are within the range of morphological variability observed for a given flux 143 balance. Also, for each parameter tested the range of Nch and r* values between runs is 144 less than the temporal variance (over the final 1/3 of the simulation duration) in the 145 metric values for those runs (Table S6)."

146

147 **Text S3** - Field delta dataset

148 We use a set of field deltas to cover the variety of flux values observed in nature 149 (Figure 1b, Table S3). Our dataset is modified from the dataset of Syvitski and Saito 150 (2007) with some deltas added from Caldwell et al. (2019) to increase coverage of 151 parameter space. End-member and axial coverage is already significant within the 152 Syvitski and Saito (2007) dataset, so we selected only deltas from Caldwell et al. (2019) 153 with mixed flux balances (no single flux >90%). We also excluded deltas that were heavily 154 modified by humans, and deltas with catchment areas lower than the median value in 155 the dataset (as these deltas skew heavily toward wave-dominance). The final compiled 156 dataset consists of 78 globally-distributed river deltas that span climate zones and 157 catchment types.

Field deltas are positioned in ternary space according to their flux values as reported by Nienhuis et al. (2020) (Version 1.0). We used the "pristine" fluvial sediment flux values to represent **Q***river*. As with any global dataset, there is significant uncertainty in the flux values for any single delta (discussed more thoroughly in the source publication). The largest source of this uncertainty lies in the fluvial sediment flux values; 163 the WBMSed model from which these values are sourced excludes bedload sediment

- 164 entirely and has an average R^2 of ~0.65 for annual suspended sediment flux predictions.
- 165 Another source of uncertainty in the flux values is the spatial ambiguity of wave and tidal
- 166 conditions sourced from global datasets. While the uncertainty in these factors can at
- 167 times be significant, the predicted sediment flux values are not expected to be
- systematically biased in a manner that would affect the relationships discussed here. SeeNienhuis et al (2020) for a more detailed discussion of the uncertainty in these values.
- For each delta we obtained pre-compiled 1984-2019 water surface occurrence products from the Global Surface Water dataset of Pekel et al. (2016). We used the delta area polygons of Edmonds et al. (2020) to determine the extent of the occurrence image for each delta. However, the extent of these polygons is in some cases too small and does not fully enclose the delta shoreline. We addressed this by isotropically increasing the area of each polygon by 21%, which is equivalent to a 10% increase in the diameter of a circle of the same area.
- 177 To avoid scale-dependent differences in ρ^* between large and small deltas, each 178 compiled occurrence map is resampled to have the same relative resolution as the 179 smallest delta in the dataset. The relative resolution is determined by dividing the area of 180 1 pixel by the area of the bounding box for the smallest delta in the dataset. We obtain 181 binary wet or dry maps for each delta by applying a threshold to the resampled 182 compiled occurrence products. We assume the deltas did not experience significant 183 system-scale morphological change between 1984-2019 and choose a threshold value of 184 50% to smooth over occurrence differences due to tidal inundation. The binarized 185 occurrence maps are used in conjunction with the opening angle method of Shaw et al. 186 (2008) to define the 45- and 120-degree shorelines for each field delta.
- 187 We use the occurrence maps and shorelines to calculate the morphological metrics 188 for the field delta dataset. ρ^* and S_{PA} are determined following a methodology identical 189 to the simulations. For ρ^* and S_{PA} , we remove deltas with significant human modification 190 to the shoreline, defined here as deltas where >10% of the shoreline length has been 191 anthropogenically-straightened via dikes or seawalls (noted in Table S3). We also exclude 192 deltas where humans have controlled and significantly disrupted the avulsion cycle (and 193 thus the shoreline morphology), including the Mississippi and the Yellow River deltas.
- 194 For the number of channel mouths metric, we use the values reported by Syvitski 195 and Saito (2007) where available and follow their methodology to count the number of 196 channel mouths for deltas in the Caldwell et al. (2019) dataset. We use the occurrence 197 products in conjunction with satellite imagery for these channel mouth counts. We 198 exclude deltas with significant anthropogenic modification to the distributary network, 199 which we define as deltas where greater than $\sim 10\%$ of the total combined distributary 200 length (from apex to shoreline) has been straightened or visibly modified when viewed at 201 the scale of the entire delta.
- 202
- 203

Figure S1: Schematics illustrating model setup. (A) Truncated flow and wave domains.
 (B) Full flow domain. (C) Initial bathymetry for flow domain. (D) Distribution of wave energy at wave domain boundaries. (E) Tidal signal at harmonic boundary condition.

I^{*t*}_{wave} *I*^{*t*}_{tide} *I*^{*t*}_{wave} *I*^{*t*}_{tide}
210 **Figure S2: Ternary space schematics and delta locations in ternary space.** (a) Ternary
211 diagram schematic and equation defining plotting locations in ternary space as a
212 function of flux balance at the river mouth. (b) Categorical schematic of ternary space
213 defining boundaries of different categories. (c,d) Ternary diagrams showing the locations
214 of the 62 simulations (c) and 78 field deltas (d) referenced in this paper. Abbreviations in
215 (c) and (d) correspond to abbreviations in Table S1 and Table S3.

218

Figure S3: Representative set of simulations with intermediate flux balances. Color bar represents elevation in meters above sea level and applies to all images (scale bar also applies to all images).

222 223

Figure S4: Morphological outputs from sensitivity tests. Each row shows the outputs 224 from a different sensitivity test: row 1 varies the morphological scale factor between 60 and 180, row 2 varies the flow/wave coupling interval from 30 to 120 minutes, and row 3 225 varies the computational timestep from 0.1 to 0.5 min. The color and scale bars apply to 226 227 all panels.

