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Constraining the Multiscale Structure of
Geophysical Fields in Machine Learning:

The Case of Precipitation
Clément Guilloteau , Phong V.V. Le, and Efi Foufoula-Georgiou

Abstract— The use of deep-learning algorithms for estimat-
ing the value of geophysical variables from remotely sensed
information is rapidly expanding. The typical objective function
minimized in such algorithms is the mean square error (MSE),
which is known to lead to smooth estimates with compressed
dynamical range as compared to the true distribution of the
variable of interest. Here, we introduce and evaluate alternative
objective functions, focusing on the retrieval of precipitation rates
from satellite passive microwave radiometric measurements using
a deep convolutional neural network. For this testbed application,
the results show that explicitly imposing the preservation of the
statistical distribution and spatial wavelet power spectrum of the
target variable allows to accurately reproduce extreme values
and sharp gradients across multiple scales.

Index Terms— Machine learning, objective function, precipita-
tion, remote sensing, satellite.

I. INTRODUCTION

IN THE last two decades, the fields of image recognition and
computer vision have been revolutionized by the emergence

of deep-learning algorithms, with deep convolutional neural
networks in particular, being popular and efficient at numerous
tasks [1]. Inevitably, the field of geophysical remote sensing
(i.e., estimating the value or state of geophysical variables
from remote radiometric measurements) is also moving toward
this class of algorithms. In many cases, these algorithms have
already demonstrated superior performance when compared
to older algorithms [2], [3]. An appealing aspect of the
deep-learning framework is its flexibility, as the selection
of the input data and of the hyperparameters of a neural
network does not a priori restrict, which prediction task can
be performed; the objective of the prediction is indeed solely
determined by the objective function in deep learning. When
the task is to predict the value of a physical variable (target)
from a set of observed radiometric parameters (predictors), i.e.,
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a regression task, supervised learning is necessary. Supervised
learning relies on training data, for which, in addition to
the predictors, the target values are also known a priori.
In the supervised regression learning, the objective function
optimized during the training measures the “distance” between
the prediction and the a priori known “truth.”

Geophysical variables of various types, such as atmospheric
or surface temperature, wind vectors, soil or atmospheric
moisture, vegetation density, ocean salinity, and precipitation
rates, are not randomly distributed across space and time but
exhibit a coherent spatial and temporal organization across a
wide range of scales. In this respect, geophysical fields are
similar to grayscale or colorscale images or to video flux:
they contain “features,” localized in space and time, which
can be characterized by their size, orientation, shape, and
texture. However, the preservation of these features and of
their properties is not typically what remote-sensing retrieval
algorithms, deep-learning algorithms in particular, are trained
and optimized for. Indeed, in most cases, algorithms are
optimized to minimize a “pixelwise” distance metric (i.e.,
a metric that only considers differences between the prediction
and the target in coincident pixels); the most commonly used
objective function in deep-learning retrieval algorithms for
geophysical remote sensing is the mean squared error (MSE)
or alternatively the mean absolute error (MAE).

While an infinitely small MSE (or MAE) obviously
guarantees the preservation of all features in a geophysical
field, such an objective is often unattainable in geophysical
remote sensing, in fact, it is not uncommon for the MSE to be
in the same order of magnitude as the variance of the target
variable. For example, in the case of retrieval of precipitation
rates from passive satellite radiometric measurements at
scales finer than 12 h and 100 km, comparisons with
high-accuracy ground-based measurements indicate that the
state-of-the art products can rarely resolve more than 75% of
the ground-observed variance and often around or less than
50% [4], [5]. When the residual errors cannot be reduced to a
negligible quantity, MSE-optimal estimation algorithms tend
to favor smooth solutions and compress the dynamical range
of the retrieved variable [6].

In this letter, we propose novel alternatives to the MSE
objective function used “by default” in the training of most
of the deep-learning algorithms. The application we present
as demonstration is the estimation of surface precipitation
rates from satellite passive microwave measurements, a data-
rich but highly underdetermined retrieval problem [7], [8] of
high interest to the geoscience community [9]. Our focus is
to preserve the statistical distribution of precipitation rates
(especially the extreme values in the tail of the distribution)
and the multiscale variance of the precipitation fields, which
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relates directly to the covariance function and to the vari-
ogram. While a few published studies have already demon-
strated the utility of constraining the statistical distribution of
precipitation rates [10], we show that doing so at only one
scale is insufficient and that a multiscale constraint (applied
here through the spatial wavelet power spectrum) allows a
more comprehensive preservation of the statistical properties
of the field at multiple scales, including its spatial covariance.