231 Figure S5: N_{ch} trends including deltas with N_{ch} > 30. (a) Categorical, (b)

dominance based, and (c) ternary distributions of the number of distributary

- 233 channels for simulated and global deltas.
- 234

Data Data <thdata< th=""> Data Data <thd< th=""><th>Bund</th><th>SWH (m)</th><th>To (m)</th><th></th><th>Qwave</th><th>Qtide</th><th>$O(m^{2}/c)$</th><th>Nich</th><th>Standard deviation</th><th>•*</th><th>Standard deviation</th><th>SPA (0/1 =</th></thd<></thdata<>	Bund	SWH (m)	To (m)		Qwave	Qtide	$O(m^{2}/c)$	Nich	Standard deviation	•*	Standard deviation	SPA (0/1 =
Hat Obj 122294 C 2.4 126 19.8 2.55 1.94 0.05 0 11 0.25 0.01 11230652 1.3 2.4 1250 1.17 2.8 1.91 0.01 0 0 11 0.35 0.01 1948795 1.5 2.4 1250 1.11 1.91 1.31 0.03 0 0 11 0.35 0.01 124.4277 6.9 2.4 1250 1.6 1.7 1.33 0.03 0 11 0.1 10.055 134.4676 0.2 1.22 1250 1.8 3.4 1.357 0.03 0 11 0.1 10.080986 0.2 2.4 1250 1.5 3.31 1.18 0.03 0 0 11 0.1 10.0527 1.34.100 0.2 1.22 1250 1.5 3.30 0 0 0 0 0.03 0 0 0 </th <th></th> <th>0.12</th> <th>0.01</th> <th>134 82695</th> <th>(Kg/S) 0.4</th> <th>(Kg/S) 2.4</th> <th>1250</th> <th>14.0</th> <th>2 75</th> <th>μ⁻ 1 253</th> <th>(p⁺)</th> <th></th>		0.12	0.01	134 82695	(Kg/S) 0.4	(Kg/S) 2.4	1250	14.0	2 75	μ ⁻ 1 253	(p ⁺)	
1 0.2 0.01 112000 1250 127 298 1220 0.01 11 0.35 0.01 12849692 2.2 2.4 1250 11.7 2.98 1260 0.01 11 0.35 0.01 12849755 3.5 2.4 1250 9.7 1.70 1.335 0.02 0 11 0.35 0.01 128418667 0.2 1.22 1250 8.8 1.4 1.372 0.03 0 11 0.1 0.05 134.1676 0.2 1.22 1250 8.8 1.4 1.372 0.03 0 11 0.1 0.1 138.9866 0.2 2.4 1250 15.6 3.31 18.5 0.03 0 11 0.1 138.9878 12.5 2.6 1250 12.6 13.7 130 0.3 0.3 0 111 0.0 0.1 33.8446 0.2 2.5 2.4 125	B1	0.15	0.01	122.32964	0.7	2.4	1250	10.8	2.25	1.241	0.05	0
D1 0.25 0.01 123.8872 2.2 2.4 1250 11.1 1.91 1.315 0.02 0 F1 0.35 0.01 108.45752 S0 2.4 1250 1.91 1.91 1.315 0.02 0 G1 0.4 0.01 124.71797 6.9 2.4 1250 14.4 2.47 1.328 0.04 0 Hin 0.1 0.05 134.1706 0.2 12.2 1250 16.8 3.4 1.372 0.03 0 Hin 0.1 0.1 130.80986 0.2 2.45 1250 16.8 3.34 1.185 0.01 0 11 0.1 0.138.948 0.2 2.45 1250 16.6 7.27 1213 0.03 0 111 0.1 0.28578 2.55 2.44 1250 14.7 177 1240 0.01 12.01 111 0.01 <th10.85578< th=""> 6.55 2.56<!--</td--><td>C1</td><td>0.2</td><td>0.01</td><td>112.10652</td><td>1.3</td><td>2.4</td><td>1250</td><td>12.5</td><td>3.69</td><td>1.212</td><td>0.02</td><td>0</td></th10.85578<>	C1	0.2	0.01	112.10652	1.3	2.4	1250	12.5	3.69	1.212	0.02	0
In 0.3 0.01 13.8795 3.5 2.4 1200 1.1. 1.91 1.315 0.02 0 In 0.5 0.01 0346725 5<0 2.4 1200 9.7 1.70 1.315 0.02 0.21 In1 0.1 0.055 123.4007 0.2 1.22 1250 1.8 2.17 1.322 0.03 0 In1 0.1 0.055 123.4007 0.2 2.42 1250 15.6 2.11 1.250 0.01 0.1 11 0.1 0.1 10.80966 0.2 2.45 1.260 15.6 2.12 1.230 0.01 0.1 11 0.1 0.23 17.83344 0.2 5.5 1.50 1.55 1.70 1.50 0.01 1.50 111 0.1 0.2 1.52 2.4 1.50 1.77 1.50 0.01 1.50 1111 0.1 <th1.53< th=""> <th1.50< th=""> <th1.71< th=""></th1.71<></th1.50<></th1.53<>	D1	0.25	0.01	129.36682	2.2	2.4	1250	11.7	2.98	1.236	0.01	0
F1 0.35 0.01 124.7237 6.9 2.44 1250 147 1.78 0.04 0 H11 0.1 0.05 124.74867 0.2 122 1250 18.8 3.4 1.372 0.03 0 H11 0.1 0.05 134.16766 0.2 12.2 1250 15.6 3.18 1.272 0.03 0 11 0.1 0.05 134.8676 0.2 2.4 1250 15.6 3.11 1.272 0.03 0 11 0.1 0.1 134.8592 2.5 2.4 1250 15.6 3.18 1.272 0.03 0 111 0.1 0.383783 15.3 2.5 2.4 1250 12.7 1.70 1.30 0.02 1 111 0.1 0.2 137.57314 6.5 2.50 1.6 1.77 1.74 1.34 0.01 1.50 101 0.2 137.57314 6.5	E1	0.3	0.01	134.87795	3.5	2.4	1250	11.1	1.91	1.315	0.02	0
61 0.01 124,1737 6.9 2.4 1250 1.49 2.47 1.58 0.44 0 H11 0.1 0.05 134,16706 0.2 12.2 1250 18.7 3.4 1372 0.03 0 H11 0.1 0.1 130,0086 0.2 2.2 1250 13.6 2.17 1.372 0.03 0 H1 0.1 0.1 134,8757 2.5 2.4 1250 13.6 2.77 1.378 0.03 0 H1 0.6 0.1 133,8734 18.3 2.45 1250 13.6 2.72 1.38 0.03 0 H11 0.9 0.24 1359,878 62.5 2.4 1250 1.47 1.77 1.04 0.01 1 H11 0.1 0.2 135,878 62.5 2.4 1250 1.7 1.70 1.150 0.01 1 H11 0.1 0.2 135,878 <	F1	0.35	0.01	108.45752	5.0	2.4	1250	9.7	1.70	1.331	0.03	0
H1 0.1 0.05 123.48667 0.2 12.2 1250 8.8 3.4 1.472 0.03 0 H1 0.1 0.1 130.8996 0.2 24.5 1250 17.6 21.7 1.372 0.03 0 H1 0.7 0.01 114.8452 26.5 2.4 1250 15.6 3.31 1.185 0.01 0 L1 0.1 0.25 132.8436 0.2 62.1 1250 13.5 2.64 1.439 0.03 0 L11 0.09 0.4 1200697 0.2 59.6 1250 12.4 2.76 1.379 0.03 0 0 M1 0.7 0.15 135.978 26.5 3.69 1250 14.7 1.77 1.200 0.01 1.17 1.16 0.01 1.17 0.11 0.01 1.16 0.01 1.16 0.01 1.16 0.01 1.16 0.1 1.11 0.1 1.11 <td>G1</td> <td>0.4</td> <td>0.01</td> <td>124.71297</td> <td>6.9</td> <td>2.4</td> <td>1250</td> <td>14.9</td> <td>2.47</td> <td>1.258</td> <td>0.04</td> <td>0</td>	G1	0.4	0.01	124.71297	6.9	2.4	1250	14.9	2.47	1.258	0.04	0
Hah 0.1 0.05 134,8706 0.2 12.2 12.50 17.6 1.71 1.72 0.03 0 11 0.7 0.01 118.2952 26.5 2.4 1250 15.6 3.11 1.185 0.01 0 K1 0.6 0.1 103.8743 18.3 24.5 1250 15.6 3.11 1.185 0.03 0 K1 0.1 0.7 133.8486 0.2 55.6 1250 12.4 2.76 1.290 0.02 0 M1 0.1 0.24 135.9678 62.5 2.4 1250 1.57 1.70 1.160 0.01 1. O10 0.99 0.2 137.96152 48.5 49.5 1250 14.7 1.77 1.044 0.01 1 O11 0.89 0.9 138.8844 47.2 47.0 1250 14.4 1.77 1.450 0.03 1 O11 0.5 128.8463	H1	0.1	0.05	123.48067	0.2	12.2	1250	8.8	3.4	1.372	0.03	0
11 0.1 13.08986 0.2 24.5 1250 19.9 3.18 1.255 0.03 0 K1 0.6 0.1 103.85743 18.3 24.5 1250 15.6 3.31 1.185 0.01 0 K1 0.6 0.1 103.85743 18.3 24.5 1250 13.5 2.62 1.315 0.63 0.31 0.03 0 K1 0.00 0.42 120.0627 0.2 58.5 1250 12.4 1.76 1.209 0.02 0 0.02 1.57 1.70 1.150 0.02 1 0.02 1 0.02 1 0.02 1 0.03 0 0.02 1 0.01 1 0.03 0.02 1 0.01 1.50 0.02 1 0.01 1.50 0.02 1 0.01 1.50 0.02 1 0.01 1.50 0.02 1.50 0.02 1.50 0.01 1.50 0.01 1	H1h1	0.1	0.05	134.16706	0.2	12.2	1250	17.6	2.17	1.372	0.03	0
11 0.7 0.01 11.428952 2.65 2.4 1250 15.6 3.31 1.185 0.01 0 111 0.1 0.25 132.38436 0.2 62.1 1250 1.56 2.72 1.21 0.03 0 111 0.0 0.24 130.06027 0.2 59.6 1250 1.24 2.76 1.269 0.02 0 NIA 1 0.01 9.886738 62.5 2.4 1250 1.47 1.77 1.204 0.01 1 0.1 0.02 135.0512 48.5 49.5 1250 1.47 1.77 1.204 0.01 1 0.10 0.2 137.05152 48.5 47.0 1250 1.17 2.11 1.217 0.04 0 0.1 0.11 0.15 38.047277 78.5 38.9 1250 1.17 2.11 1.217 0.04 0 0.1 1.55 1.50 1.51 1.50	11	0.1	0.1	130.80986	0.2	24.5	1250	19.9	3.18	1.295	0.03	0
N1 0.6 0.1 10385743 18.3 24.5 1250 13.5 2.72 1.139 0.03 0 111 0.09 0.24 12006927 0.2 56.6 1250 13.5 2.74 1.439 0.03 0 M1 0.7 0.55 135078 2.65 36.9 1250 12.4 1.77 1.260 0.02 0 N11 1.0 0.02 145.27514 64.0 4.9 1250 1.57 1.70 1.130 0.02 1 010 0.9 0.2 137.05152 48.5 49.5 1250 1.17 1.11 1.127 0.04 0 011 0.15 98.04727 78.5 36.9 1250 11.4 1.117 0.14 0.03 1 1 0.1 0.15 98.04727 78.5 36.9 1250 11.4 1.17 1.11 1.16 0.03 1 1 1 1.16 0.03 <td>J1</td> <td>0.7</td> <td>0.01</td> <td>114.82952</td> <td>26.5</td> <td>2.4</td> <td>1250</td> <td>15.6</td> <td>3.31</td> <td>1.185</td> <td>0.01</td> <td>0</td>	J1	0.7	0.01	114.82952	26.5	2.4	1250	15.6	3.31	1.185	0.01	0
L1 0.1 0.25 123.8436 0.2 6.2 1210 1200 22.2 2.82 1.371 0.03 0 M1 0.7 0.15 155.9578 2.5.5 36.9 1250 12.4 2.76 1.290 0.02 0 N1 1 0.02 145.27914 64.0 4.9 1250 15.7 1.70 1.150 0.02 1 0.1 0.9 0.2 137.515.2 44.5 44.5 1250 14.7 1.70 1.164 0.01 1 0.10 0.8 0.3 87.083916 36.6 7.49 1250 11.7 2.11 1.164 0.01 1 0.1 0.5 13.803933 11.73 2.4 1250 11.0 5.36 0.02 1.243 0.03 0 1 1.1 0.1 0.5 13.8463 0.2 1250 11.0 1.243 0.03 0 1 1.1 0.7	K1	0.6	0.1	103.85743	18.3	24.5	1250	16.6	2.72	1.213	0.03	0
L11 0.09 0.24 120.06927 0.2 59.6 1250 20.2 2.82 1.371 0.03 0 NI 1 0.01 98.856738 62.5 36.9 1250 12.4 2.76 1.269 0.02 0.02 0 NI 1 0.01 98.856738 62.5 2.4 1250 14.7 1.77 1.204 0.01 1 0.1 0.3 0.2 137.05152 48.5 49.5 1250 14.7 1.70 1.164 0.01 1 0.1 0.8 0.3 87.083916 36.6 74.9 1250 11.7 2.11 1.217 0.04 0 0 1 1.1 1.1 0.15 98.047277 78.5 36.9 1250 11.7 2.14 1.405 0.02 1 1.65 0.03 0 1 1.65 0.03 0 1 1.1 1.3 0.01 1.25 1.25 1.25 1.25	L1	0.1	0.25	132.38436	0.2	62.1	1250	13.5	2.64	1.439	0.03	0
Mi 0.7 0.15 135.9678 26.5 36.9 12.6 12.4 2.76 1.269 0.02 0 Nin1 1.01 0.02 145.27314 64.0 4.9 1250 15.7 1.70 1.150 0.02 1 Olo 0.9 0.2 137.05152 48.5 49.5 1250 1.77 1.164 0.01 1 Olo 0.88 0.19 143.84584 47.2 47.0 1250 14.7 1.70 1.164 0.01 1 P1 0.8 0.3 87.083916 36.6 74.9 1250 10.4 5.36 1.118 0.03 1 1.118 0.03 1 1.118 0.03 0 1 1.111 0.11 1.13 0.41 1.250 1.2.2 2.82 1.169 0.02 1 1.111 1.425 0.03 0 1 1 1.111 1.42 0.3 0 1 1.111 0.1 1.115<	L1 1	0.09	0.24	120.06927	0.2	59.6	1250	20.2	2.82	1.371	0.03	0
Nin1 1 0.01 98.85738 62.5 2.4 1250 14.7 1.77 1.204 0.01 1 01 0.9 0.2 137.05152 48.5 49.5 1250 15.7 1.70 1.150 0.02 1 01 0.9 0.2 137.05152 48.5 49.5 1250 9.0 3.16 1.179 0.03 0 010 0.8 0.3 87.08916 36.6 74.9 1250 11.7 2.11 1.217 0.04 0 01 1.5 98.047277 78.5 36.9 1250 10.4 5.36 1.18 0.03 0 11 0.7 0.45 90.75452 26.5 113.8 1250 17.3 2.40 1.43 0.03 0 11.1 0.7 0.45 90.75452 2.56 115.8 1.43 1.449 0.03 0 11.1 1.4 0.2 146.7371 140.1 1	M1	0.7	0.15	135.9678	26.5	36.9	1250	12.4	2.76	1.269	0.02	0
Nini Lioi Lioi <thlioi< th=""> <thlioi< t<="" td=""><td>N1 N1p1</td><td>1</td><td>0.01</td><td>98.856738</td><td>62.5</td><td>2.4</td><td>1250</td><td>14.7</td><td>1.77</td><td>1.204</td><td>0.01</td><td>1</td></thlioi<></thlioi<></thlioi<></thlioi<></thlioi<></thlioi<></thlioi<></thlioi<>	N1 N1p1	1	0.01	98.856738	62.5	2.4	1250	14.7	1.77	1.204	0.01	1
Dia Dia <thdia< th=""> <thdia< th=""> <thdia< th=""></thdia<></thdia<></thdia<>	01	0.9	0.02	145.27914	48.5	4.9	1250	9.0	3.16	1.150	0.02	0
Diag Diag <thdiag< th=""> Diag Diag <thd< td=""><td>0101</td><td>0.9</td><td>0.2</td><td>142 94594</td><td>48.5</td><td>43.5</td><td>1250</td><td>14.7</td><td>1.70</td><td>1.175</td><td>0.03</td><td>1</td></thd<></thdiag<>	0101	0.9	0.2	142 94594	48.5	43.5	1250	14.7	1.70	1.175	0.03	1