II. DATA AND NEURAL NETWORK ARCHITECTURE

A mixed-scale dense convolutional neural network (MSD-
Net) [11] is used here to perform the retrieval of instantaneous
surface precipitation rates over oceans. The inputs of the MSD-
Net are scenes of brightness temperatures, measured by the
passive Global Precipitation Measurement (GPM) Microwave
Imager (GMI) onboard the GPM Core Observatory satellite.
Each input scene consists of the superposition of 13 radiomet-
ric images corresponding to the 13 GMI channels and covers
a 245 × 245 km area. Each radiometric image is composed
of 931 fields of view (overlapping pixels), corresponding to
49 scan positions and 19 consecutive GMI scans. GMI is
a conical-scanning imager, and its channels, covering the
microwave spectrum between 10 and 183 GHz, comprise five
horizontal-polarization single-band channels (at 11, 19, 37, 89,
and 166 GHz), six vertical-polarization single-band channels
(at 11, 19, 23, 37, 89, and 166 GHz), and two vertical-
polarization double-sideband channels (at 183 ± 3 and 183 ±

7 GHz) [12]. The brightness temperatures measured by GMI
at the top of the atmosphere are essentially the outcome of
the surface emission, emission and absorption by water vapor
and liquid rain drops, and scattering by ice particles in the
atmosphere [13].

The objective is, from the GMI observations only, to predict
the 5-km-resolution surface precipitation fields as is currently
retrieved by the NASA GPM combined radar-radiometer algo-
rithm (CORRA [14]). CORRA relies not only on the passive
GMI observations but also on the measurement from the active
dual-frequency precipitation radar (DPR), also onboard the
GPM Core observatory satellite. While the radar-radiometer
combined measurements are known to allow much more
accurate estimates of precipitation rates than those made only
from passive radiometric measurements, the DPR is currently
the only scanning precipitation radar orbiting the Earth and
has a swath width of only 245 km and average revisit time
of more than 3 days. Comparatively, GMI has an 885-km
swath width, and, in combination with several other similar
passive instruments orbiting the Earth such AMSR-2 and
the SSMI/S series, it can achieve complete coverage of the
globe within a few hours average revisit time [15], hence
the interest in providing accurate precipitation measurements
from passive microwave imagers only. We note that GMI’s
scanning pattern provides a 5-km sampling distance in the
along-scan direction and a 13-km sampling distance in the
cross-scan direction. Therefore, in the cross-scan direction,
the 5-km target resolution of the MSDNet prediction is
higher than the instrumental resolution of the inputs, which
amplifies the underconstrained nature of the prediction task.
Supervised training of the MSDNet is performed with a
training database consisting of 7000 scenes of GMI-observed
brightness temperatures over global oceans, collocated with
CORRA surface precipitation rates. The MSDNet used in this
study is composed of 70 densely connected convolution layers
(see supplemental online material for more details about the

MSDNet architecture and the data). The retrieval performance
is tested on a dataset of 1000 unique oceanic precipitation
scenes completely independent of the training dataset.

III. OBJECTIVE FUNCTIONS

The objective function in deep learning algorithms (also
referred to as loss or cost function) measures the similarity
between the prediction and the target during the training. It can
be as simple as the MSE or MAE or be constructed as a
combination of several distance metrics (it may also contain
one or several regularization terms). Here, we present a few
distance metrics that can be used in combination with or
as alternative to the MSE to build objective functions that
efficiently preserve the multiscale statistical distribution of
precipitation fields and avoid the smoothing effect inherent
to MSE-optimal estimates.

Let us consider a target tensor T and its prediction P. The
first distance we consider is the MSE, empirically computed
as the mean squared distance between P and T, which is the
square of the Euclidian (L2) distance divided by the tensor
length

D1(P, T) =
1
n

n∑
i=1

(pi − ti )2 (1)

where n is the number of elements in the N -dimensional
tensors P and T, pi is the i th element of the tensor P, and ti is
the i th element of the tensor T. The MSE can be decomposed
as follows:

D1(P, T) = (µP − µT )2
+ σ 2

T + σ 2
P − 2Cov(P, T) (2)

where µT , µP , σ 2
T , and σ 2

P are, respectively, the mean and
variance of P and T, and Cov(P, T) denotes the covariance
between P and T. For any properly optimized minimal-MSE
estimator, the estimation should be unbiased (at least over the
training data); therefore, the first term (µP − µT )2 should be
close to null at the end of the training. For a “perfect” retrieval,
σ 2

T = σ 2
P = Cov(P, T), and therefore, D1 ≈ 0. However, when

residual errors are not negligible, the optimal-MSE solution
is achieved with Cov(P, T) = σ 2

P and σ 2
P < σ 2

T , hence the
“compressing” effect of MSE-optimal estimators, with the
variance of the prediction being lower than the variance of
the target.