P1 0.6 0.7 0.703918 30.6 7.4.9 12.0 1.1.7 1.2.7 1.2.7 0.0.4 0 01 1.1 0.15 96,07277 78.5 56.9 1250 10.4 5.36 1.18 0.03 1 81 1.3 0.01 136,39073 117.3 2.4 1250 12.2 2.82 1.169 0.02 1 51 0.1 0.5 123,4843 0.2 127.0 1250 12.9 2.02 1.185 0.04 1 11 0.7 0.45 90,78452 2.65 113.8 1.250 12.9 2.02 1.185 0.04 1 11 1.4 0.2 146,73721 140.1 49.5 1250 15.0 1.18 1.458 0.02 0 W1 0.11 0.74 15301358 0.3 191.9 1250 12.9 1.85 1.404 0.03 0 X1x1 16.1 <td< td=""><td>D101</td><td>0.89</td><td>0.19</td><td>97 092016</td><td>47.2</td><td>74.0</td><td>1250</td><td>14.7</td><td>2.11</td><td>1.104</td><td>0.01</td><td>0</td></td<>	D101	0.89	0.19	97 092016	47.2	74.0	1250	14.7	2.11	1.104	0.01	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	01	0.0	0.5	98 047277	78 5	36.9	1250	10.4	5.36	1.217	0.04	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D1	1.1	0.15	136 39073	117.3	2.4	1250	12.2	2.82	1.110	0.03	1
11 0.7 0.45 90.75452 265 113.8 1250 12.17 1210 1225 0.03 0 U1 1.3 0.1 128.55421 117.3 24.5 1250 12.9 2.02 1.185 0.04 1 V1 1.4 0.2 146.73721 140.1 49.5 1250 15.0 1.83 1.149 0.02 1 W1 0.1 0.75 118.8713 0.2 194.6 1250 15.1 1.50 0.01 1 W1 0.11 0.74 153.01358 0.2 194.6 1250 13.0 1.404 0.03 0 X1x1 1.61 0.02 103.91654 195.9 4.9 1250 13.0 2.40 1.188 0.02 1 1 Y1 1.20 0.41 147.83408 94.9 103.3 1250 10.8 2.57 1.218 0.02 1 Y1 1.99 0.41	S1	0.1	0.01	123 48463	0.2	127.0	1250	19.4	2.37	1.109	0.02	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T1	0.1	0.45	90 75452	26.5	113.8	1250	17.3	2.06	1.423	0.03	0
D1 1.4 0.1 123,341 117.3 24.3 1250 11.50 1.183 0.04 1 V1 1.4 0.2 146,73721 140.1 49.5 1250 15.0 1.83 1.149 0.02 1 W1 0.1 0.75 118.85713 0.2 194.6 1250 15.1 3.18 1.458 0.02 0 W1 0.11 0.74 153.01388 0.3 191.9 1250 12.9 1.85 1.404 0.03 0 X1 1.6 0.01 122.69353 193.0 2.4 1250 1.7 1.15 1.109 0.01 1 X1x1 1.61 0.02 103.91654 195.9 4.9 1250 13.0 2.40 1.188 0.02 1 Y11 1.29 0.41 147.83408 94.9 103.3 1250 13.0 2.40 1.18 0.02 1 Y1y1 1.19 0.6	11	1.2	0.45	129 55/21	117.2	24.5	1250	12.0	2.02	1 105	0.03	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V1	1.3	0.2	126.73721	117.5	49.5	1250	12.9	1.83	1.149	0.04	1
NIM 0.11 0.74 153.0135 0.12 1.75 1.75 1.75 1.75 0.02 0.03 0 X1 1.6 0.01 122.69353 193.0 2.4 1250 12.9 1.85 1.404 0.03 0 X1 1.6 0.01 122.69353 193.0 2.4 1250 8.3 1.34 1.009 0.01 1 X1x1 1.6 0.02 103.91654 195.9 4.9 1250 8.3 1.34 1.009 0.01 1 Y1 1.2 0.4 137.21305 96.8 100.7 1250 13.0 2.40 1.188 0.02 1 Y1y1 1.19 0.41 147.83408 94.9 103.3 1250 10.8 2.57 1.218 0.02 1 A2 1.1 0.81 127.06515 78.5 208.5 1250 12.1 4.15 1.242 0.02 1 B2 1.7	W/1	0.1	0.75	118 85713	0.2	194.6	1250	15.1	3.18	1 458	0.02	0
X11.60.01122.69353193.02.4125017.01.151.1500.011X1x11.610.02103.91654195.94.912508.31.341.1090.011Y11.20.4137.2130596.8100.7125013.02.401.1880.021Y11.190.41147.8340894.9103.3125010.82.571.2180.021Z10.90.6141.7673148.5153.7125011.63.661.2330.031A2a1.10.8127.0651578.5208.5125012.23.881.3110.021B21.70.35136.18492223.387.7125010.81.751.1270.031B2b21.690.36129.70471220.190.312509.03.301.1520.031C21.80.25152.41589256.162.1125010.81.871.1290.011D21.60.5124.63476193.0127.012507.32.261.1440.021E20.11.2100.21150.2323.3125015.95.781.4400.040F211135.903362.5265.0125014.73.921.3880.020G220.011.3	W1w1	0.11	0.74	153.01358	0.3	191.9	1250	12.9	1.85	1.404	0.03	0
Xix11.610.02103.91654195.94.912508.31.341.1090.011Y11.20.4137.2130596.8100.7125013.02.401.1880.021Y1y11.190.41147.8340894.9103.3125010.82.571.2180.021Z10.90.6141.7673148.5153.7125011.63.661.2330.031A21.10.8127.0651578.5208.5125012.23.881.3110.021A2a21.110.81127.8132180.3211.3125012.14.151.2420.021B2b21.690.36129.70471220.190.312509.03.301.1520.031C21.80.25152.41589256.162.1125010.81.871.1290.011D21.60.5124.63476193.0127.012507.32.261.1440.021E20.11.2100.221150.2323.3125015.95.781.44000.040F211135.903362.5265.0125014.73.921.3880.021H21.40.8131.05558140.1208.5125018.74.421.2810.021H21.40.8131.	X1	1.6	0.01	122.69353	193.0	2.4	1250	17.0	1.15	1.150	0.01	1
Y1 1.2 0.4 137.21305 96.8 100.7 1250 13.0 2.40 1.188 0.02 1 Y1y1 1.19 0.41 147.83408 94.9 103.3 1250 10.8 2.57 1.218 0.02 1 Z1 0.9 0.6 141.76731 48.5 153.7 1250 11.6 3.66 1.233 0.03 1 A2 1.1 0.8 127.06515 78.5 208.5 1250 12.2 3.88 1.311 0.02 1 A2a2 1.11 0.81 127.6515 78.5 208.5 1250 12.1 4.15 1.242 0.02 1 B2 1.7 0.35 136.18492 223.3 87.7 1250 10.8 1.75 1.127 0.03 1 B2 1.69 0.36 129.70471 220.1 90.3 1250 9.0 3.30 1.152 0.03 1 D2 1.6	X1x1	1.61	0.02	103.91654	195.9	4.9	1250	8.3	1.34	1.109	0.01	1
Yiy1 1.19 0.41 147.83408 94.9 103.3 1250 10.8 2.57 1.218 0.02 1 Z1 0.9 0.6 141.76731 48.5 153.7 1250 11.6 3.66 1.233 0.03 1 A2 1.1 0.8 127.06515 78.5 208.5 1250 12.2 3.88 1.311 0.02 1 A2a2 1.11 0.81 127.81321 80.3 211.3 1250 12.1 4.15 1.242 0.02 1 B2 1.7 0.35 136.18492 223.3 87.7 1250 10.8 1.75 1.127 0.03 1 C2 1.8 0.25 152.41589 256.1 62.1 1250 10.8 1.87 1.129 0.01 1 D2 1.6 0.5 124.63476 193.0 127.0 1250 7.3 2.26 1.144 0.02 1 E2 0.1	Y1	1.2	0.4	137.21305	96.8	100.7	1250	13.0	2.40	1.188	0.02	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y1y1	1.19	0.41	147.83408	94.9	103.3	1250	10.8	2.57	1.218	0.02	1
A2 1.1 0.8 127.06515 78.5 208.5 1250 12.2 3.88 1.311 0.02 1 A2a2 1.11 0.81 127.81321 80.3 211.3 1250 12.1 4.15 1.242 0.02 1 B2 1.7 0.35 136.18492 223.3 87.7 1250 10.8 1.75 1.127 0.03 1 B2 1.69 0.36 129.70471 220.1 90.3 1250 9.0 3.30 1.152 0.03 1 C2 1.8 0.25 152.41589 256.1 62.1 1250 7.3 2.26 1.144 0.02 1 D2 1.6 0.5 124.63476 193.0 127.0 1250 7.3 2.26 1.144 0.02 1 E2 0.1 1.2 100.2115 0.2 323.3 1250 15.9 5.78 1.440 0.04 0 F2 1 <td< td=""><td>Z1</td><td>0.9</td><td>0.6</td><td>141.76731</td><td>48.5</td><td>153.7</td><td>1250</td><td>11.6</td><td>3.66</td><td>1.233</td><td>0.03</td><td>1</td></td<>	Z1	0.9	0.6	141.76731	48.5	153.7	1250	11.6	3.66	1.233	0.03	1
A2a2 1.11 0.81 127.81321 80.3 211.3 1250 12.1 4.15 1.242 0.02 1 B2 1.7 0.35 136.18492 223.3 87.7 1250 10.8 1.75 1.127 0.03 1 B2b2 1.69 0.36 129.70471 220.1 90.3 1250 9.0 3.30 1.152 0.03 1 C2 1.8 0.25 152.41589 256.1 62.1 1250 10.8 1.87 1.129 0.01 1 D2 1.6 0.5 124.63476 193.0 127.0 1250 7.3 2.26 1.144 0.02 1 E2 0.1 1.2 100.22115 0.2 323.3 1250 15.9 5.78 1.440 0.04 0 F2 1 1 135.90333 62.5 265.0 1250 14.7 3.92 1.388 0.02 0 G2 2 0.01 133.83115 329.8 2.4 1250 17.7 2.45 1.131 <	A2	1.1	0.8	127.06515	78.5	208.5	1250	12.2	3.88	1.311	0.02	1
B2 1.7 0.35 136.18492 223.3 87.7 1250 10.8 1.75 1.127 0.03 1 B2b2 1.69 0.36 129.70471 220.1 90.3 1250 9.0 3.30 1.152 0.03 1 C2 1.8 0.25 152.41589 256.1 62.1 1250 10.8 1.87 1.129 0.01 1 D2 1.6 0.5 124.63476 193.0 127.0 1250 7.3 2.26 1.144 0.02 1 E2 0.1 1.2 100.22115 0.2 323.3 1250 15.9 5.78 1.440 0.04 0 F2 1 1 135.90333 62.5 265.0 1250 14.7 3.92 1.388 0.02 0 G2 2 0.01 133.83115 329.8 2.4 1250 7.7 2.45 1.131 0.01 1 H2 1.4 0.8<	A2a2	1.11	0.81	127.81321	80.3	211.3	1250	12.1	4.15	1.242	0.02	1
B2b2 1.69 0.36 129.70471 220.1 90.3 1250 9.0 3.30 1.152 0.03 1 C2 1.8 0.25 152.41589 256.1 62.1 1250 10.8 1.87 1.129 0.01 1 D2 1.6 0.5 124.63476 193.0 127.0 1250 7.3 2.26 1.144 0.02 1 E2 0.1 1.2 100.22115 0.2 323.3 1250 15.9 5.78 1.440 0.04 0 F2 1 1 135.90333 62.5 265.0 1250 14.7 3.92 1.388 0.02 0 G2 2 0.01 133.83115 329.8 2.4 1250 7.7 2.45 1.131 0.01 1 H2 1.4 0.8 131.05558 140.1 208.5 1250 18.7 4.42 1.281 0.02 1 J2 0.1 1.4<	B2	1.7	0.35	136.18492	223.3	87.7	1250	10.8	1.75	1.127	0.03	1
C21.80.25152.41589256.162.1125010.8 1.87 1.129 0.011D21.60.5124.63476193.0127.012507.32.261.1440.021E20.11.2100.221150.2323.3125015.95.781.4400.040F211135.9033362.5265.0125014.73.921.3880.020G220.01133.83115329.82.412507.72.451.1310.011H21.40.8131.05558140.1208.5125018.74.421.2810.0211220.2133.82084329.849.5125011.23.051.1400.021120.11.4142.257440.2383.412508.21.321.3760.020120.11.4142.257440.2383.412508.21.321.3760.020120.91.3134.9453748.5393.9125015.22.681.3880.040M20.11.6123.524440.2445.2125012.73.681.3950.040M20.11.8118.428710.2508.812507.02.401.3430.020M20.11.8118.9208496.8 <td>B2b2</td> <td>1.69</td> <td>0.36</td> <td>129.70471</td> <td>220.1</td> <td>90.3</td> <td>1250</td> <td>9.0</td> <td>3.30</td> <td>1.152</td> <td>0.03</td> <td>1</td>	B2b2	1.69	0.36	129.70471	220.1	90.3	1250	9.0	3.30	1.152	0.03	1
D21.60.5124.63476193.0127.012507.32.201.1440.021E20.11.2100.221150.2323.3125015.95.781.4400.040F211135.9033362.5265.0125014.73.921.3880.020G220.01133.83115329.82.412507.72.451.1310.011H21.40.8131.05558140.1208.5125018.74.421.2810.021I220.2133.82084329.849.5125011.23.051.1400.021I20.11.4142.257440.2383.412508.21.321.3760.020K21.60.75113.92028193.0194.612508.91.201.2620.031I20.11.6123.524440.2445.2125015.22.681.3880.040M20.11.6123.524440.2508.812507.02.401.3430.020N20.11.8118.428710.2508.812507.02.401.3430.020P21.61.3137.87433193.0353.1125017.97.141.4410.040	C2	1.8	0.25	152.41589	256.1	62.1	1250	10.8	1.87	1.129	0.01	1
E2 0.1 1.2 100.22115 0.2 323.3 1250 15.9 5.78 1.440 0.04 0 F2 1 1 135.90333 62.5 265.0 1250 14.7 3.92 1.388 0.02 0 G2 2 0.01 133.83115 329.8 2.4 1250 7.7 2.45 1.131 0.01 1 H2 1.4 0.8 131.05558 140.1 208.5 1250 18.7 4.42 1.281 0.02 1 I2 2 0.2 133.82084 329.8 49.5 1250 11.2 3.05 1.140 0.02 1 I2 0.1 1.4 142.25744 0.2 383.4 1250 8.2 1.32 1.376 0.02 0 K2 1.6 0.75 113.92028 193.0 194.6 1250 8.9 1.20 1.262 0.03 1 L2 0.9 1.3 134.94537 48.5 393.9 1250 15.2 2.68 1.388 0.04	D2	1.6	0.5	124.63476	193.0	127.0	1250	7.3	2.20	1.144	0.02	1