To avoid this compressing effect, we propose an alternative
distance metric between P and T, defined as follows:

D2(P, T) = (µP − µT )2
+

∣∣σ 2
T − σ 2

P

∣∣ + σ 2
T (1 − CC(P, T))

(3)

where CC(P, T) denotes the linear Pearson correlation coeffi-
cient between P and T. This distance is minimized when µP =

µT and σ 2
T = σ 2

P and when CC(P, T) is as close as possible to
the unit value. We note that the Pearson correlation coefficient
is agnostic to any linear distortion of P. We also note that the
terms that compose our proposed D2 distance metric (mean,
variance, and correlation coefficient) are somewhat similar to
the terms that define the Kling–Gupta efficiency [16] coeffi-
cient, except that in our case, the quantities are not rendered
dimensionless and that the optimal value is 0 instead of 1.

If the preservation of the whole statistical distribution of
the target variable (beyond its mean and variance as described
above) is strongly desired, a specific constraint to achieve this
might be added. The consistency of two empirical probability
density functions (PDF) or cumulative distribution functions
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(CDF) can always be measured through a distance metric.
In the case of precipitation, we are particularly interested
in preserving the tail of the distribution because of the
hydrological and climatological importance of precipitation
extremes. The precipitation rates corresponding to the 99%
or 99.9% percentiles of the distribution even if relatively
infrequent (occurring over a few hours per year on average)
are quasi-systematically associated with impactful weather
systems (mostly hurricanes and other deep convective storms).
For this reason, to represent the statistical distribution of
precipitation in the present study, we chose to rely on a
modified distribution function, which we designate as the
cumulative contribution function (CCF) and which puts more
emphasis on extremes as compared to the CDF. Let us consider
a variable X and its PDF fX . The CDF of X is defined as
follows:

FX (v) =

∫ v

−∞

fx (u)du. (4)

The CDF is related to the probability of exceedance (PoE)
function PX with PX (v) = 1−FX (v). When X is a nonnegative
variable, as is the case for precipitation rates, we define the
CCF of X as follows:

8X (v) =
1

E[X ]

∫ v

0
u × f x (u)du (5)

where E[X ] is the expected value of X defined as E[X ] =∫
∞

0 u × fx (u)du. With such a definition, the value 8X (v) rep-
resents the relative contribution of precipitation rates between
0 and v to the mean value of X . The CCF, while it has
not been rigorously formalized and has been given several
different names, has been used in the literature to represent
and analyze statistical distributions of precipitation rates [17].
We note again that the CCF only makes sense if the variable
of interest takes only nonnegative values and is a quantity that
can be “accumulated” over time. In this letter, we measure
distance between the CCF of the target T and prediction P
tensors through the standard continuous L1 distance and define

D3(P, T) =

∫
∞

0
|8P(v) − 8T (v)|dv. (6)

While preserving the statistical distribution of the target
variable at the scale at which the retrieval is performed (the
“pixel” scale) is often desired, it does not guarantee at all
the preservation of the statistical distribution at any other
scale. A constraint relying on a statistical distance such as the
D3 distance may be applied several times at different scales,
however, selecting the scales at which to apply it may be
cumbersome and, eventually, a large number of constraints in
a deep-learning algorithms may render the convergence of the
training run more difficult. An alternative to constraining the
full statistical distribution at multiple scales is to constrain the
multiscale variance only. The multiscale variance of a field is
determined by its spatial autocorrelation function or alterna-
tively by its Fourier or wavelet power spectral density (PSD).
As for the distribution functions, distance metrics can be used
to evaluate the consistency between two autocorrelation func-
tions or two Fourier or wavelet PSD functions. In this letter,
we choose to rely on the discrete wavelet PSD obtained from a
2-D Haar wavelet decomposition. Discrete wavelet PSDs are
generally easier to handle than the continuous Fourier PSD
or autocorrelation function, particularly in multidimensional
spaces. Moreover, they are fast to compute, can be robustly

Fig. 1. Evolution of the performance metrics (distances D1, D3, and D4
between the prediction and the target, and difference between the standard
deviation of the prediction and of the target) during the training of the
MSDNet for different objective functions O1, O2, and O3. At each epoch,
the performance metrics are computed over the 7000 scenes of the training
dataset.

estimated from relatively small sample sizes, and allow easy
handling of edge effects.