12 1 1 135,90333 62.5 265.0 1250 14.7 5.92 1.388 0.02 0 62 2 0.01 133,83115 329.8 2.4 1250 7.7 2.45 1.131 0.01 1 H2 1.4 0.8 131.05558 140.1 208.5 1250 18.7 4.42 1.281 0.02 1 12 2 0.2 133.82084 329.8 49.5 1250 11.2 3.05 1.140 0.02 1 12 0.1 1.4 142.25744 0.2 383.4 1250 8.2 1.32 1.376 0.02 0 12 0.9 1.3 134.94537 48.5 393.9 1250 15.2 2.68 1.388 0.04 0 M2 0.1 1.6 123.52444 0.2 445.2 1250 12.7 3.68 1.395 0.04 0 M2 0.1 1.8 118.42871 0.2 508.8 1250 7.0 2.40 1.343 0.02	E2	0.1	1.2	100.22115	0.2	323.3	1250	15.9	2.02	1.440	0.04	0
62 2 0.01 133.83115 329.8 2.4 1250 7.7 2.43 1.131 0.01 1 H2 1.4 0.8 131.05558 140.1 208.5 1250 18.7 4.42 1.281 0.02 1 I2 2 0.2 133.82084 329.8 49.5 1250 11.2 3.05 1.140 0.02 1 I2 0.1 1.4 142.25744 0.2 383.4 1250 8.2 1.32 1.376 0.02 0 K2 1.6 0.75 113.92028 193.0 194.6 1250 8.9 1.20 1.262 0.03 1 L2 0.9 1.3 134.94537 48.5 393.9 1250 15.2 2.68 1.388 0.04 0 M2 0.1 1.6 123.52444 0.2 445.2 1250 12.7 3.68 1.395 0.04 0 N2 0.1 1.8 118.42871 0.2 508.8 1250 7.0 2.40 1.343 0.02 <td>F2</td> <td>1</td> <td>1</td> <td>135.90333</td> <td>62.5</td> <td>265.0</td> <td>1250</td> <td>14./</td> <td>3.92 2.45</td> <td>1.388</td> <td>0.02</td> <td>0</td>	F2	1	1	135.90333	62.5	265.0	1250	14./	3.92 2.45	1.388	0.02	0
H2 1.4 0.8 131.0558 140.1 208.5 1250 18.7 1.42 1.281 0.02 1 12 2 0.2 133.82084 329.8 49.5 1250 11.2 3.05 1.140 0.02 1 J2 0.1 1.4 142.25744 0.2 383.4 1250 8.2 1.32 1.376 0.02 0 K2 1.6 0.75 113.92028 193.0 194.6 1250 8.9 1.20 1.262 0.03 1 L2 0.9 1.3 134.94537 48.5 393.9 1250 15.2 2.68 1.388 0.04 0 M2 0.1 1.6 123.52444 0.2 445.2 1250 12.7 3.68 1.395 0.04 0 M2 0.1 1.8 118.42871 0.2 508.8 1250 7.0 2.40 1.343 0.02 0 M2 0.1 1.8 118.92084 96.8 445.2 1250 22.3 3.74 1.569 0.07<	G2	2	0.01	133.83115	329.8	2.4	1250	/./	2.45 A A 2	1.131	0.01	1
12 2 0.2 133.82084 329.8 49.5 1250 11.2 5.05 1.140 0.02 1 J2 0.1 1.4 142.25744 0.2 383.4 1250 8.2 1.32 1.376 0.02 0 K2 1.6 0.75 113.92028 193.0 194.6 1250 8.9 1.20 1.262 0.03 1 L2 0.9 1.3 134.94537 48.5 393.9 1250 15.2 2.68 1.388 0.04 0 M2 0.1 1.6 123.52444 0.2 445.2 1250 12.7 3.68 1.395 0.04 0 N2 0.1 1.8 118.42871 0.2 508.8 1250 7.0 2.40 1.343 0.02 0 N2 1.2 1.6 118.92084 96.8 445.2 1250 22.3 3.74 1.569 0.07 0 P2 1.6 1.3 137.87433 193.0 353.1 1250 17.9 7.14 1.441 0.04	HZ	1.4	0.8	131.05558	140.1	208.5	1250	18.7	3.05	1.281	0.02	1
12 0.1 1.4 142.23744 0.2 383.4 1230 6.2 1.32 1.370 0.02 0 K2 1.6 0.75 113.92028 193.0 194.6 1250 8.9 1.20 1.262 0.03 1 L2 0.9 1.3 134.94537 48.5 393.9 1250 15.2 2.68 1.388 0.04 0 M2 0.1 1.6 123.52444 0.2 445.2 1250 12.7 3.68 1.395 0.04 0 N2 0.1 1.8 118.42871 0.2 508.8 1250 7.0 2.40 1.343 0.02 0 O2 1.2 1.6 118.92084 96.8 445.2 1250 22.3 3.74 1.569 0.07 0 P2 1.6 1.3 137.87433 193.0 353.1 1250 17.9 7.14 1.441 0.04 0	12	2	0.2	133.82084	329.8	49.5	1250	11.2 8 2	1.32	1.140	0.02	1
L2 0.9 1.3 134.94537 48.5 393.9 1250 15.2 2.68 1.388 0.04 0 M2 0.1 1.6 123.52444 0.2 445.2 1250 12.7 3.68 1.395 0.04 0 N2 0.1 1.8 118.42871 0.2 508.8 1250 7.0 2.40 1.343 0.02 0 O2 1.2 1.6 118.92084 96.8 445.2 1250 22.3 3.74 1.569 0.07 0 P2 1.6 1.3 137.87433 193.0 353.1 1250 17.9 7.14 1.441 0.04 0	52 K2	1.6	0.75	113,92028	193.0	194.6	1250	8.9	1.20	1.262	0.02	1
M2 0.1 1.6 123.52444 0.2 445.2 1250 12.7 3.68 1.395 0.04 0 N2 0.1 1.8 118.42871 0.2 508.8 1250 7.0 2.40 1.343 0.02 0 O2 1.2 1.6 118.92084 96.8 445.2 1250 22.3 3.74 1.569 0.07 0 P2 1.6 1.3 137.87433 193.0 353.1 1250 17.9 7.14 1.441 0.04 0	L2	0.9	1.3	134.94537	48.5	393.9	1250	15.2	2.68	1.388	0.04	0
N2 0.1 1.8 118.42871 0.2 508.8 1250 7.0 2.40 1.343 0.02 0 O2 1.2 1.6 118.92084 96.8 445.2 1250 22.3 3.74 1.569 0.07 0 P2 1.6 1.3 137.87433 193.0 353.1 1250 17.9 7.14 1.441 0.04 0	M2	0.1	1.6	123.52444	0.2	445.2	1250	12.7	3.68	1.395	0.04	0
O2 1.2 1.6 118.92084 96.8 445.2 1250 22.3 3.74 1.569 0.07 0 P2 1.6 1.3 137.87433 193.0 353.1 1250 17.9 7.14 1.441 0.04 0	N2	0.1	1.8	118.42871	0.2	508.8	1250	7.0	2.40	1.343	0.02	0
P2 1.6 1.3 137.87433 193.0 353.1 1250 17.9 7.14 1.441 0.04 0	02	1.2	1.6	118.92084	96.8	445.2	1250	22.3	3.74	1.569	0.07	0
	P2	1.6	1.3	137.87433	193.0	353.1	1250	17.9	7.14	1.441	0.04	0
Q2 2.5 0.01 114.00578 563.4 2.4 1250 2.5 0.97 1.117 0.02 1	Q2	2.5	0.01	114.00578	563.4	2.4	1250	2.5	0.97	1.117	0.02	1
Q2q2 2.49 0 136.71441 558.0 0.1 1250 7.1 2.38 1.143 0.01 1	Q2q2	2.49	0	136.71441	558.0	0.1	1250	7.1	2.38	1.143	0.01	1
R2 0.1 2 110.67468 0.2 574.2 1250 6.6 5.04 1.373 0.03 0	R2	0.1	2	110.67468	0.2	574.2	1250	6.6	5.04	1.373	0.03	0
R2r2 0.09 2.01 106.66411 0.2 577.5 1250 6.1 3.41 1.454 0.02 0	R2r2	0.09	2.01	106.66411	0.2	577.5	1250	6.1	3.41	1.454	0.02	0
S2 2.5 0.05 134.79892 563.4 12.2 1250 3.8 1.69 1.122 0.02 1	S2	2.5	0.05	134.79892	563.4	12.2	1250	3.8	1.69	1.122	0.02	1

T2	1.9	1.1	122.75985	291.6	293.9	1250	14.9	4.09	1.301	0.07	1
T2t2	1.89	1.11	88.642066	287.9	296.9	1250	15.0	4.92	1.388	0.03	1
U2	2.4	0.35	99.439763	510.8	87.7	1250	3.8	2.25	1.131	0.04	1
V2	2.2	0.75	129.45124	414.5	194.6	1250	5.7	1.70	1.188	0.02	1
W2	3	0.01	88.642659	872.6	2.4	1250	2.1	1.45	1.122	0.02	1
X2	3	0.8	105.2153	872.6	208.5	1250	5.6	1.08	1.159	0.05	1

Table S1. List of simulations developed in this study including key parameters and

237 morphological metric values.

Metric	Group A	Group B	P-value	Significant? (Y/N)
Roughness (ρ*) (Simulations)	River-influenced	Wave-influenced	1*10 ⁻³	Y
	River-influenced	Tide-influenced	2*10 ⁻³	Y
	Wave-influenced	Tide-influenced	<1*10 ⁻⁴	Y
Roughness (ρ*) (Global deltas)	River-influenced	Wave-influenced	1.1*10 ⁻²	Y
(Global deltas)	River-influenced	Tide-influenced	0.14	Ν
	Wave-influenced	Tide-influenced	1*10 ⁻³	Y
Number of Distributary	River-influenced	Wave-influenced	3*10-4	Y
Channels (N _{ch}) (Simulations)	River-influenced	Tide-influenced	0.99	Ν
	Wave-influenced	Tide-influenced	4*10-4	Y
Number of Distributary	River-influenced	Wave-influenced	2*10-4	Y
Channels (N _{ch}) (Global deltas)	River-influenced	Tide-influenced	0.83	Ν
	Wave-influenced	Tide-influenced	5*10-2	Y

Table S2. Categorical pairwise comparison summary

Delta ID	Name	Qriver (kg/s)	Qwave (kg/s)	Qtide (kg/s)	QH2O (m^3/s)	SWH (m)	Ta (m)	Latitude (DD)	Longitude (DD)	Dataset	Nch	SPA	0*
Ama	Amazon	211/12	66	20857	128520	0.28	1 10	-0.667	208 021	\$\$2007	Q	0	P 1 6 2 7
Carrie	Causa	215	205	50057	112	0.50	0.14	26.571	25.502	SS2007	2	1	1.027
Cey	Ceyan	315	205	6	112	0.58	0.14	30.571	35.563	SS2007	3	1	1.27
COIIVIX	Colorado, IVIX	1122	120	450	234	0.50	2.10	31.921	245.046	SS2007	5	0	1.2
Сор	Copper	343	3681	139	1290	1.8/	1.37	60.446	215.150	SS2007	10	1	1.372
Dan	Danube	4295	204	33	4210	0.94	0.02	45.250	29.700	\$\$2007	9	1	1.178
Ebr	Ebro	703	259	2	160	0.79	0.07	40.721	360.854	SS2007	3	1	1.209
Eei	Eel, CA	70	6331	1/	4002	2.50	0.91	40.025	235.721	SS2007	-	1	1.009
FIY	Ganges-	2586	689	2189	4992	0.82	0.28	-8.275	142.404	SS2007	5	0	1.563
Gan	Brahmaputra	53453	181	84709	38181	0.53	0.79	23.225	90.633	\$\$2007	20	0	1.719
God	Godavari	3337	1781	71	4324	1.49	0.46	16.713	82.246	SS2007	11	1	1.224
Indi	Indigirka	1914	78	2	594	0.56	0.02	71.550	150.750	SS2007	28	1	1.236
Indu	Indus	24097	3409	2551	5137	1.69	1.11	24.083	67.654	SS2007	6	1	1.503
Irr	Irriwaddy	10031	2902	36473	12676	1.48	0.88	16.363	95.042	SS2007	16	1	1.244
Kol	Kolyma	2591	114	15	1524	0.64	0.03	69.527	161.383	SS2007	10	0	1.308
Kri	Krishna	2423	1195	66	2712	1.30	0.42	15.763	80.838	\$\$2007	7	1	1.153
Lim	Limpopo	879	2383	18	88	1.99	0.73	-25.171	33.517	332007	1	1	1.034
Mac	MacKenzie	4320	304	244	7031	0.88	0.13	69.450	225.850	\$\$2007	23	0	1.252
Mah	Mahanadi	1384	3307	429	2494	1.30	0.67	20.333	86.658	SS2007	9	1	1.123
Mek	Mekong	15737	2627	90814	16361	1.59	1.56	9.617	106.254	SS2007	9	0	1.266
Nig	Niger	13654	2314	2481	8700	1.21	0.59	4.396	6.071	SS2007	15	1	1.108
Nil	Nile	33631	1255	163	7669	1.32	0.10	31.446	30.388	SS2007	6	1	1.069
Ora	Orange	710	9652	4	45	2.55	0.54	-28.629	16.454	SS2007	1	1	1.044
Ori	Orinoco	19594	3804	36549	34074	1.85	0.59	8.579	299.021	SS2007	27	1	1.342
Para	Parana	8203	6	322	26530	0.16	0.09	-33.933	301.479	SS2007	20	0	1.464
Ро	Ро	960	177	120	813	0.73	0.28	44.963	12.517	SS2007	7	1	1.189
Son	Song Hong	2590	466	1482	2485	0.84	0.94	20.317	106.533	SS2007	10	1	1.365
Vis	Vistula	721	825	1	311	1.20	0.01	54.313	18.938	SS2007	3	1	1.001
Vol	Volga	4682	5	13	7538	0.17	0.01	45.596	47.721	SS2007	100	0	1.508
Yan	Yana	926	2319	4	360	1.58	0.25	71.534	136.550	SS2007	14	1	1.142
Yang	Yangtze	6098	65	765	19898	0.64	0.33	31.942	120.238	SS2007	4	0	1.472
Yuk	Yukon	3308	93	527	4022	0.65	0.51	63.040	195.536	SS2007	43	0	1.213
Asa	Asahan	92	50	52	214	0.34	1.16	2.971	99.813	Cea2019	1	0	1.044
Bat	Batanghari	1067	141	214	1863	0.64	0.64	-1.096	104.192	Cea2019	6	0	1.089
Bur	Burhabalanga / Karkai	147	497	146	388	0.70	1.40	21.592	87.308	Cea2019	1	1	1.094
De	De Grey	53	159	131	13	0.69	2.14	-20.000	119.175	Cea2019	1	1	1.05
Ess	Essequibo	758	1137	3169	3827	1.04	0.79	6.450	301.408	Cea2019	4	0	1.626
Inc	Incomati	172	1942	49	37	1.85	0.74	-25.767	32.733	Cea2019	2	1	1.342
Kal	Kalimantan	1292	58	236	5400	0.39	0.58	-0.137	109.192	Cea2019	6	0	1.222
Кау	Kayan	476	144	67	1570	0.48	0.75	2.925	117.608	Cea2019	12	0	1.516
Kon	Konkoure	253	374	74	536	0.66	1.28	9.950	346.313	Cea2019	2	1	1.365
Low	Lower Savannah	216	896	190	214	1.23	0.83	32.075	279.029	Cea2019	4	1	1.1
Mem	Memberamo	3711	1020	557	4340	1.18	0.54	-1.592	137.867	Cea2019	1	1	1.082
Mud	Muda	54	120	10	156	0.43	0.81	5.571	100.350	Cea2019	1	1	1.069
Mur	Murung	681	48	278	3393	0.36	0.91	-3.308	114.300	Cea2019	1	0	1.165
Nar	Narmada	973	42	794	1457	0.31	1.49	21.671	72.858	Cea2019	2	1	1.64
Omb	Ombrone	23	165	0	20	0.59	0.12	42.667	11.013	Cea2019	1	1	1.024
Par	Parnaiba	2625	1188	1513	1964	1.60	1.06	-2.800	318.158	Cea2019	1	1	1.086
Raj	Rajang 1	713	212	655	3511	0.67	1.41	2.354	111.517	Cea2019	6	1	1.206