Let SX
(
λ , ω

)
be the Haar wavelet power (i.e., the mean

of the squared wavelet coefficient) of the N -dimensional
variable X at the scale λ and in the direction ω. We measure
the distance between the discrete wavelet power spectra of the
tensors P and T through the standard discrete L1 distance

D4(P, T) =

J∑
i=1

M∑
k=1

|SP
(
λi , ωk

)
− ST

(
λi , ωk

)
| (7)

where λi and ωk are, respectively, the discrete scales and
directions of an N -dimensional discrete wavelet transform of
depth J. In N dimensions, the number of directions of a discrete
wavelet transform is M = 2N

− 1. In this letter, we apply the
wavelet transform on 2-D precipitation fields (N = 2 and
M = 3) and with J = 5. We use the distances D1, D2, D3,
and D4 to construct three different objective functions O1, O2,
and O3 to be optimized during the training of the MSDNet

O1 = D1(P, T) (8)
O2 = D2(P, T) + γ3 D3(P, T) (9)
O3 = D2(P, T) + γ3 D3(P, T) + γ4 D4(P, T) (10)

where γ3 and γ4 are the weights used to control the relative
influence of the different terms in the cost functions. Here,
we take γ3 = 3 and γ4 = 1. The same MSDNet is trained
three times with the three different objective functions, while
the training data and hyperparameters are kept the same for
the three training runs.

IV. RESULTS

The metric distances D1, D2, D3, and D4 between the
prediction and the target along with other performance metrics
and statistics are computed over the 7000 scenes of the
training dataset at each epoch of the training of the MSDNets,
not only to allow the optimization of the objective function
but also to monitor the efficiency of the training and its
convergence toward a stable solution. The evolutions during
the three training runs of the distances D1, D3, and D4,
along with standard deviation of the predicted precipitation
rates minus that of the target precipitation rates, are shown
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Fig. 2. Two cases of precipitation scenes of the testing dataset retrieved by the CORRA algorithm (target) and predicted from GMI brightness temperature
only by the MSDNets trained with different objective functions O1, O2, and O3. While the MSDNet trained with O1 (MSE minimization) produces spatially
smooth estimations and compresses the high precipitation rates, the MSDNet trained with O3 (with constraints on the CCF and on the wavelet PSD) preserves
the dynamical range of precipitation rates and the texture of the target fields.

TABLE I
PERFORMANCE OF THE MSDNETS TRAINED WITH THE THREE DIFFERENT

OBJECTIVE FUNCTIONS O1 , O2 , AND O3 .

in Fig. 1. As expected, the training run with the objective
function O1 = D1 converges to a lower MSE value (around
12 mm2

· h2) than the other two runs (around 13.5 mm2
· h2).

However, the runs with the objective functions O2 and O3,
which both comprise a constraint on the statistical distribution
of the rain rates, converge to a significantly lower D3 value
(distance to the target CCF) and to a standard deviation of the
prediction closer to that of the target. The D4 distance between
the wavelet power spectra decreases much more rapidly and
reaches a much lower value with the O3 objective function
than with the other two objective functions O1 and O2.

Focusing now on the performance of the fully trained
MSDNets over the testing dataset, Table I shows the coef-
ficients of linear correlation and the distances D1, D3, and D4
between the three MSDNet predictions and the CORRA refer-
ence estimates. Again, as expected, the MSDNet trained with
the O1 objective function achieves the lowest MSE; however,
all three MSDNet predictions show comparable coefficients
of linear correlation with the CORRA estimates (0.76–0.77).
When it comes to the preservation of the statistical distribution
(CCF) and of the wavelet power spectrum, the MSDNet
trained with the O3 objective function shows dramatically
better performance than the other two. It is worth noting that,
with the constraint on the CCF only (objective function O2),
the preservation of the multiscale structure as quantified by the
wavelet power spectrum is only marginally improved as com-
pared to the MSE-optimal prediction (objective function O1).
Fig. 2 shows the three MSDNet predictions for two selected
scenes among the 1000 scenes of the testing dataset. When

Fig. 3. PoE of the precipitation rates predicted by the three MSDNets
trained with the O1, O2, and O3 objective functions, along with the PoE for
the CORRA algorithm (target), at 5-km resolution, and aggregated at 20-km
resolution. All PoEs are computed over the 1000 scenes of the testing dataset.

visually comparing the predictions to the CORRA reference
fields, the smoothness of the O1 prediction is salient. The O2
prediction produces higher local maxima, effectively showing
a greater dynamical range than the O1 prediction. However,
only the O3 prediction reproduces the sharp spatial gradients
and the texture of the CORRA fields.