San	Sangu	25	90	18	246	0.37	1.29	22.129	91.888	Cea2019	1	1	1.215
Sen	Senegal	561	2362	608	685	1.47	0.43	16.067	343.525	Cea2019	1	1	1.019
Sep	Sepik	3226	460	420	4816	1.07	0.36	-3.900	144.471	Cea2019	1	0	1.071
Ses	Sesayap	286	2	118	635	0.07	4.22	3.629	117.125	Cea2019	5	0	2.022
Sta	Staaten	75	50	19	124	0.45	0.70	-16.400	141.300	Cea2019	1	1	1.035
Тар	Tapti	515	219	684	614	0.57	1.90	21.133	72.708	Cea2019	4	1	1.519
Wul	Wuli Jiang / Nanliu Jiang	62	40	34	205	0.27	1.41	21.613	109.075	Cea2019	22	0	1.346
Zam	Zambezi	6944	1956	2194	7372	1.30	1.19	-18.800	36.258	Cea2019	7	1	1.131
Bra	Brazos	729	678	3	137	1.10	0.26	28.879	264.625	SS2007	2	1	1.014
CoITX	Colorado, TX	332	714	2	50	1.10	0.23	28.600	264.025	SS2007	10	1	1.015
Cha	Chao	891	5	1418	1265	0.17	0.95	13.617	100.563	SS2007	3	N/A	N/A
Fra	Fraser	1300	0	1102	3721	0.04	1.37	49.158	237.033	SS2007	8	N/A	N/A
Ham	Homathko	47	2	202	122	0.12	1.83	50.929	235.146	SS2007	2	N/A	N/A
Kla	Klamath	171	7446	151	420	2.42	0.95	41.525	235.958	SS2007	1	N/A	N/A
Kli	Klinaklini	19	1	41	158	0.11	1.83	51.092	234.375	SS2007	5	N/A	N/A
Len	Lena	5438	93	550	8492	0.70	0.05	73.151	123.451	SS2007	115	N/A	N/A
Mag	Magdalena	8134	8309	112	7151	2.32	0.15	11.071	285.158	SS2007	7	N/A	N/A
Pec	Pechora	613	37	225	3420	0.31	0.45	68.050	53.950	SS2007	23	N/A	N/A
Pes	Pescara	41	119	0	8	0.69	0.13	42.471	14.225	SS2007	1	N/A	N/A
Rho	Rhone	1605	125	27	1179	0.62	0.09	43.383	4.808	SS2007	2	N/A	N/A
Sqa	Squamish	38	2	204	227	0.12	1.68	49.704	236.821	SS2007	2	N/A	N/A
Tig	Tigris	18362	79	469	1514	0.49	0.60	29.996	48.463	SS2007	5	N/A	N/A
Var	Var	69	331	0	16	0.71	0.10	43.658	7.200	SS2007	1	N/A	N/A
Wai	Waipaoa	6	1190	0	34	1.42	0.46	-38.708	177.938	SS2007	1	N/A	N/A
Zhu	Zhujiang	5386	426	4245	5710	1.00	0.87	22.400	113.258	SS2007	15	N/A	N/A
Gua	Guan He	167	202	785	73	0.79	1.29	34.467	119.783	Cea2019	1	N/A	N/A
Tui	Tuihanpui	161	306	130	64	857.54	0.45	1.130	22.275	Cea2019	1	N/A	N/A
Arn	Arno	80	529	1	41	0.82	0.11	43.683	10.283	SS2007	1	N/A	N/A
Mis	Mississippi	27284	315	713	15126	1.20	0.19	29.113	270.738	SS2007	71	N/A	N/A
Yel	Yellow	7282	307	20	1697	0.91	0.37	37.771	119.175	SS2007	5	N/A	N/A

Table S3. List of field deltas used in this study. Qmx is the maximum monthly discharge
from Syvitski and Saito (2007), while all other flux values are taken from the dataset of
Nienhuis et al. (2020).

Metric	Statistical test	Goodness of fit	p-value
Roughness (p *) (Simulations)	Multiple linear regression $\rho^* = f(r_{river}, r_{wave}, r_{tide})$	$r^2 = 0.62$	4*10 ⁻¹²
Roughness (p *) (Global deltas)	Multiple linear regression $\rho^* = f(r_{river}, r_{wave}, r_{tide})$	$r^2 = 0.42$	2*10 ⁻⁶
Number of Distributary Channels (<i>N</i> _{ch}) (Simulations)	Multiple linear regression $N_{ch} = f(r_{river}, r_{wave}, r_{tide})$	$r^2 = 0.35$	2*10 ⁻⁵
Number of Distributary Channels (N_{ct}) (Global deltas)	Multiple linear regression $N_{ch} = f(r_{river}, r_{wave}, r_{tide})$	$r^2 = 0.36$	3*10 ⁻⁷
Spit Presence/ Absence (<i>SPA</i>) (Simulations)	Multinomial logistic regression $S_{PA} = f(r_{river}, r_{wave}, r_{tide})$	$\boldsymbol{\chi}^2 = 16.7$	2*10 ⁻⁸
Spit Presence/ Absence (SPA) (Global deltas)	Multinomial logistic regression $S_{PA} = f(r_{river}, r_{wave}, r_{tide})$	$\chi^2 = 38.9$	6*10 ⁻² (not significant)

Table S4. Multiple regressions of flux balance (predictor) versus metric value (response).

Model Parameter	Value	Unit
Chezy roughness	65	m^(1/2)/s
Horizontal eddy viscosity	0.0001	m^2/s
Horizontal eddy diffusivity	0.001	m^2/s
Specific density of sediment	2650	kg/m^3
Dry bed density	1600	kg/m^3
Minimum depth for sediment calculations	0.1	m
Threshold sediment thickness	0.05	m
Factor for erosion of adjacent dry cells	0.5	N/A
Transverse bed slope transport factor	1.5	N/A
Wave-related suspended transport factor	0.15	N/A
Wave-related bed-load transport factor	0.15	N/A
Calibration factor (Soulsby-Van Rijn)	1	N/A
Characteristic grain size ratio (Soulsby-Van		
Rijn)	1.5	N/A
Zo roughness height (Soulsby-Van Rijn)	0.006	m

Table S5. Additional significant model parameter values.

	User-defined parameter								SPA (0/1 =
	being tested		Qriver	Qwave	Qtide	Q			absent/present)
Run ID	(units)	Value	(kg/s)	(kg/s)	(kg/s)	(m^3/s)	Nch	ρ*	
	Flow-wave	120							
	coupling	(base							
C120	interval (min)	value)	198	563.37	12.20	1250	3.8 ± 1.7	1.12 ± 0.02	1
	Flow-wave								
	coupling								
C60	interval (min)	60	198	563.37	12.20	1250	3.3 ± 4	1.10 ± 0.03	1
	Flow-wave								
	coupling								
C30	interval (min)	30	198	563.37	12.20	1250	9.0 ± 3.6	1.12 ± 0.02	1
	Morphological	180							
	scale factor	(base							_
SF180	(N/A)	value)	198	0.25	12.20	1250	17.6 ± 2.2	1.37 ± 0.03	0
	Morphological								
6500	scale factor		100	0.05	42.20	4250	20 4 4 7	4 35 4 9 93	
SF90	(N/A)	90	198	0.25	12.20	1250	20.4 ± 1.7	1.35 ± 0.03	0
	Morphological								
5560	scale factor	60	100	0.25	12.20	1250	19 2 ± 1 0	1 27 + 0.02	0
3F00	(N/A)	00	198	0.25	12.20	1250	18.3 ± 1.9	1.37 ± 0.02	0
	Computational	0.5 (baco							
	time stop (min)	(Dase	109	0.25	12.20	1250	99+21	1 27 + 0.02	0
010.5	Computational	value)	130	0.25	12.20	1230	0.0 ± 3.4	1.57 ± 0.05	0
DT0.25	time step (min)	0.25	198	0.25	12.20	1250	9.1 + 1.2	1.34 + 0.02	0
510.25	Computational	0.25	130	5.25	12.20	1230	5.1 ± 1.2	1.57 ± 0.02	, v
DT0.1	time step (min)	0.1	198	0.25	12.20	1250	10.3 ± 2.2	1.32 ± 0.03	0
DT0.1	Computational time step (min)	0.1	198	0.25	12.20	1250	10.3 ± 2.2	1.32 ± 0.03	0

Table S6. Model parameter sensitivity tests.