Fig. 3 shows the statistical distribution of the precipitation
rates, through the PoE, at 5- and 20-km resolutions for the
three MSDNet predictions over the testing data. As compared
to CORRA, the O1 prediction underestimates the occurrence
of precipitation rates higher than 15 mm/h both at the 5- and
20-km resolutions. At 5-km resolution, the O2 and O3 predic-
tions better represent high precipitation rates as compared to
the O1 prediction. At the 20-km resolution, the O3 prediction
well reproduces the statistical distribution of precipitation rates
over the full dynamical range; the O2 prediction, however,
appears to overestimate the occurrence of precipitation rates
higher than 6 mm/h. This reveals that a constraint on the
statistical distribution applied at the pixel level only, without
any control on the multiscale variance, can eventually lead to
a deteriorated statistical distribution at a coarser aggregated
scale. In this case, the overestimated occurrence of high
precipitation rates at the 20-km resolution comes from the
excessive short-range spatial correlation of the O2 prediction.

Fig. 4 (left) shows the PoE of the spatial gradients,
computed as the absolute values of the differences between
two adjacent pixels at 5-km resolution, for the three MSDNet
predictions. We can see that the O3 prediction much better
reproduces the distribution of the CORRA gradients as
compared to the O1 and O2 predictions, particularly for the
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Fig. 4. (Left) PoE of the absolute values of the spatial precipitation gradients
(differences between two adjacent pixels at 5-km resolution) predicted by the
three MSDNets trained with the O1, O2, and O3 objective functions, along
with the PoE for the CORRA algorithm (target). (Right) Multiscale variance
of the precipitation fields predicted by the three MSDNets trained with the
O1, O2, and O3 objective functions for the testing dataset, along with the
multiscale variance of the precipitation fields from the CORRA algorithm
(target). The PoEs and multiscale variances are computed over the 1000 scenes
of the testing dataset.

strongest gradients (higher than 3 mm ·h−1
·km−1). In spite of

being trained with a constraint on the statistical distribution of
precipitation rates, the O2 prediction only shows a marginal
improvement in terms of the distribution of spatial gradients
as compared to the O1 MSE-optimal prediction. The right
panel of Fig. 3 shows the multiscale variance of the different
predictions. The O1 prediction underestimates the variance
of precipitation rates at every scale, and the variance deficit
gets stronger with finer scales. As mentioned before, this
multiscale variance-compression effect is inevitable for
MSE-optimal predictions. The O3 prediction nearly perfectly
reproduces the CORRA multiscale variance, which is not
surprising as the preservation of the multiscale variance has
been explicitly constrained through the wavelet PSD during
the training. While the O2 prediction slightly underestimates
the variance at the finest 5-km scale, it overestimates it at
every other coarser scale, which again reveals the excessive
spatial correlation of the O2 prediction (the decrease rate of
the variance with spatial aggregation is lower for fields that
have stronger spatial correlation).

V. CONCLUSION

With the example of the retrieval of surface precipitation
rates from passive microwave satellite measurements with a
deep convolutional neural network, we illustrated the fact that
MSE-optimal estimates are generally smoother than the true
target variable, with compressed dynamical range, reduced
variance, and underrepresentation of extremes, at all scales,
but more so at the finest scales. This side effect of the MSE
minimization is particularly salient for precipitation estimation
from passive measurements, because of the strongly skewed
heavy-tail distribution of rain rates at subhourly subdegree
resolutions, and because of the relatively large magnitude of
the residual errors inherent to the limited information content
of the measured radiances. With deep-learning algorithms, this
smoothing effect can be avoided by explicitly constraining the
statistical distribution of the target variable and its multiscale
structure through a discrete wavelet PSD in the objective func-
tion during the training. With such constraints, the statistical
distribution, texture, and multiscale variance of the variable
of interest are significantly better preserved, at the cost of a
marginally increased MSE (about 10%–15% increase in our
example, see Table I). It must be noted that the improvement
is moderate when only the statistical distribution at the pixel
scale is constrained, while the addition of the constraint
on the wavelet PSD allows a much greater improvement.

More generally, for any deep-learning application, the results
presented here foster the use of purposedly designed objective
functions, adapted and tuned for each specific prediction task,
over the reliance on generic “all-purpose” objective functions
such as the MSE.
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